File size: 8,305 Bytes
5f9e152
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import os
import gc
import re
import uuid
import subprocess
import requests
from dotenv import load_dotenv

os.environ["HF_HOME"] = "weights"
os.environ["TORCH_HOME"] = "weights"
import streamlit as st

from llama_index.core import Settings
from llama_index.llms.ollama import Ollama
from llama_index.core import PromptTemplate
from llama_index.core import SimpleDirectoryReader
from llama_index.core import VectorStoreIndex
from llama_index.core.storage.storage_context import StorageContext

from langchain_community.embeddings import HuggingFaceEmbeddings
from llama_index.embeddings.langchain import LangchainEmbedding

from rag_101.retriever import (
    load_embedding_model,
    load_reranker_model
)

# setup the llm
ollama_url = 'http://localhost:11434/api/chat'

llm = Ollama(model="mistral:instruct", url=ollama_url ,request_timeout=1000.0)

# TODO: setup the embedding model
lc_embedding_model = load_embedding_model()
embed_model = LangchainEmbedding(lc_embedding_model)


# utility functions
def parse_github_url(url):
    pattern = r"https://github\.com/([^/]+)/([^/]+)"
    match = re.match(pattern, url)
    return match.groups() if match else (None, None)


def clone_repo(repo_url):
    try:
        result = subprocess.run(["git", "clone", repo_url], check=True, text=True, capture_output=True)
        print(result.stdout)
        return result
    except subprocess.CalledProcessError as e:
        print(f"Error occurred: {e.stderr}")
        raise e


def validate_owner_repo(owner, repo):
    return bool(owner) and bool(repo)


if "id" not in st.session_state:
    st.session_state.id = uuid.uuid4()
    st.session_state.file_cache = {}

session_id = st.session_state.id
client = None


def reset_chat():
    st.session_state.messages = []
    st.session_state.context = None
    gc.collect()


with st.sidebar:

    # input for Github URL
    github_url = st.text_input("Github Repository URL")

    # button to load and process the github repository
    process_button = st.button("Load")

    message_container = st.empty()  # placeholder for dynamic messages

    if process_button and github_url:
        owner, repo = parse_github_url(github_url)

        if validate_owner_repo(owner, repo):
            with st.spinner(f"Loading {repo} repository by {owner}..."):
                try:
                    input_dir_path = f"./{repo}"

                    if not os.path.exists((input_dir_path)):
                        clone_repo(github_url)

                    if os.path.exists(input_dir_path):
                        loader = SimpleDirectoryReader(
                            input_dir=input_dir_path,
                            required_exts=[".py", ".ipynb", ".js", ".ts", ".md"],
                            recursive=True
                        )
                    else:
                        st.error('Error occurred while cloning the repo, carefully check the URL')
                        st.stop()

                    docs = loader.load_data()

                    # TODO: ====== Create vector store and upload data ======
                    Settings.embed_model = embed_model
                    index = VectorStoreIndex.from_documents(docs)

                    # setup a query engine
                    Settings.llm = llm
                    query_engine = index.as_query_engine(streaming=True, similarity_top_k=4)

                    # customize prompt template
                    qa_prompt_tmpl_str = (
                        "Context information is below.\n"
                        "---------------------\n"
                        "{context_str}\n"
                        "---------------------\n"
                        "Given the context information above I want you to think step by step to answer the query in a crisp manner, in case you don't know the answer say 'I don't know!'.\n"
                        "Query: {query_str}\n"
                        "Answer: "
                    )
                    qa_prompt_tmpl_str = PromptTemplate(qa_prompt_tmpl_str)

                    query_engine.update_prompts(
                        {"response_synthesizer:text_qa_template": qa_prompt_tmpl_str}
                    )

                    if docs:
                        message_container.success("Data loaded successfully!!")
                    else:
                        message_container.write(
                            "No Data found, check if repository is not empty!!"
                        )
                    st.session_state.query_engine = query_engine

                except Exception as e:
                    st.error(f"An error occurred: {e}")
                    st.stop()

                st.success("Ready to chat!")
        else:
            st.error('Invalid owner or repo')
            st.stop()

col1, col2 = st.columns([6, 1])

with col1:
    st.header(f"Chat with your code! </>")

with col2:
    st.button("Clear ↺", on_click=reset_chat)

# Initialize chat history
if "messages" not in st.session_state:
    reset_chat()

# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])


# Accept user input
# TODO: old one
if prompt := st.chat_input("What's up?"):
    # Add user message to chat history
    st.session_state.messages.append({"role": "user", "content": prompt})
    # Display user message in chat message container
    with st.chat_message("user"):
        st.markdown(prompt)

    # Display assistant response in chat message container
    with st.chat_message("assistant"):
        message_placeholder = st.empty()
        full_response = ""

        # context = st.session_state.context
        query_engine = st.session_state.query_engine

        # Simulate stream of response with milliseconds delay
        streaming_response = query_engine.query(prompt)

        for chunk in streaming_response.response_gen:
            full_response += chunk
            message_placeholder.markdown(full_response + "▌")

        # full_response = query_engine.query(prompt)

        message_placeholder.markdown(full_response)
        # st.session_state.context = ctx

    # Add assistant response to chat history
    st.session_state.messages.append({"role": "assistant", "content": full_response})

# todo: new one
# prompt = st.chat_input("What's up?")
# if prompt:
#     # Add user message to chat history
#     st.session_state.messages.append({"role": "user", "content": prompt})
#
#     # Display user message in chat message container
#     with st.chat_message("user"):
#         st.markdown(prompt)
#
#     # Display assistant response in chat message container
#     with st.chat_message("assistant"):
#         message_placeholder = st.empty()
#         full_response = ""
#
#     # context
#     query_engine = st.session_state.query_engine
#
#     # simulate stream of response with milliseconds delay
#     try:
#         # Construct the request payload
#         payload = {
#             "message": prompt,
#             "model": "mistral:instruct"
#         }
#
#         # Send the request
#         response = requests.post(ollama_url, json=payload)
#
#         # Check for HTTP errors
#         response.raise_for_status()
#
#         # Print the full response to debug
#         response_json = response.json()
#         print(response_json)
#
#         # Process the response
#         if "response_gen" in response_json:
#             for chunk in response_json["response_gen"]:
#                 full_response += chunk
#                 message_placeholder.markdown(full_response + "▌")
#             message_placeholder.markdown(full_response)
#
#             # add assistant response to chat history
#             st.session_state.messages.append({"role": "assistant", "content": full_response})
#         else:
#             st.error("Unexpected response format: 'response_gen' key not found")
#
#     except requests.exceptions.HTTPError as e:
#         st.error(f"HTTP error: {e}")