josedolot's picture
Upload utils/utils.py
e199348
import math
import os
import warnings
from glob import glob
from typing import Union
from functools import partial
from torch.utils.data import DataLoader
from prefetch_generator import BackgroundGenerator
import random
import itertools
import yaml
import argparse
import cv2
import numpy as np
import torch
from matplotlib import pyplot as plt
from torch import nn
from torch.nn.init import _calculate_fan_in_and_fan_out, _no_grad_normal_
from torchvision.ops.boxes import batched_nms
from pathlib import Path
from .sync_batchnorm import SynchronizedBatchNorm2d
class Params:
def __init__(self, project_file):
self.params = yaml.safe_load(open(project_file).read())
def __getattr__(self, item):
return self.params.get(item, None)
def save_checkpoint(ckpt, saved_path, name):
if isinstance(ckpt, dict):
if isinstance(ckpt['model'], CustomDataParallel):
ckpt['model'] = ckpt['model'].module.model.state_dict()
torch.save(ckpt, os.path.join(saved_path, name))
else:
ckpt['model'] = ckpt['model'].model.state_dict()
torch.save(ckpt, os.path.join(saved_path, name))
else:
if isinstance(ckpt, CustomDataParallel):
torch.save(ckpt.module.model.state_dict(), os.path.join(saved_path, name))
else:
torch.save(ckpt.model.state_dict(), os.path.join(saved_path, name))
def fitness(x):
# Model fitness as a weighted combination of metrics
w = [0.0, 0.0, 0.1, 0.9, 0.0, 0.0, 0.0] # weights for [P, R, [email protected], [email protected]:0.95, iou score, f1_score, loss]
return (x[:, :] * w).sum(1)
def invert_affine(metas: Union[float, list, tuple], preds):
for i in range(len(preds)):
if len(preds[i]['rois']) == 0:
continue
else:
if metas is float:
preds[i]['rois'][:, [0, 2]] = preds[i]['rois'][:, [0, 2]] / metas
preds[i]['rois'][:, [1, 3]] = preds[i]['rois'][:, [1, 3]] / metas
else:
new_w, new_h, old_w, old_h, padding_w, padding_h = metas[i]
preds[i]['rois'][:, [0, 2]] = preds[i]['rois'][:, [0, 2]] / (new_w / old_w)
preds[i]['rois'][:, [1, 3]] = preds[i]['rois'][:, [1, 3]] / (new_h / old_h)
return preds
def aspectaware_resize_padding_edited(image, width, height, interpolation=None, means=None):
old_h, old_w, c = image.shape
new_h = height
new_w = width
padding_h = 0
padding_w = 0
image = cv2.resize(image, (640,384), interpolation=cv2.INTER_AREA)
return image, new_w, new_h, old_w, old_h, padding_w, padding_h
def aspectaware_resize_padding(image, width, height, interpolation=None, means=None):
old_h, old_w, c = image.shape
if old_w > old_h:
new_w = width
new_h = int(width / old_w * old_h)
else:
new_w = int(height / old_h * old_w)
new_h = height
canvas = np.zeros((height, height, c), np.float32)
if means is not None:
canvas[...] = means
if new_w != old_w or new_h != old_h:
if interpolation is None:
image = cv2.resize(image, (new_w, new_h))
else:
image = cv2.resize(image, (new_w, new_h), interpolation=interpolation)
padding_h = height - new_h
padding_w = width - new_w
if c > 1:
canvas[:new_h, :new_w] = image
else:
if len(image.shape) == 2:
canvas[:new_h, :new_w, 0] = image
else:
canvas[:new_h, :new_w] = image
return canvas, new_w, new_h, old_w, old_h, padding_w, padding_h,
def preprocess(image_path, max_size=512, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)):
ori_imgs = [cv2.imread(str(img_path)) for img_path in image_path]
normalized_imgs = [(img[..., ::-1] / 255 - mean) / std for img in ori_imgs]
imgs_meta = [aspectaware_resize_padding_edited(img, 640, 384,
