File size: 37,608 Bytes
e199348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
import math
import os
import warnings
from glob import glob
from typing import Union
from functools import partial
from torch.utils.data import DataLoader
from prefetch_generator import BackgroundGenerator
import random
import itertools
import yaml
import argparse

import cv2
import numpy as np
import torch
from matplotlib import pyplot as plt
from torch import nn
from torch.nn.init import _calculate_fan_in_and_fan_out, _no_grad_normal_
from torchvision.ops.boxes import batched_nms
from pathlib import Path
from .sync_batchnorm import SynchronizedBatchNorm2d


class Params:
    def __init__(self, project_file):
        self.params = yaml.safe_load(open(project_file).read())

    def __getattr__(self, item):
        return self.params.get(item, None)


def save_checkpoint(ckpt, saved_path, name):
    if isinstance(ckpt, dict):
        if isinstance(ckpt['model'], CustomDataParallel):
            ckpt['model'] = ckpt['model'].module.model.state_dict()
            torch.save(ckpt, os.path.join(saved_path, name))
        else:
            ckpt['model'] = ckpt['model'].model.state_dict()
            torch.save(ckpt, os.path.join(saved_path, name))
    else:
        if isinstance(ckpt, CustomDataParallel):
            torch.save(ckpt.module.model.state_dict(), os.path.join(saved_path, name))
        else:
            torch.save(ckpt.model.state_dict(), os.path.join(saved_path, name))


def fitness(x):
    # Model fitness as a weighted combination of metrics
    w = [0.0, 0.0, 0.1, 0.9, 0.0, 0.0, 0.0]  # weights for [P, R, [email protected], [email protected]:0.95, iou score, f1_score, loss]
    return (x[:, :] * w).sum(1)


def invert_affine(metas: Union[float, list, tuple], preds):
    for i in range(len(preds)):
        if len(preds[i]['rois']) == 0:
            continue
        else:
            if metas is float:
                preds[i]['rois'][:, [0, 2]] = preds[i]['rois'][:, [0, 2]] / metas
                preds[i]['rois'][:, [1, 3]] = preds[i]['rois'][:, [1, 3]] / metas
            else:
                new_w, new_h, old_w, old_h, padding_w, padding_h = metas[i]
                preds[i]['rois'][:, [0, 2]] = preds[i]['rois'][:, [0, 2]] / (new_w / old_w)
                preds[i]['rois'][:, [1, 3]] = preds[i]['rois'][:, [1, 3]] / (new_h / old_h)
    return preds


def aspectaware_resize_padding_edited(image, width, height, interpolation=None, means=None):
    old_h, old_w, c = image.shape
    new_h = height
    new_w = width
    padding_h = 0
    padding_w = 0

    image = cv2.resize(image, (640,384), interpolation=cv2.INTER_AREA)
    return image, new_w, new_h, old_w, old_h, padding_w, padding_h


def aspectaware_resize_padding(image, width, height, interpolation=None, means=None):
    old_h, old_w, c = image.shape
    if old_w > old_h:
        new_w = width
        new_h = int(width / old_w * old_h)
    else:
        new_w = int(height / old_h * old_w)
        new_h = height

    canvas = np.zeros((height, height, c), np.float32)
    if means is not None:
        canvas[...] = means

    if new_w != old_w or new_h != old_h:
        if interpolation is None:
            image = cv2.resize(image, (new_w, new_h))
        else:
            image = cv2.resize(image, (new_w, new_h), interpolation=interpolation)

    padding_h = height - new_h
    padding_w = width - new_w

    if c > 1:
        canvas[:new_h, :new_w] = image
    else:
        if len(image.shape) == 2:
            canvas[:new_h, :new_w, 0] = image
        else:
            canvas[:new_h, :new_w] = image

    return canvas, new_w, new_h, old_w, old_h, padding_w, padding_h,


def preprocess(image_path, max_size=512, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)):
    ori_imgs = [cv2.imread(str(img_path)) for img_path in image_path]
    normalized_imgs = [(img[..., ::-1] / 255 - mean) / std for img in ori_imgs]

    imgs_meta = [aspectaware_resize_padding_edited(img, 640, 384,
                                            means=None, interpolation=cv2.INTER_AREA) for img in normalized_imgs]

