Spaces:
Sleeping
Sleeping
biogpt project codes are uploaded.
Browse files- README.md +1 -1
- app.py +54 -0
- requirements.txt +2 -0
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
title: BioGpt
|
3 |
-
emoji:
|
4 |
colorFrom: red
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
|
|
1 |
---
|
2 |
title: BioGpt
|
3 |
+
emoji: π
|
4 |
colorFrom: red
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
app.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline, set_seed
|
2 |
+
from transformers import BioGptTokenizer, BioGptForCausalLM
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
model_list = [
|
6 |
+
"microsoft/biogpt",
|
7 |
+
"microsoft/BioGPT-Large-PubMedQA"
|
8 |
+
]
|
9 |
+
|
10 |
+
def biogpt(
|
11 |
+
prompt: str,
|
12 |
+
model_id: str,
|
13 |
+
max_length: int = 25,
|
14 |
+
num_return_sequences: int = 5
|
15 |
+
):
|
16 |
+
|
17 |
+
model = BioGptForCausalLM.from_pretrained(model_id)
|
18 |
+
tokenizer = BioGptTokenizer.from_pretrained(model_id)
|
19 |
+
generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
|
20 |
+
set_seed(42)
|
21 |
+
output = generator(prompt, max_length=max_length, num_return_sequences=num_return_sequences, do_sample=True)
|
22 |
+
output_dict = {
|
23 |
+
"1": output[0]['generated_text'],
|
24 |
+
"2": output[1]['generated_text'],
|
25 |
+
"3": output[2]['generated_text'],
|
26 |
+
"4": output[3]['generated_text'],
|
27 |
+
"5": output[4]['generated_text']
|
28 |
+
}
|
29 |
+
return f'{output_dict["1"]}\n\n{output_dict["2"]}\n\n{output_dict["3"]}\n\n{output_dict["4"]}\n\n{output_dict["5"]}'
|
30 |
+
|
31 |
+
|
32 |
+
inputs = [
|
33 |
+
gr.inputs.Textbox(label="Prompt", lines=5, default="COVID-19 is"),
|
34 |
+
gr.Dropdown(model_list, value="microsoft/biogpt", label="Model ID"),
|
35 |
+
gr.inputs.Slider(5, 100, 25, default=25, label="Max Length"),
|
36 |
+
gr.inputs.Slider(1, 10, 5, default=5, label="Num Return Sequences")
|
37 |
+
]
|
38 |
+
|
39 |
+
outputs = gr.outputs.Textbox(label="Output")
|
40 |
+
|
41 |
+
examples = [
|
42 |
+
["COVID-19 is", "microsoft/biogpt"]
|
43 |
+
]
|
44 |
+
|
45 |
+
title = " BioGPT: Generative Pre-trained Transformer for Biomedical Text Generation and Mining"
|
46 |
+
demo_app = gr.Interface(
|
47 |
+
biogpt,
|
48 |
+
inputs,
|
49 |
+
outputs,
|
50 |
+
title=title,
|
51 |
+
examples=examples,
|
52 |
+
cache_examples=True,
|
53 |
+
)
|
54 |
+
demo_app.launch(debug=True, enable_queue=True)
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
transformers==4.26.0
|
2 |
+
sacremoses
|