means=None, interpolation=cv2.INTER_AREA) for img in normalized_imgs]
# imgs_meta = [aspectaware_resize_padding(img, max_size, max_size,
# means=None) for img in normalized_imgs]
framed_imgs = [img_meta[0] for img_meta in imgs_meta]
framed_metas = [img_meta[1:] for img_meta in imgs_meta]
return ori_imgs, framed_imgs, framed_metas
def preprocess_video(*frame_from_video, max_size=512, mean=(0.406, 0.456, 0.485), std=(0.225, 0.224, 0.229)):
ori_imgs = frame_from_video
normalized_imgs = [(img[..., ::-1] / 255 - mean) / std for img in ori_imgs]
imgs_meta = [aspectaware_resize_padding(img, 640, 384,
means=None) for img in normalized_imgs]
framed_imgs = [img_meta[0] for img_meta in imgs_meta]
framed_metas = [img_meta[1:] for img_meta in imgs_meta]
return ori_imgs, framed_imgs, framed_metas
def postprocess(x, anchors, regression, classification, regressBoxes, clipBoxes, threshold, iou_threshold):
transformed_anchors = regressBoxes(anchors, regression)
transformed_anchors = clipBoxes(transformed_anchors, x)
scores = torch.max(classification, dim=2, keepdim=True)[0]
scores_over_thresh = (scores > threshold)[:, :, 0]
out = []
for i in range(x.shape[0]):
if scores_over_thresh[i].sum() == 0:
out.append({
'rois': np.array(()),
'class_ids': np.array(()),
'scores': np.array(()),
})
continue
classification_per = classification[i, scores_over_thresh[i, :], ...].permute(1, 0)
transformed_anchors_per = transformed_anchors[i, scores_over_thresh[i, :], ...]
scores_per = scores[i, scores_over_thresh[i, :], ...]
scores_, classes_ = classification_per.max(dim=0)
anchors_nms_idx = batched_nms(transformed_anchors_per, scores_per[:, 0], classes_, iou_threshold=iou_threshold)
if anchors_nms_idx.shape[0] != 0:
classes_ = classes_[anchors_nms_idx]
scores_ = scores_[anchors_nms_idx]
boxes_ = transformed_anchors_per[anchors_nms_idx, :]
out.append({
'rois': boxes_.cpu().numpy(),
'class_ids': classes_.cpu().numpy(),
'scores': scores_.cpu().numpy(),
})
else:
out.append({
'rois': np.array(()),
'class_ids': np.array(()),
'scores': np.array(()),
})
return out
def replace_w_sync_bn(m):
for var_name in dir(m):
target_attr = getattr(m, var_name)
if type(target_attr) == torch.nn.BatchNorm2d:
num_features = target_attr.num_features
eps = target_attr.eps
momentum = target_attr.momentum
affine = target_attr.affine
# get parameters
running_mean = target_attr.running_mean
running_var = target_attr.running_var
if affine:
weight = target_attr.weight
bias = target_attr.bias
setattr(m, var_name,
SynchronizedBatchNorm2d(num_features, eps, momentum, affine))
target_attr = getattr(m, var_name)
# set parameters
target_attr.running_mean = running_mean
target_attr.running_var = running_var
if affine:
target_attr.weight = weight
target_attr.bias = bias
for var_name, children in m.named_children():
replace_w_sync_bn(children)
class CustomDataParallel(nn.DataParallel):
"""
force splitting data to all gpus instead of sending all data to cuda:0 and then moving around.
"""
def __init__(self, module, num_gpus):
super().__init__(module)
self.num_gpus = num_gpus
def scatter(self, inputs, kwargs, device_ids):
# More like scatter and data prep at the same time. The point is we prep the data in such a way
# that no scatter is necessary, and there's no need to shuffle stuff around different GPUs.
devices = ['cuda:' + str(x) for x in range(self.num_gpus)]
splits = inputs[0].shape[0] // self.num_gpus
if splits == 0:
raise Exception('Batchsize must be greater than num_gpus.')