    # imgs_meta = [aspectaware_resize_padding(img, max_size, max_size,
    #                                         means=None) for img in normalized_imgs]

    framed_imgs = [img_meta[0] for img_meta in imgs_meta]

    framed_metas = [img_meta[1:] for img_meta in imgs_meta]

    return ori_imgs, framed_imgs, framed_metas


def preprocess_video(*frame_from_video, max_size=512, mean=(0.406, 0.456, 0.485), std=(0.225, 0.224, 0.229)):
    ori_imgs = frame_from_video
    normalized_imgs = [(img[..., ::-1] / 255 - mean) / std for img in ori_imgs]
    imgs_meta = [aspectaware_resize_padding(img, 640, 384,
                                            means=None) for img in normalized_imgs]
    framed_imgs = [img_meta[0] for img_meta in imgs_meta]
    framed_metas = [img_meta[1:] for img_meta in imgs_meta]

    return ori_imgs, framed_imgs, framed_metas


def postprocess(x, anchors, regression, classification, regressBoxes, clipBoxes, threshold, iou_threshold):
    transformed_anchors = regressBoxes(anchors, regression)
    transformed_anchors = clipBoxes(transformed_anchors, x)
    scores = torch.max(classification, dim=2, keepdim=True)[0]
    scores_over_thresh = (scores > threshold)[:, :, 0]
    out = []
    for i in range(x.shape[0]):
        if scores_over_thresh[i].sum() == 0:
            out.append({
                'rois': np.array(()),
                'class_ids': np.array(()),
                'scores': np.array(()),
            })
            continue

        classification_per = classification[i, scores_over_thresh[i, :], ...].permute(1, 0)
        transformed_anchors_per = transformed_anchors[i, scores_over_thresh[i, :], ...]
        scores_per = scores[i, scores_over_thresh[i, :], ...]
        scores_, classes_ = classification_per.max(dim=0)
        anchors_nms_idx = batched_nms(transformed_anchors_per, scores_per[:, 0], classes_, iou_threshold=iou_threshold)

        if anchors_nms_idx.shape[0] != 0:
            classes_ = classes_[anchors_nms_idx]
            scores_ = scores_[anchors_nms_idx]
            boxes_ = transformed_anchors_per[anchors_nms_idx, :]

            out.append({
                'rois': boxes_.cpu().numpy(),
                'class_ids': classes_.cpu().numpy(),
                'scores': scores_.cpu().numpy(),
            })
        else:
            out.append({
                'rois': np.array(()),
                'class_ids': np.array(()),
                'scores': np.array(()),
            })

    return out


def replace_w_sync_bn(m):
    for var_name in dir(m):
        target_attr = getattr(m, var_name)
        if type(target_attr) == torch.nn.BatchNorm2d:
            num_features = target_attr.num_features
            eps = target_attr.eps
            momentum = target_attr.momentum
            affine = target_attr.affine

            # get parameters
            running_mean = target_attr.running_mean
            running_var = target_attr.running_var
            if affine:
                weight = target_attr.weight
                bias = target_attr.bias

            setattr(m, var_name,
                    SynchronizedBatchNorm2d(num_features, eps, momentum, affine))

            target_attr = getattr(m, var_name)
            # set parameters
            target_attr.running_mean = running_mean
            target_attr.running_var = running_var
            if affine:
                target_attr.weight = weight
                target_attr.bias = bias

    for var_name, children in m.named_children():
        replace_w_sync_bn(children)


class CustomDataParallel(nn.DataParallel):
    """
    force splitting data to all gpus instead of sending all data to cuda:0 and then moving around.
    """

    def __init__(self, module, num_gpus):
        super().__init__(module)
        self.num_gpus = num_gpus

    def scatter(self, inputs, kwargs, device_ids):
        # More like scatter and data prep at the same time. The point is we prep the data in such a way
        # that no scatter is necessary, and there's no need to shuffle stuff around different GPUs.
        devices = ['cuda:' + str(x) for x in range(self.num_gpus)]
        splits = inputs[0].shape[0] // self.num_gpus

        if splits == 0:
            raise Exception('Batchsize must be greater than num_gpus.')

