Spaces:
Runtime error
Runtime error
import timm | |
import numpy as np | |
import torch.nn as nn | |
from ._base import EncoderMixin | |
def _make_divisible(x, divisible_by=8): | |
return int(np.ceil(x * 1. / divisible_by) * divisible_by) | |
class MobileNetV3Encoder(nn.Module, EncoderMixin): | |
def __init__(self, model_name, width_mult, depth=5, **kwargs): | |
super().__init__() | |
if "large" not in model_name and "small" not in model_name: | |
raise ValueError( | |
'MobileNetV3 wrong model name {}'.format(model_name) | |
) | |
self._mode = "small" if "small" in model_name else "large" | |
self._depth = depth | |
self._out_channels = self._get_channels(self._mode, width_mult) | |
self._in_channels = 3 | |
# minimal models replace hardswish with relu | |
self.model = timm.create_model( | |
model_name=model_name, | |
scriptable=True, # torch.jit scriptable | |
exportable=True, # onnx export | |
features_only=True, | |
) | |
def _get_channels(self, mode, width_mult): | |
if mode == "small": | |
channels = [16, 16, 24, 48, 576] | |
else: | |
channels = [16, 24, 40, 112, 960] | |
channels = [3,] + [_make_divisible(x * width_mult) for x in channels] | |
return tuple(channels) | |
def get_stages(self): | |
if self._mode == 'small': | |
return [ | |
nn.Identity(), | |
nn.Sequential( | |
self.model.conv_stem, | |
self.model.bn1, | |
self.model.act1, | |
), | |
self.model.blocks[0], | |
self.model.blocks[1], | |
self.model.blocks[2:4], | |
self.model.blocks[4:], | |
] | |
elif self._mode == 'large': | |
return [ | |
nn.Identity(), | |
nn.Sequential( | |
self.model.conv_stem, | |
self.model.bn1, | |
self.model.act1, | |
self.model.blocks[0], | |
), | |
self.model.blocks[1], | |
self.model.blocks[2], | |
self.model.blocks[3:5], | |
self.model.blocks[5:], | |
] | |
else: | |
ValueError('MobileNetV3 mode should be small or large, got {}'.format(self._mode)) | |
def forward(self, x): | |
stages = self.get_stages() | |
features = [] | |
for i in range(self._depth + 1): | |
x = stages[i](x) | |
features.append(x) | |
return features | |
def load_state_dict(self, state_dict, **kwargs): | |
state_dict.pop('conv_head.weight', None) | |
state_dict.pop('conv_head.bias', None) | |
state_dict.pop('classifier.weight', None) | |
state_dict.pop('classifier.bias', None) | |
self.model.load_state_dict(state_dict, **kwargs) | |
mobilenetv3_weights = { | |
'tf_mobilenetv3_large_075': { | |
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_075-150ee8b0.pth' | |
}, | |
'tf_mobilenetv3_large_100': { | |
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_100-427764d5.pth' | |
}, | |
'tf_mobilenetv3_large_minimal_100': { | |
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_minimal_100-8596ae28.pth' | |
}, | |
'tf_mobilenetv3_small_075': { | |
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_075-da427f52.pth' | |
}, | |
'tf_mobilenetv3_small_100': { | |
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_100-37f49e2b.pth' | |
}, | |
'tf_mobilenetv3_small_minimal_100': { | |
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_minimal_100-922a7843.pth' | |
}, | |
} | |
pretrained_settings = {} | |
for model_name, sources in mobilenetv3_weights.items(): | |
pretrained_settings[model_name] = {} | |
for source_name, source_url in sources.items(): | |
pretrained_settings[model_name][source_name] = { | |
"url": source_url, | |
'input_range': [0, 1], | |
'mean': [0.485, 0.456, 0.406], | |
'std': [0.229, 0.224, 0.225], | |
'input_space': 'RGB', | |
} | |
timm_mobilenetv3_encoders = { | |
'timm-mobilenetv3_large_075': { | |
'encoder': MobileNetV3Encoder, | |
'pretrained_settings': pretrained_settings['tf_mobilenetv3_large_075'], | |
'params': { | |
'model_name': 'tf_mobilenetv3_large_075', | |
'width_mult': 0.75 | |
} | |
}, | |
'timm-mobilenetv3_large_100': { | |
'encoder': MobileNetV3Encoder, | |
'pretrained_settings': pretrained_settings['tf_mobilenetv3_large_100'], | |
'params': { | |
'model_name': 'tf_mobilenetv3_large_100', | |
'width_mult': 1.0 | |
} | |
}, | |
'timm-mobilenetv3_large_minimal_100': { | |
'encoder': MobileNetV3Encoder, | |
'pretrained_settings': pretrained_settings['tf_mobilenetv3_large_minimal_100'], | |
'params': { | |
'model_name': 'tf_mobilenetv3_large_minimal_100', | |
'width_mult': 1.0 | |
} | |
}, | |
'timm-mobilenetv3_small_075': { | |
'encoder': MobileNetV3Encoder, | |
'pretrained_settings': pretrained_settings['tf_mobilenetv3_small_075'], | |
'params': { | |
'model_name': 'tf_mobilenetv3_small_075', | |
'width_mult': 0.75 | |
} | |
}, | |
'timm-mobilenetv3_small_100': { | |
'encoder': MobileNetV3Encoder, | |
'pretrained_settings': pretrained_settings['tf_mobilenetv3_small_100'], | |
'params': { | |
'model_name': 'tf_mobilenetv3_small_100', | |
'width_mult': 1.0 | |
} | |
}, | |
'timm-mobilenetv3_small_minimal_100': { | |
'encoder': MobileNetV3Encoder, | |
'pretrained_settings': pretrained_settings['tf_mobilenetv3_small_minimal_100'], | |
'params': { | |
'model_name': 'tf_mobilenetv3_small_minimal_100', | |
'width_mult': 1.0 | |
} | |
}, | |
} | |