return [(inputs[0][splits * device_idx: splits * (device_idx + 1)].to(f'cuda:{device_idx}', non_blocking=True),
inputs[1][splits * device_idx: splits * (device_idx + 1)].to(f'cuda:{device_idx}', non_blocking=True),
inputs[2][splits * device_idx: splits * (device_idx + 1)].to(f'cuda:{device_idx}', non_blocking=True))
for device_idx in range(len(devices))], \
[kwargs] * len(devices)
def get_last_weights(weights_path):
weights_path = glob(weights_path + f'/*.pth')
weights_path = sorted(weights_path,
key=lambda x: int(x.rsplit('_')[-1].rsplit('.')[0]),
reverse=True)[0]
print(f'using weights {weights_path}')
return weights_path
def init_weights(model):
for name, module in model.named_modules():
is_conv_layer = isinstance(module, nn.Conv2d)
if is_conv_layer:
if "conv_list" or "header" in name:
variance_scaling_(module.weight.data)
else:
nn.init.kaiming_uniform_(module.weight.data)
if module.bias is not None:
if "classifier.header" in name:
bias_value = -np.log((1 - 0.01) / 0.01)
torch.nn.init.constant_(module.bias, bias_value)
else:
module.bias.data.zero_()
def variance_scaling_(tensor, gain=1.):
# type: (Tensor, float) -> Tensor
r"""
initializer for SeparableConv in Regressor/Classifier
reference: https://keras.io/zh/initializers/ VarianceScaling
"""
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
std = math.sqrt(gain / float(fan_in))
return _no_grad_normal_(tensor, 0., std)
def boolean_string(s):
if s not in {'False', 'True'}:
raise ValueError('Not a valid boolean string')
return s == 'True'
def restricted_float(x):
try:
x = float(x)
except ValueError:
raise argparse.ArgumentTypeError("%r not a floating-point literal" % (x,))
if x < 0.0 or x > 1.0:
raise argparse.ArgumentTypeError("%r not in range [0.0, 1.0]"%(x,))
return x
# --------------------------EVAL UTILS---------------------------
def process_batch(detections, labels, iou_thresholds):
"""
Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format.
Arguments:
detections (Array[N, 6]), x1, y1, x2, y2, conf, class
labels (Array[M, 5]), class, x1, y1, x2, y2
iou_thresholds: list iou thresholds from 0.5 -> 0.95
Returns:
correct (Array[N, 10]), for 10 IoU levels
"""
labels = labels.to(detections.device)
# print("ASDA", detections[:, 5].shape)
# print("SADASD", labels[:, 4].shape)
correct = torch.zeros(detections.shape[0], iou_thresholds.shape[0], dtype=torch.bool, device=iou_thresholds.device)
iou = box_iou(labels[:, :4], detections[:, :4])
# print(labels[:, 4], detections[:, 5])
x = torch.where((iou >= iou_thresholds[0]) & (labels[:, 4:5] == detections[:, 5]))
# abc = detections[:,5].unsqueeze(1)
# print(labels[:, 4] == abc)
# exit()
if x[0].shape[0]:
# [label, detection, iou]
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
if x[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
matches = torch.Tensor(matches).to(iou_thresholds.device)
correct[matches[:, 1].long()] = matches[:, 2:3] >= iou_thresholds
return correct
def box_iou(box1, box2):
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
"""
Return intersection-over-union (Jaccard index) of boxes.
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
Arguments:
box1 (Tensor[N, 4])
box2 (Tensor[M, 4])
Returns:
iou (Tensor[N, M]): the NxM matrix containing the pairwise
IoU values for every element in boxes1 and boxes2
"""
def box_area(box):
# box = 4xn
return (box[2] - box[0]) * (box[3] - box[1])
box1 = box1.cuda()
area1 = box_area(box1.T)
area2 = box_area(box2.T)
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
def xywh2xyxy(x):
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
return y
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
if len(coords) == 0:
return []
# Rescale coords (xyxy) from img1_shape to img0_shape
if ratio_pad is None: # calculate from img0_shape
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
else:
gain = ratio_pad[0][0]
pad = ratio_pad[1]
coords[:, [0, 2]] -= pad[0] # x padding
coords[:, [1, 3]] -= pad[1] # y padding
coords[:, :4] /= gain
clip_coords(coords, img0_shape)
return coords
def clip_coords(boxes, shape):
# Clip bounding xyxy bounding boxes to image shape (height, width)
if isinstance(boxes, torch.Tensor): # faster individually
boxes[:, 0].clamp_(0, shape[1]) # x1
boxes[:, 1].clamp_(0, shape[0]) # y1
boxes[:, 2].clamp_(0, shape[1]) # x2
boxes[:, 3].clamp_(0, shape[0]) # y2
else: # np.array (faster grouped)
boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1]) # x1, x2
boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0]) # y1, y2
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='precision-recall_curve.png', names=[]):
""" Compute the average precision, given the recall and precision curves.