        return [(inputs[0][splits * device_idx: splits * (device_idx + 1)].to(f'cuda:{device_idx}', non_blocking=True),
                 inputs[1][splits * device_idx: splits * (device_idx + 1)].to(f'cuda:{device_idx}', non_blocking=True),
                 inputs[2][splits * device_idx: splits * (device_idx + 1)].to(f'cuda:{device_idx}', non_blocking=True))
                for device_idx in range(len(devices))], \
               [kwargs] * len(devices)


def get_last_weights(weights_path):
    weights_path = glob(weights_path + f'/*.pth')
    weights_path = sorted(weights_path,
                          key=lambda x: int(x.rsplit('_')[-1].rsplit('.')[0]),
                          reverse=True)[0]
    print(f'using weights {weights_path}')
    return weights_path


def init_weights(model):
    for name, module in model.named_modules():
        is_conv_layer = isinstance(module, nn.Conv2d)

        if is_conv_layer:
            if "conv_list" or "header" in name:
                variance_scaling_(module.weight.data)
            else:
                nn.init.kaiming_uniform_(module.weight.data)

            if module.bias is not None:
                if "classifier.header" in name:
                    bias_value = -np.log((1 - 0.01) / 0.01)
                    torch.nn.init.constant_(module.bias, bias_value)
                else:
                    module.bias.data.zero_()


def variance_scaling_(tensor, gain=1.):
    # type: (Tensor, float) -> Tensor
    r"""
    initializer for SeparableConv in Regressor/Classifier
    reference: https://keras.io/zh/initializers/  VarianceScaling
    """
    fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
    std = math.sqrt(gain / float(fan_in))

    return _no_grad_normal_(tensor, 0., std)


def boolean_string(s):
    if s not in {'False', 'True'}:
        raise ValueError('Not a valid boolean string')
    return s == 'True'


def restricted_float(x):
    try:
        x = float(x)
    except ValueError:
        raise argparse.ArgumentTypeError("%r not a floating-point literal" % (x,))

    if x < 0.0 or x > 1.0:
        raise argparse.ArgumentTypeError("%r not in range [0.0, 1.0]"%(x,))
    return x


# --------------------------EVAL UTILS---------------------------
def process_batch(detections, labels, iou_thresholds):
    """
    Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format.
    Arguments:
        detections (Array[N, 6]), x1, y1, x2, y2, conf, class

        labels (Array[M, 5]), class, x1, y1, x2, y2
        iou_thresholds: list iou thresholds from 0.5 -> 0.95
    Returns:
        correct (Array[N, 10]), for 10 IoU levels
    """
    labels = labels.to(detections.device)
    # print("ASDA", detections[:, 5].shape)
    # print("SADASD", labels[:, 4].shape)
    correct = torch.zeros(detections.shape[0], iou_thresholds.shape[0], dtype=torch.bool, device=iou_thresholds.device)
    iou = box_iou(labels[:, :4], detections[:, :4])
    # print(labels[:, 4], detections[:, 5])
    x = torch.where((iou >= iou_thresholds[0]) & (labels[:, 4:5] == detections[:, 5]))
    # abc = detections[:,5].unsqueeze(1)
    # print(labels[:, 4] == abc)
    # exit()
    if x[0].shape[0]:
        # [label, detection, iou]
        matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
        if x[0].shape[0] > 1:
            matches = matches[matches[:, 2].argsort()[::-1]]
            matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
            matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
        matches = torch.Tensor(matches).to(iou_thresholds.device)
        correct[matches[:, 1].long()] = matches[:, 2:3] >= iou_thresholds

    return correct


def box_iou(box1, box2):
    # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
    """
    Return intersection-over-union (Jaccard index) of boxes.
    Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
    Arguments:
        box1 (Tensor[N, 4])
        box2 (Tensor[M, 4])
    Returns:
        iou (Tensor[N, M]): the NxM matrix containing the pairwise
            IoU values for every element in boxes1 and boxes2
    """

    def box_area(box):
        # box = 4xn
        return (box[2] - box[0]) * (box[3] - box[1])

    box1 = box1.cuda()
    area1 = box_area(box1.T)
    area2 = box_area(box2.T)

    # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
    inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
    return inter / (area1[:, None] + area2 - inter)  # iou = inter / (area1 + area2 - inter)


def xywh2xyxy(x):
    # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[:, 0] = x[:, 0] - x[:, 2] / 2  # top left x
    y[:, 1] = x[:, 1] - x[:, 3] / 2  # top left y
    y[:, 2] = x[:, 0] + x[:, 2] / 2  # bottom right x
    y[:, 3] = x[:, 1] + x[:, 3] / 2  # bottom right y
    return y


def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
    if len(coords) == 0:
        return []
    # Rescale coords (xyxy) from img1_shape to img0_shape
    if ratio_pad is None:  # calculate from img0_shape
        gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / new
        pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2  # wh padding
    else:
        gain = ratio_pad[0][0]
        pad = ratio_pad[1]

    coords[:, [0, 2]] -= pad[0]  # x padding
    coords[:, [1, 3]] -= pad[1]  # y padding
    coords[:, :4] /= gain
    clip_coords(coords, img0_shape)
    return coords


def clip_coords(boxes, shape):
    # Clip bounding xyxy bounding boxes to image shape (height, width)
    if isinstance(boxes, torch.Tensor):  # faster individually
        boxes[:, 0].clamp_(0, shape[1])  # x1
        boxes[:, 1].clamp_(0, shape[0])  # y1
        boxes[:, 2].clamp_(0, shape[1])  # x2
        boxes[:, 3].clamp_(0, shape[0])  # y2
    else:  # np.array (faster grouped)
        boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1])  # x1, x2
        boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0])  # y1, y2


def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='precision-recall_curve.png', names=[]):
    """ Compute the average precision, given the recall and precision curves.
    Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
    # Arguments
        tp:  True positives (nparray, nx1 or nx10).
        conf:  Objectness value from 0-1 (nparray).
        pred_cls:  Predicted object classes (nparray).
        target_cls:  True object classes (nparray).
        plot:  Plot precision-recall curve at [email protected]
        save_dir:  Plot save directory
    # Returns
        The average precision as computed in py-faster-rcnn.
    """

    # Sort by objectness
    i = np.argsort(-conf)
    tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]

    # Find unique classes
    unique_classes = np.unique(target_cls)

    # Create Precision-Recall curve and compute AP for each class
    px, py = np.linspace(0, 1, 1000), []  # for plotting
    pr_score = 0.1  # score to evaluate P and R https://github.com/ultralytics/yolov3/issues/898
    s = [unique_classes.shape[0], tp.shape[1]]  # number class, number iou thresholds (i.e. 10 for mAP0.5...0.95)
    ap, p, r = np.zeros(s), np.zeros((unique_classes.shape[0], 1000)), np.zeros((unique_classes.shape[0], 1000))
    for ci, c in enumerate(unique_classes):
        i = pred_cls == c
        n_l = (target_cls == c).sum()  # number of labels
        n_p = i.sum()  # number of predictions

        if n_p == 0 or n_l == 0:
            continue
        else:
            # Accumulate FPs and TPs
            fpc = (1 - tp[i]).cumsum(0)
            tpc = tp[i].cumsum(0)

            # Recall
            recall = tpc / (n_l + 1e-16)  # recall curve
            r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0)  # negative x, xp because xp decreases

            # Precision
            precision = tpc / (tpc + fpc)  # precision curve
            p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1)  # p at pr_score
            # AP from recall-precision curve
            for j in range(tp.shape[1]):
                ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
                if plot and (j == 0):
                    py.append(np.interp(px, mrec, mpre))  # precision at [email protected]

    # Compute F1 score (harmonic mean of precision and recall)
    f1 = 2 * p * r / (p + r + 1e-16)
    i=r.mean(0).argmax()

    if plot:
        plot_pr_curve(px, py, ap, save_dir, names)

    return p[:, i], r[:, i], f1[:, i], ap, unique_classes.astype('int32')


def compute_ap(recall, precision):
    """ Compute the average precision, given the recall and precision curves
    # Arguments
        recall:    The recall curve (list)
        precision: The precision curve (list)
    # Returns
        Average precision, precision curve, recall curve
    """

