Spaces:
Sleeping
Sleeping
File size: 1,680 Bytes
c79091a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
from transformers import pipeline, set_seed
from transformers import BioGptTokenizer, BioGptForCausalLM
import gradio as gr
model_list = [
"microsoft/biogpt",
"microsoft/BioGPT-Large-PubMedQA"
]
def biogpt(
prompt: str,
model_id: str,
max_length: int = 25,
num_return_sequences: int = 5
):
model = BioGptForCausalLM.from_pretrained(model_id)
tokenizer = BioGptTokenizer.from_pretrained(model_id)
generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
set_seed(42)
output = generator(prompt, max_length=max_length, num_return_sequences=num_return_sequences, do_sample=True)
output_dict = {
"1": output[0]['generated_text'],
"2": output[1]['generated_text'],
"3": output[2]['generated_text'],
"4": output[3]['generated_text'],
"5": output[4]['generated_text']
}
return f'{output_dict["1"]}\n\n{output_dict["2"]}\n\n{output_dict["3"]}\n\n{output_dict["4"]}\n\n{output_dict["5"]}'
inputs = [
gr.inputs.Textbox(label="Prompt", lines=5, default="COVID-19 is"),
gr.Dropdown(model_list, value="microsoft/biogpt", label="Model ID"),
gr.inputs.Slider(5, 100, 25, default=25, label="Max Length"),
gr.inputs.Slider(1, 10, 5, default=5, label="Num Return Sequences")
]
outputs = gr.outputs.Textbox(label="Output")
examples = [
["COVID-19 is", "microsoft/biogpt"]
]
title = " BioGPT: Generative Pre-trained Transformer for Biomedical Text Generation and Mining"
demo_app = gr.Interface(
biogpt,
inputs,
outputs,
title=title,
examples=examples,
cache_examples=True,
)
demo_app.launch(debug=True, enable_queue=True)
|