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
# Arguments
tp: True positives (nparray, nx1 or nx10).
conf: Objectness value from 0-1 (nparray).
pred_cls: Predicted object classes (nparray).
target_cls: True object classes (nparray).
plot: Plot precision-recall curve at [email protected]
save_dir: Plot save directory
# Returns
The average precision as computed in py-faster-rcnn.
"""
# Sort by objectness
i = np.argsort(-conf)
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
# Find unique classes
unique_classes = np.unique(target_cls)
# Create Precision-Recall curve and compute AP for each class
px, py = np.linspace(0, 1, 1000), [] # for plotting
pr_score = 0.1 # score to evaluate P and R https://github.com/ultralytics/yolov3/issues/898
s = [unique_classes.shape[0], tp.shape[1]] # number class, number iou thresholds (i.e. 10 for mAP0.5...0.95)
ap, p, r = np.zeros(s), np.zeros((unique_classes.shape[0], 1000)), np.zeros((unique_classes.shape[0], 1000))
for ci, c in enumerate(unique_classes):
i = pred_cls == c
n_l = (target_cls == c).sum() # number of labels
n_p = i.sum() # number of predictions
if n_p == 0 or n_l == 0:
continue
else:
# Accumulate FPs and TPs
fpc = (1 - tp[i]).cumsum(0)
tpc = tp[i].cumsum(0)
# Recall
recall = tpc / (n_l + 1e-16) # recall curve
r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
# Precision
precision = tpc / (tpc + fpc) # precision curve
p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
# AP from recall-precision curve
for j in range(tp.shape[1]):
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
if plot and (j == 0):
py.append(np.interp(px, mrec, mpre)) # precision at [email protected]
# Compute F1 score (harmonic mean of precision and recall)
f1 = 2 * p * r / (p + r + 1e-16)
i=r.mean(0).argmax()
if plot:
plot_pr_curve(px, py, ap, save_dir, names)
return p[:, i], r[:, i], f1[:, i], ap, unique_classes.astype('int32')
def compute_ap(recall, precision):
""" Compute the average precision, given the recall and precision curves
# Arguments
recall: The recall curve (list)
precision: The precision curve (list)
# Returns
Average precision, precision curve, recall curve
"""
# Append sentinel values to beginning and end
mrec = np.concatenate(([0.0], recall, [1.0]))
mpre = np.concatenate(([1.0], precision, [0.0]))
# Compute the precision envelope
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
# Integrate area under curve
method = 'interp' # methods: 'continuous', 'interp'
if method == 'interp':
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
else: # 'continuous'
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
return ap, mpre, mrec
def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()):
# Precision-recall curve
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
py = np.stack(py, axis=1)
if 0 < len(names) < 21: # display per-class legend if < 21 classes
for i, y in enumerate(py.T):
ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
else:
ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f [email protected]' % ap[:, 0].mean())
ax.set_xlabel('Recall')
ax.set_ylabel('Precision')
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
fig.savefig(Path(save_dir), dpi=250)
plt.close()
def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence', ylabel='Metric'):
# Metric-confidence curve
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
if 0 < len(names) < 21: # display per-class legend if < 21 classes
for i, y in enumerate(py):
ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
else:
ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
y = py.mean(0)
ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
fig.savefig(Path(save_dir), dpi=250)
plt.close()
def cal_weighted_ap(ap50):
return 0.2 * ap50[1] + 0.3 * ap50[0] + 0.5 * ap50[2]
class ConfusionMatrix:
# Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
def __init__(self, nc, conf=0.25, iou_thres=0.45):
self.matrix = np.zeros((nc + 1, nc + 1))
self.nc = nc # number of classes
self.conf = conf
self.iou_thres = iou_thres
def process_batch(self, detections, labels):
"""
Return intersection-over-union (Jaccard index) of boxes.