    # Append sentinel values to beginning and end
    mrec = np.concatenate(([0.0], recall, [1.0]))
    mpre = np.concatenate(([1.0], precision, [0.0]))

    # Compute the precision envelope
    mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))

    # Integrate area under curve
    method = 'interp'  # methods: 'continuous', 'interp'
    if method == 'interp':
        x = np.linspace(0, 1, 101)  # 101-point interp (COCO)
        ap = np.trapz(np.interp(x, mrec, mpre), x)  # integrate
    else:  # 'continuous'
        i = np.where(mrec[1:] != mrec[:-1])[0]  # points where x axis (recall) changes
        ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])  # area under curve

    return ap, mpre, mrec


def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()):
    # Precision-recall curve
    fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
    py = np.stack(py, axis=1)

    if 0 < len(names) < 21:  # display per-class legend if < 21 classes
        for i, y in enumerate(py.T):
            ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}')  # plot(recall, precision)
    else:
        ax.plot(px, py, linewidth=1, color='grey')  # plot(recall, precision)

    ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f [email protected]' % ap[:, 0].mean())
    ax.set_xlabel('Recall')
    ax.set_ylabel('Precision')
    ax.set_xlim(0, 1)
    ax.set_ylim(0, 1)
    plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
    fig.savefig(Path(save_dir), dpi=250)
    plt.close()


def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence', ylabel='Metric'):
    # Metric-confidence curve
    fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)

    if 0 < len(names) < 21:  # display per-class legend if < 21 classes
        for i, y in enumerate(py):
            ax.plot(px, y, linewidth=1, label=f'{names[i]}')  # plot(confidence, metric)
    else:
        ax.plot(px, py.T, linewidth=1, color='grey')  # plot(confidence, metric)

    y = py.mean(0)
    ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)
    ax.set_xlim(0, 1)
    ax.set_ylim(0, 1)
    plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
    fig.savefig(Path(save_dir), dpi=250)
    plt.close()


def cal_weighted_ap(ap50):
    return 0.2 * ap50[1] + 0.3 * ap50[0] + 0.5 * ap50[2]


class ConfusionMatrix:
    # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
    def __init__(self, nc, conf=0.25, iou_thres=0.45):
        self.matrix = np.zeros((nc + 1, nc + 1))
        self.nc = nc  # number of classes
        self.conf = conf
        self.iou_thres = iou_thres

    def process_batch(self, detections, labels):
        """
        Return intersection-over-union (Jaccard index) of boxes.
        Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
        Arguments:
            detections (Array[N, 6]), x1, y1, x2, y2, conf, class
            labels (Array[M, 5]), class, x1, y1, x2, y2
        Returns:
            None, updates confusion matrix accordingly
        """
        detections = detections[detections[:, 4] > self.conf]
        gt_classes = labels[:, 4].int()
        detection_classes = detections[:, 5].int()
        iou = box_iou(labels[:, :4], detections[:, :4])

        x = torch.where(iou > self.iou_thres)
        if x[0].shape[0]:
            matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
            if x[0].shape[0] > 1:
                matches = matches[matches[:, 2].argsort()[::-1]]
                matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
                matches = matches[matches[:, 2].argsort()[::-1]]
                matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
        else:
            matches = np.zeros((0, 3))

        n = matches.shape[0] > 0
        m0, m1, _ = matches.transpose().astype(np.int16)
        for i, gc in enumerate(gt_classes):
            j = m0 == i
            if n and sum(j) == 1:
                self.matrix[detection_classes[m1[j]], gc] += 1  # correct
            else:
                self.matrix[self.nc, gc] += 1  # background FP

        if n:
            for i, dc in enumerate(detection_classes):
                if not any(m1 == i):
                    self.matrix[dc, self.nc] += 1  # background FN

    def matrix(self):
        return self.matrix

    def tp_fp(self):
        tp = self.matrix.diagonal()  # true positives
        fp = self.matrix.sum(1) - tp  # false positives
        fn = self.matrix.sum(0) - tp  # false negatives (missed detections)

        return tp[:-1], fp[:-1], fn[:-1]  # remove background class

    def plot(self, normalize=True, save_dir='', names=()):
        try:
            import seaborn as sn

