GitChat / app.py
kartavya23's picture
Upload 3 files
5f9e152 verified
raw
history blame
8.31 kB
import os
import gc
import re
import uuid
import subprocess
import requests
from dotenv import load_dotenv
os.environ["HF_HOME"] = "weights"
os.environ["TORCH_HOME"] = "weights"
import streamlit as st
from llama_index.core import Settings
from llama_index.llms.ollama import Ollama
from llama_index.core import PromptTemplate
from llama_index.core import SimpleDirectoryReader
from llama_index.core import VectorStoreIndex
from llama_index.core.storage.storage_context import StorageContext
from langchain_community.embeddings import HuggingFaceEmbeddings
from llama_index.embeddings.langchain import LangchainEmbedding
from rag_101.retriever import (
load_embedding_model,
load_reranker_model
)
# setup the llm
ollama_url = 'http://localhost:11434/api/chat'
llm = Ollama(model="mistral:instruct", url=ollama_url ,request_timeout=1000.0)
# TODO: setup the embedding model
lc_embedding_model = load_embedding_model()
embed_model = LangchainEmbedding(lc_embedding_model)
# utility functions
def parse_github_url(url):
pattern = r"https://github\.com/([^/]+)/([^/]+)"
match = re.match(pattern, url)
return match.groups() if match else (None, None)
def clone_repo(repo_url):
try:
result = subprocess.run(["git", "clone", repo_url], check=True, text=True, capture_output=True)
print(result.stdout)
return result
except subprocess.CalledProcessError as e:
print(f"Error occurred: {e.stderr}")
raise e
def validate_owner_repo(owner, repo):
return bool(owner) and bool(repo)
if "id" not in st.session_state:
st.session_state.id = uuid.uuid4()
st.session_state.file_cache = {}
session_id = st.session_state.id
client = None
def reset_chat():
st.session_state.messages = []
st.session_state.context = None
gc.collect()
with st.sidebar:
# input for Github URL
github_url = st.text_input("Github Repository URL")
# button to load and process the github repository
process_button = st.button("Load")
message_container = st.empty() # placeholder for dynamic messages
if process_button and github_url:
owner, repo = parse_github_url(github_url)
if validate_owner_repo(owner, repo):
with st.spinner(f"Loading {repo} repository by {owner}..."):
try:
input_dir_path = f"./{repo}"
if not os.path.exists((input_dir_path)):
clone_repo(github_url)
if os.path.exists(input_dir_path):
loader = SimpleDirectoryReader(
input_dir=input_dir_path,
required_exts=[".py", ".ipynb", ".js", ".ts", ".md"],
recursive=True
)
else:
st.error('Error occurred while cloning the repo, carefully check the URL')
st.stop()
docs = loader.load_data()
# TODO: ====== Create vector store and upload data ======
Settings.embed_model = embed_model
index = VectorStoreIndex.from_documents(docs)
# setup a query engine
Settings.llm = llm
query_engine = index.as_query_engine(streaming=True, similarity_top_k=4)
# customize prompt template
qa_prompt_tmpl_str = (
"Context information is below.\n"
"---------------------\n"
"{context_str}\n"
"---------------------\n"
"Given the context information above I want you to think step by step to answer the query in a crisp manner, in case you don't know the answer say 'I don't know!'.\n"
"Query: {query_str}\n"
"Answer: "
)
qa_prompt_tmpl_str = PromptTemplate(qa_prompt_tmpl_str)
query_engine.update_prompts(
{"response_synthesizer:text_qa_template": qa_prompt_tmpl_str}
)
if docs:
message_container.success("Data loaded successfully!!")
else:
message_container.write(
"No Data found, check if repository is not empty!!"
)
st.session_state.query_engine = query_engine
except Exception as e:
st.error(f"An error occurred: {e}")
st.stop()
st.success("Ready to chat!")
else:
st.error('Invalid owner or repo')
st.stop()
col1, col2 = st.columns([6, 1])
with col1:
st.header(f"Chat with your code! </>")
with col2:
st.button("Clear ↺", on_click=reset_chat)
# Initialize chat history
if "messages" not in st.session_state:
reset_chat()
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Accept user input
# TODO: old one
if prompt := st.chat_input("What's up?"):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Display user message in chat message container
with st.chat_message("user"):
st.markdown(prompt)
# Display assistant response in chat message container
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
# context = st.session_state.context
query_engine = st.session_state.query_engine
# Simulate stream of response with milliseconds delay
streaming_response = query_engine.query(prompt)
for chunk in streaming_response.response_gen:
full_response += chunk
message_placeholder.markdown(full_response + "▌")
# full_response = query_engine.query(prompt)
message_placeholder.markdown(full_response)
# st.session_state.context = ctx
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": full_response})
# todo: new one
# prompt = st.chat_input("What's up?")
# if prompt:
# # Add user message to chat history
# st.session_state.messages.append({"role": "user", "content": prompt})
#
# # Display user message in chat message container
# with st.chat_message("user"):
# st.markdown(prompt)
#
# # Display assistant response in chat message container
# with st.chat_message("assistant"):
# message_placeholder = st.empty()
# full_response = ""
#
# # context
# query_engine = st.session_state.query_engine
#
# # simulate stream of response with milliseconds delay
# try:
# # Construct the request payload
# payload = {
# "message": prompt,
# "model": "mistral:instruct"
# }
#
# # Send the request
# response = requests.post(ollama_url, json=payload)
#
# # Check for HTTP errors
# response.raise_for_status()
#
# # Print the full response to debug
# response_json = response.json()
# print(response_json)
#
# # Process the response
# if "response_gen" in response_json:
# for chunk in response_json["response_gen"]:
# full_response += chunk
# message_placeholder.markdown(full_response + "▌")
# message_placeholder.markdown(full_response)
#
# # add assistant response to chat history
# st.session_state.messages.append({"role": "assistant", "content": full_response})
# else:
# st.error("Unexpected response format: 'response_gen' key not found")
#
# except requests.exceptions.HTTPError as e:
# st.error(f"HTTP error: {e}")