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
Arguments:
detections (Array[N, 6]), x1, y1, x2, y2, conf, class
labels (Array[M, 5]), class, x1, y1, x2, y2
Returns:
None, updates confusion matrix accordingly
"""
detections = detections[detections[:, 4] > self.conf]
gt_classes = labels[:, 4].int()
detection_classes = detections[:, 5].int()
iou = box_iou(labels[:, :4], detections[:, :4])
x = torch.where(iou > self.iou_thres)
if x[0].shape[0]:
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
if x[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
else:
matches = np.zeros((0, 3))
n = matches.shape[0] > 0
m0, m1, _ = matches.transpose().astype(np.int16)
for i, gc in enumerate(gt_classes):
j = m0 == i
if n and sum(j) == 1:
self.matrix[detection_classes[m1[j]], gc] += 1 # correct
else:
self.matrix[self.nc, gc] += 1 # background FP
if n:
for i, dc in enumerate(detection_classes):
if not any(m1 == i):
self.matrix[dc, self.nc] += 1 # background FN
def matrix(self):
return self.matrix
def tp_fp(self):
tp = self.matrix.diagonal() # true positives
fp = self.matrix.sum(1) - tp # false positives
fn = self.matrix.sum(0) - tp # false negatives (missed detections)
return tp[:-1], fp[:-1], fn[:-1] # remove background class
def plot(self, normalize=True, save_dir='', names=()):
try:
import seaborn as sn
array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-6) if normalize else 1) # normalize columns
array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
fig = plt.figure(figsize=(12, 9), tight_layout=True)
sn.set(font_scale=1.0 if self.nc < 50 else 0.8) # for label size
labels = (0 < len(names) < 99) and len(names) == self.nc # apply names to ticklabels
with warnings.catch_warnings():
warnings.simplefilter('ignore') # suppress empty matrix RuntimeWarning: All-NaN slice encountered
sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True,
xticklabels=names + ['background FP'] if labels else "auto",
yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
fig.axes[0].set_xlabel('True')
fig.axes[0].set_ylabel('Predicted')
fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
plt.close()
except Exception as e:
print(f'WARNING: ConfusionMatrix plot failure: {e}')
def print(self):
for i in range(self.nc + 1):
print(' '.join(map(str, self.matrix[i])))
class BBoxTransform(nn.Module):
def forward(self, anchors, regression):
y_centers_a = (anchors[..., 0] + anchors[..., 2]) / 2
x_centers_a = (anchors[..., 1] + anchors[..., 3]) / 2
ha = anchors[..., 2] - anchors[..., 0]
wa = anchors[..., 3] - anchors[..., 1]
w = regression[..., 3].exp() * wa
h = regression[..., 2].exp() * ha
y_centers = regression[..., 0] * ha + y_centers_a
x_centers = regression[..., 1] * wa + x_centers_a
ymin = y_centers - h / 2.
xmin = x_centers - w / 2.
ymax = y_centers + h / 2.
xmax = x_centers + w / 2.
return torch.stack([xmin, ymin, xmax, ymax], dim=2)
class ClipBoxes(nn.Module):
def __init__(self):
super(ClipBoxes, self).__init__()
def forward(self, boxes, img):
batch_size, num_channels, height, width = img.shape
boxes[:, :, 0] = torch.clamp(boxes[:, :, 0], min=0)
boxes[:, :, 1] = torch.clamp(boxes[:, :, 1], min=0)
boxes[:, :, 2] = torch.clamp(boxes[:, :, 2], max=width - 1)
boxes[:, :, 3] = torch.clamp(boxes[:, :, 3], max=height - 1)
return boxes
class Anchors(nn.Module):
def __init__(self, anchor_scale=4., pyramid_levels=None, **kwargs):
super().__init__()
self.anchor_scale = anchor_scale
if pyramid_levels is None:
self.pyramid_levels = [3, 4, 5, 6, 7]
else:
self.pyramid_levels = pyramid_levels
self.strides = kwargs.get('strides', [2 ** x for x in self.pyramid_levels])
self.scales = np.array(kwargs.get('scales', [2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)]))
self.ratios = kwargs.get('ratios', [(1.0, 1.0), (1.4, 0.7), (0.7, 1.4)])
self.last_anchors = {}
self.last_shape = None
def forward(self, image, dtype=torch.float32):
"""Generates multiscale anchor boxes.