            array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-6) if normalize else 1)  # normalize columns
            array[array < 0.005] = np.nan  # don't annotate (would appear as 0.00)

            fig = plt.figure(figsize=(12, 9), tight_layout=True)
            sn.set(font_scale=1.0 if self.nc < 50 else 0.8)  # for label size
            labels = (0 < len(names) < 99) and len(names) == self.nc  # apply names to ticklabels
            with warnings.catch_warnings():
                warnings.simplefilter('ignore')  # suppress empty matrix RuntimeWarning: All-NaN slice encountered
                sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True,
                           xticklabels=names + ['background FP'] if labels else "auto",
                           yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
            fig.axes[0].set_xlabel('True')
            fig.axes[0].set_ylabel('Predicted')
            fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
            plt.close()
        except Exception as e:
            print(f'WARNING: ConfusionMatrix plot failure: {e}')

    def print(self):
        for i in range(self.nc + 1):
            print(' '.join(map(str, self.matrix[i])))


class BBoxTransform(nn.Module):

    def forward(self, anchors, regression):
        y_centers_a = (anchors[..., 0] + anchors[..., 2]) / 2
        x_centers_a = (anchors[..., 1] + anchors[..., 3]) / 2
        ha = anchors[..., 2] - anchors[..., 0]
        wa = anchors[..., 3] - anchors[..., 1]

        w = regression[..., 3].exp() * wa
        h = regression[..., 2].exp() * ha

        y_centers = regression[..., 0] * ha + y_centers_a
        x_centers = regression[..., 1] * wa + x_centers_a

        ymin = y_centers - h / 2.
        xmin = x_centers - w / 2.
        ymax = y_centers + h / 2.
        xmax = x_centers + w / 2.

        return torch.stack([xmin, ymin, xmax, ymax], dim=2)


class ClipBoxes(nn.Module):

    def __init__(self):
        super(ClipBoxes, self).__init__()

    def forward(self, boxes, img):
        batch_size, num_channels, height, width = img.shape

        boxes[:, :, 0] = torch.clamp(boxes[:, :, 0], min=0)
        boxes[:, :, 1] = torch.clamp(boxes[:, :, 1], min=0)

        boxes[:, :, 2] = torch.clamp(boxes[:, :, 2], max=width - 1)
        boxes[:, :, 3] = torch.clamp(boxes[:, :, 3], max=height - 1)

        return boxes


class Anchors(nn.Module):

    def __init__(self, anchor_scale=4., pyramid_levels=None, **kwargs):
        super().__init__()
        self.anchor_scale = anchor_scale

        if pyramid_levels is None:
            self.pyramid_levels = [3, 4, 5, 6, 7]
        else:
            self.pyramid_levels = pyramid_levels

        self.strides = kwargs.get('strides', [2 ** x for x in self.pyramid_levels])
        self.scales = np.array(kwargs.get('scales', [2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)]))
        self.ratios = kwargs.get('ratios', [(1.0, 1.0), (1.4, 0.7), (0.7, 1.4)])

        self.last_anchors = {}
        self.last_shape = None

    def forward(self, image, dtype=torch.float32):
        """Generates multiscale anchor boxes.

        Args:
          image_size: integer number of input image size. The input image has the
            same dimension for width and height. The image_size should be divided by
            the largest feature stride 2^max_level.
          anchor_scale: float number representing the scale of size of the base
            anchor to the feature stride 2^level.
          anchor_configs: a dictionary with keys as the levels of anchors and
            values as a list of anchor configuration.

        Returns:
          anchor_boxes: a numpy array with shape [N, 4], which stacks anchors on all
            feature levels.
        Raises:
          ValueError: input size must be the multiple of largest feature stride.
        """
        image_shape = image.shape[2:]

        if image_shape == self.last_shape and image.device in self.last_anchors:
            return self.last_anchors[image.device]

        if self.last_shape is None or self.last_shape != image_shape:
            self.last_shape = image_shape

        if dtype == torch.float16:
            dtype = np.float16
        else:
            dtype = np.float32

        boxes_all = []
        for stride in self.strides:
            boxes_level = []
            for scale, ratio in itertools.product(self.scales, self.ratios):
                if image_shape[1] % stride != 0:
                    raise ValueError('input size must be divided by the stride.')
                base_anchor_size = self.anchor_scale * stride * scale
                anchor_size_x_2 = base_anchor_size * ratio[0] / 2.0
                anchor_size_y_2 = base_anchor_size * ratio[1] / 2.0

                x = np.arange(stride / 2, image_shape[1], stride)
                y = np.arange(stride / 2, image_shape[0], stride)
                xv, yv = np.meshgrid(x, y)
                xv = xv.reshape(-1)
                yv = yv.reshape(-1)

