File size: 5,912 Bytes
b13db2e
 
7cbe3b6
c79091a
 
328a923
c79091a
7c33ac4
c79091a
 
 
328a923
 
 
 
 
b13db2e
 
 
 
 
 
 
7cbe3b6
 
b13db2e
 
 
 
531ec87
c29b21d
b13db2e
 
5ee913f
b13db2e
7cbe3b6
65c4b85
b13db2e
 
 
 
 
 
65c4b85
7cbe3b6
b13db2e
c79091a
328a923
b13db2e
6fd8f41
c79091a
b13db2e
b6ad8fb
959c711
b13db2e
 
65c4b85
b13db2e
 
 
 
 
 
 
 
7af5441
b13db2e
 
 
 
 
 
 
 
c29b21d
 
b13db2e
 
 
c29b21d
531ec87
c29b21d
 
 
 
 
 
 
 
 
 
 
 
c79091a
fbd30f7
7a61e1e
 
 
 
 
 
843d693
b13db2e
 
e99875e
815cd11
 
e99875e
815cd11
45972bb
e99875e
815cd11
 
b13db2e
 
 
 
9cab6c0
 
 
 
65c4b85
b13db2e
91015f3
9cab6c0
 
 
 
847e393
 
 
 
 
 
 
 
 
d681378
 
b13db2e
847e393
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
from transformers import pipeline
from multilingual_translation import text_to_text_generation
from utils import lang_ids
import gradio as gr

biogpt_model_list = [
    "microsoft/biogpt",
    "microsoft/BioGPT-Large",
    "microsoft/BioGPT-Large-PubMedQA"
]

lang_model_list = [
    "facebook/m2m100_1.2B",
    "facebook/m2m100_418M"
]

whisper_model_list = [
    "openai/whisper-small",
    "openai/whisper-medium",
    "openai/whisper-tiny",
    "openai/whisper-large"   
]

lang_list = list(lang_ids.keys())

def whisper_demo(input_audio, model_id):
    pipe = pipeline(task="automatic-speech-recognition",model=model_id, device='cuda:0')
    pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language='en', task="transcribe")
    output_text = pipe(input_audio)['text']
    return output_text

    
def translate_to_english(prompt, lang_model_id, base_lang):
    if base_lang == "English":
        return prompt
    else:
        output_text = text_to_text_generation(
            prompt=prompt,
            model_id=lang_model_id,
            device='cuda:0',
            target_lang='en'
        )
            
        return output_text[0]

def biogpt_text(
    prompt: str,
    biogpt_model_id: str,
    lang_model_id: str,
    base_lang: str,
):

    en_prompt = translate_to_english(prompt, lang_model_id, base_lang)
    generator = pipeline("text-generation", model=biogpt_model_id, device="cuda:0")
    output = generator(en_prompt, max_length=250, num_return_sequences=1, do_sample=True)
    output = output[0]['generated_text']
    
    if base_lang == "English":
        output_text = output
        
    else: 
        output_text = text_to_text_generation(
            prompt=output,
            model_id=lang_model_id,
            device='cuda:0',
            target_lang=lang_ids[base_lang]
        )
            
    return en_prompt, output, output_text

def biogpt_audio(
    input_audio: str,
    biogpt_model_id: str,
    whisper_model_id: str,
    base_lang: str,
    lang_model_id: str,
):
    en_prompt = whisper_demo(input_audio=input_audio, model_id=whisper_model_id)
    generator = pipeline("text-generation", model=biogpt_model_id, device="cuda:0")
    output = generator(en_prompt, max_length=250, num_return_sequences=1, do_sample=True)
    output = output[0]['generated_text']
    if base_lang == "English":
        output_text = output
        
    else: 
        output_text = text_to_text_generation(
            prompt=output,
            model_id=lang_model_id,
            device='cuda:0',
            target_lang=lang_ids[base_lang]
        )
            
    return en_prompt, output, output_text

question_example = "Can 'high-risk' human papillomaviruses (HPVs) be detected in human breast milk? context: Using polymerase chain reaction techniques, we evaluated the presence of HPV infection in human breast milk collected from 21 HPV-positive and 11 HPV-negative mothers. Of the 32 studied human milk specimens, no 'high-risk' HPV 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58 or 58 DNA was detected. answer: This preliminary case-control study indicates the absence of mucosal 'high-risk' HPV types in human breast milk."

examples = [
    ["COVID-19 is", biogpt_model_list[0], lang_model_list[1], "English"],
    [question_example, biogpt_model_list[2], lang_model_list[1], "English"]  
]


app = gr.Blocks()
with app:
    gr.Markdown("# **<h4 align='center'>Whisper + M2M100 + BioGPT: Generative Pre-trained Transformer for Biomedical Text Generation and Mining<h4>**")
    gr.Markdown(
        """
        <h5 style='text-align: center'>
        Follow me for more! 
        <a href='https://twitter.com/kadirnar_ai' target='_blank'>Twitter</a> | <a href='https://github.com/kadirnar' target='_blank'>Github</a> | <a href='https://www.linkedin.com/in/kadir-nar/' target='_blank'>Linkedin</a> | 
        </h5>
        """
    )  
    with gr.Row():
        with gr.Column():
            with gr.Tab("Text"):
                input_text = gr.Textbox(lines=3, value="COVID-19 is", label="Text")
                text_biogpt = gr.Dropdown(choices=biogpt_model_list, value=biogpt_model_list[0], label='BioGpt Model')
                text_m2m100 = gr.Dropdown(choices=lang_model_list,  value=lang_model_list[1], label='Language Model')
                text_lang = gr.Dropdown(lang_list, value="English", label="Base Language")
                text_button = gr.Button(value="Predict")

            with gr.Tab("Audio"):
                input_audio = gr.Audio(source="microphone", type="filepath", label='Audio')
                audio_biogpt = gr.Dropdown(choices=biogpt_model_list, value=biogpt_model_list[0], label='BioGpt Model')
                audio_whisper = gr.Dropdown(choices=whisper_model_list,  value=whisper_model_list[0], label='Audio Model')
                audio_lang = gr.Dropdown(lang_list, value="English", label="Base Language")
                audio_m2m100 = gr.Dropdown(choices=lang_model_list,  value=lang_model_list[1], label='Language Model')
                audio_button = gr.Button(value="Predict")  
                  
        with gr.Tab("Audio"):
            with gr.Column():
                prompt_text = gr.Textbox(lines=3, label="Prompt")
                output_text = gr.Textbox(lines=3, label="BioGpt Text")
                translated_text = gr.Textbox(lines=3,label="Translated Text")
                    
    gr.Examples(examples, inputs=[input_text, text_biogpt, text_m2m100,text_lang], outputs=[prompt_text, output_text, translated_text], fn=biogpt_text, cache_examples=False)
    text_button.click(biogpt_text, inputs=[input_text, text_biogpt, text_m2m100 ,text_lang], outputs=[prompt_text, output_text, translated_text])
    audio_button.click(biogpt_audio, inputs=[input_audio, audio_biogpt, audio_whisper, audio_lang, audio_m2m100], outputs=[prompt_text, output_text, translated_text])
    
app.launch()