Args:
image_size: integer number of input image size. The input image has the
same dimension for width and height. The image_size should be divided by
the largest feature stride 2^max_level.
anchor_scale: float number representing the scale of size of the base
anchor to the feature stride 2^level.
anchor_configs: a dictionary with keys as the levels of anchors and
values as a list of anchor configuration.
Returns:
anchor_boxes: a numpy array with shape [N, 4], which stacks anchors on all
feature levels.
Raises:
ValueError: input size must be the multiple of largest feature stride.
"""
image_shape = image.shape[2:]
if image_shape == self.last_shape and image.device in self.last_anchors:
return self.last_anchors[image.device]
if self.last_shape is None or self.last_shape != image_shape:
self.last_shape = image_shape
if dtype == torch.float16:
dtype = np.float16
else:
dtype = np.float32
boxes_all = []
for stride in self.strides:
boxes_level = []
for scale, ratio in itertools.product(self.scales, self.ratios):
if image_shape[1] % stride != 0:
raise ValueError('input size must be divided by the stride.')
base_anchor_size = self.anchor_scale * stride * scale
anchor_size_x_2 = base_anchor_size * ratio[0] / 2.0
anchor_size_y_2 = base_anchor_size * ratio[1] / 2.0
x = np.arange(stride / 2, image_shape[1], stride)
y = np.arange(stride / 2, image_shape[0], stride)
xv, yv = np.meshgrid(x, y)
xv = xv.reshape(-1)
yv = yv.reshape(-1)
# y1,x1,y2,x2
boxes = np.vstack((yv - anchor_size_y_2, xv - anchor_size_x_2,
yv + anchor_size_y_2, xv + anchor_size_x_2))
boxes = np.swapaxes(boxes, 0, 1)
boxes_level.append(np.expand_dims(boxes, axis=1))
# concat anchors on the same level to the reshape NxAx4
boxes_level = np.concatenate(boxes_level, axis=1)
boxes_all.append(boxes_level.reshape([-1, 4]))
anchor_boxes = np.vstack(boxes_all)
anchor_boxes = torch.from_numpy(anchor_boxes.astype(dtype)).to(image.device)
anchor_boxes = anchor_boxes.unsqueeze(0)
# save it for later use to reduce overhead
self.last_anchors[image.device] = anchor_boxes
return anchor_boxes
class DataLoaderX(DataLoader):
"""prefetch dataloader"""
def __iter__(self):
return BackgroundGenerator(super().__iter__())
def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
"""change color hue, saturation, value"""
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
dtype = img.dtype # uint8
x = np.arange(0, 256, dtype=np.int16)
lut_hue = ((x * r[0]) % 180).astype(dtype)
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
# Histogram equalization
# if random.random() < 0.2:
# for i in range(3):
# img[:, :, i] = cv2.equalizeHist(img[:, :, i])
def random_perspective(combination, targets=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0,
border=(0, 0)):
"""combination of img transform"""
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
# targets = [cls, xyxy]
img, gray, line = combination
height = img.shape[0] + border[0] * 2 # shape(h,w,c)
width = img.shape[1] + border[1] * 2
# Center
C = np.eye(3)
C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
# Perspective
P = np.eye(3)
P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
# Rotation and Scale
R = np.eye(3)
a = random.uniform(-degrees, degrees)
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
s = random.uniform(1 - scale, 1 + scale)
# s = 2 ** random.uniform(-scale, scale)
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
# Shear
S = np.eye(3)
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
# Translation
T = np.eye(3)
T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
# Combined rotation matrix
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
if perspective:
img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
gray = cv2.warpPerspective(gray, M, dsize=(width, height), borderValue=0)
line = cv2.warpPerspective(line, M, dsize=(width, height), borderValue=0)
else: # affine
img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
gray = cv2.warpAffine(gray, M[:2], dsize=(width, height), borderValue=0)