                # y1,x1,y2,x2
                boxes = np.vstack((yv - anchor_size_y_2, xv - anchor_size_x_2,
                                   yv + anchor_size_y_2, xv + anchor_size_x_2))
                boxes = np.swapaxes(boxes, 0, 1)
                boxes_level.append(np.expand_dims(boxes, axis=1))
            # concat anchors on the same level to the reshape NxAx4
            boxes_level = np.concatenate(boxes_level, axis=1)
            boxes_all.append(boxes_level.reshape([-1, 4]))

        anchor_boxes = np.vstack(boxes_all)

        anchor_boxes = torch.from_numpy(anchor_boxes.astype(dtype)).to(image.device)
        anchor_boxes = anchor_boxes.unsqueeze(0)

        # save it for later use to reduce overhead
        self.last_anchors[image.device] = anchor_boxes
        return anchor_boxes


class DataLoaderX(DataLoader):
    """prefetch dataloader"""
    def __iter__(self):
        return BackgroundGenerator(super().__iter__())


def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
    """change color hue, saturation, value"""
    r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1  # random gains
    hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
    dtype = img.dtype  # uint8

    x = np.arange(0, 256, dtype=np.int16)
    lut_hue = ((x * r[0]) % 180).astype(dtype)
    lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
    lut_val = np.clip(x * r[2], 0, 255).astype(dtype)

    img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
    cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img)  # no return needed

    # Histogram equalization
    # if random.random() < 0.2:
    #     for i in range(3):
    #         img[:, :, i] = cv2.equalizeHist(img[:, :, i])


def random_perspective(combination, targets=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0,
                       border=(0, 0)):
    """combination of img transform"""
    # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
    # targets = [cls, xyxy]
    img, gray, line = combination
    height = img.shape[0] + border[0] * 2  # shape(h,w,c)
    width = img.shape[1] + border[1] * 2

    # Center
    C = np.eye(3)
    C[0, 2] = -img.shape[1] / 2  # x translation (pixels)
    C[1, 2] = -img.shape[0] / 2  # y translation (pixels)

    # Perspective
    P = np.eye(3)
    P[2, 0] = random.uniform(-perspective, perspective)  # x perspective (about y)
    P[2, 1] = random.uniform(-perspective, perspective)  # y perspective (about x)

    # Rotation and Scale
    R = np.eye(3)
    a = random.uniform(-degrees, degrees)
    # a += random.choice([-180, -90, 0, 90])  # add 90deg rotations to small rotations
    s = random.uniform(1 - scale, 1 + scale)
    # s = 2 ** random.uniform(-scale, scale)
    R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)

    # Shear
    S = np.eye(3)
    S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # x shear (deg)
    S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # y shear (deg)

    # Translation
    T = np.eye(3)
    T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width  # x translation (pixels)
    T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height  # y translation (pixels)

    # Combined rotation matrix
    M = T @ S @ R @ P @ C  # order of operations (right to left) is IMPORTANT
    if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any():  # image changed
        if perspective:
            img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
            gray = cv2.warpPerspective(gray, M, dsize=(width, height), borderValue=0)
            line = cv2.warpPerspective(line, M, dsize=(width, height), borderValue=0)
        else:  # affine
            img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
            gray = cv2.warpAffine(gray, M[:2], dsize=(width, height), borderValue=0)
            line = cv2.warpAffine(line, M[:2], dsize=(width, height), borderValue=0)

    # Visualize
    # import matplotlib.pyplot as plt
    # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
    # ax[0].imshow(img[:, :, ::-1])  # base
    # ax[1].imshow(img2[:, :, ::-1])  # warped

    # Transform label coordinates
    n = len(targets)
    if n:
        # warp points
        xy = np.ones((n * 4, 3))
        xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2)  # x1y1, x2y2, x1y2, x2y1
        xy = xy @ M.T  # transform
        if perspective:
            xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8)  # rescale
        else:  # affine
            xy = xy[:, :2].reshape(n, 8)

        # create new boxes
        x = xy[:, [0, 2, 4, 6]]
        y = xy[:, [1, 3, 5, 7]]
        xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T

        # # apply angle-based reduction of bounding boxes
        # radians = a * math.pi / 180
        # reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5
        # x = (xy[:, 2] + xy[:, 0]) / 2
        # y = (xy[:, 3] + xy[:, 1]) / 2
        # w = (xy[:, 2] - xy[:, 0]) * reduction
        # h = (xy[:, 3] - xy[:, 1]) * reduction
        # xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T

        # clip boxes
        xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
        xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)

        # filter candidates
        i = _box_candidates(box1=targets[:, 1:5].T * s, box2=xy.T)
        targets = targets[i]
        targets[:, 1:5] = xy[i]

    combination = (img, gray, line)
    return combination, targets


def cutout(combination, labels):
    # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
    image, gray = combination
    h, w = image.shape[:2]

    def bbox_ioa(box1, box2):
        # Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
        box2 = box2.transpose()

        # Get the coordinates of bounding boxes
        b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
        b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]

        # Intersection area
        inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
                     (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)

        # box2 area
        box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16

        # Intersection over box2 area
        return inter_area / box2_area

    # create random masks
    scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16  # image size fraction
    for s in scales:
        mask_h = random.randint(1, int(h * s))
        mask_w = random.randint(1, int(w * s))

        # box
        xmin = max(0, random.randint(0, w) - mask_w // 2)
        ymin = max(0, random.randint(0, h) - mask_h // 2)
        xmax = min(w, xmin + mask_w)
        ymax = min(h, ymin + mask_h)
        # print('xmin:{},ymin:{},xmax:{},ymax:{}'.format(xmin,ymin,xmax,ymax))

        # apply random color mask
        image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
        gray[ymin:ymax, xmin:xmax] = -1

        # return unobscured labels
        if len(labels) and s > 0.03:
            box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
            ioa = bbox_ioa(box, labels[:, 1:5])  # intersection over area
            labels = labels[ioa < 0.60]  # remove >60% obscured labels

    return image, gray, labels


def letterbox(combination, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
    """缩放并在图片顶部、底部添加灰边,具体参考:https://zhuanlan.zhihu.com/p/172121380"""
    # Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
    img, gray, line = combination
    shape = img.shape[:2]  # current shape [height, width]
    if isinstance(new_shape, int):
        new_shape = (new_shape, new_shape)

    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
    if not scaleup:  # only scale down, do not scale up (for better test mAP)
        r = min(r, 1.0)

    # Compute padding
    ratio = r, r  # width, height ratios
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
    if auto:  # minimum rectangle
        dw, dh = np.mod(dw, 32), np.mod(dh, 32)  # wh padding
    elif scaleFill:  # stretch
        dw, dh = 0.0, 0.0
        new_unpad = (new_shape[1], new_shape[0])
        ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratios

    dw /= 2  # divide padding into 2 sides
    dh /= 2

    if shape[::-1] != new_unpad:  # resize
        img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
        gray = cv2.resize(gray, new_unpad, interpolation=cv2.INTER_LINEAR)
        line = cv2.resize(line, new_unpad, interpolation=cv2.INTER_LINEAR)

    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))

    img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
    gray = cv2.copyMakeBorder(gray, top, bottom, left, right, cv2.BORDER_CONSTANT, value=0)  # add border
    line = cv2.copyMakeBorder(line, top, bottom, left, right, cv2.BORDER_CONSTANT, value=0)  # add border

    combination = (img, gray, line)
    return combination, ratio, (dw, dh)


def _box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1):  # box1(4,n), box2(4,n)
    # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
    w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
    w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
    ar = np.maximum(w2 / (h2 + 1e-16), h2 / (w2 + 1e-16))  # aspect ratio
    return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + 1e-16) > area_thr) & (ar < ar_thr)  # candidates