line = cv2.warpAffine(line, M[:2], dsize=(width, height), borderValue=0)
# Visualize
# import matplotlib.pyplot as plt
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
# ax[0].imshow(img[:, :, ::-1]) # base
# ax[1].imshow(img2[:, :, ::-1]) # warped
# Transform label coordinates
n = len(targets)
if n:
# warp points
xy = np.ones((n * 4, 3))
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
xy = xy @ M.T # transform
if perspective:
xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8) # rescale
else: # affine
xy = xy[:, :2].reshape(n, 8)
# create new boxes
x = xy[:, [0, 2, 4, 6]]
y = xy[:, [1, 3, 5, 7]]
xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
# # apply angle-based reduction of bounding boxes
# radians = a * math.pi / 180
# reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5
# x = (xy[:, 2] + xy[:, 0]) / 2
# y = (xy[:, 3] + xy[:, 1]) / 2
# w = (xy[:, 2] - xy[:, 0]) * reduction
# h = (xy[:, 3] - xy[:, 1]) * reduction
# xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T
# clip boxes
xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
# filter candidates
i = _box_candidates(box1=targets[:, 1:5].T * s, box2=xy.T)
targets = targets[i]
targets[:, 1:5] = xy[i]
combination = (img, gray, line)
return combination, targets
def cutout(combination, labels):
# Applies image cutout augmentation https://arxiv.org/abs/1708.04552
image, gray = combination
h, w = image.shape[:2]
def bbox_ioa(box1, box2):
# Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
box2 = box2.transpose()
# Get the coordinates of bounding boxes
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
# Intersection area
inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
(np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
# box2 area
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16
# Intersection over box2 area
return inter_area / box2_area
# create random masks
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
for s in scales:
mask_h = random.randint(1, int(h * s))
mask_w = random.randint(1, int(w * s))
# box
xmin = max(0, random.randint(0, w) - mask_w // 2)
ymin = max(0, random.randint(0, h) - mask_h // 2)
xmax = min(w, xmin + mask_w)
ymax = min(h, ymin + mask_h)
# print('xmin:{},ymin:{},xmax:{},ymax:{}'.format(xmin,ymin,xmax,ymax))
# apply random color mask
image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
gray[ymin:ymax, xmin:xmax] = -1
# return unobscured labels
if len(labels) and s > 0.03:
box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
labels = labels[ioa < 0.60] # remove >60% obscured labels
return image, gray, labels
def letterbox(combination, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
"""缩放并在图片顶部、底部添加灰边,具体参考:https://zhuanlan.zhihu.com/p/172121380"""
# Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
img, gray, line = combination
shape = img.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not scaleup: # only scale down, do not scale up (for better test mAP)
r = min(r, 1.0)
# Compute padding
ratio = r, r # width, height ratios
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
if auto: # minimum rectangle
dw, dh = np.mod(dw, 32), np.mod(dh, 32) # wh padding
elif scaleFill: # stretch
dw, dh = 0.0, 0.0
new_unpad = (new_shape[1], new_shape[0])
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
gray = cv2.resize(gray, new_unpad, interpolation=cv2.INTER_LINEAR)
line = cv2.resize(line, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
gray = cv2.copyMakeBorder(gray, top, bottom, left, right, cv2.BORDER_CONSTANT, value=0) # add border
line = cv2.copyMakeBorder(line, top, bottom, left, right, cv2.BORDER_CONSTANT, value=0) # add border
combination = (img, gray, line)
return combination, ratio, (dw, dh)
def _box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1): # box1(4,n), box2(4,n)
# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
ar = np.maximum(w2 / (h2 + 1e-16), h2 / (w2 + 1e-16)) # aspect ratio
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + 1e-16) > area_thr) & (ar < ar_thr) # candidates