josedolot commited on
Commit
b459bd6
·
1 Parent(s): 43ff963

Upload encoders/timm_mobilenetv3.py

Browse files
Files changed (1) hide show
  1. encoders/timm_mobilenetv3.py +175 -0
encoders/timm_mobilenetv3.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import timm
2
+ import numpy as np
3
+ import torch.nn as nn
4
+
5
+ from ._base import EncoderMixin
6
+
7
+
8
+ def _make_divisible(x, divisible_by=8):
9
+ return int(np.ceil(x * 1. / divisible_by) * divisible_by)
10
+
11
+
12
+ class MobileNetV3Encoder(nn.Module, EncoderMixin):
13
+ def __init__(self, model_name, width_mult, depth=5, **kwargs):
14
+ super().__init__()
15
+ if "large" not in model_name and "small" not in model_name:
16
+ raise ValueError(
17
+ 'MobileNetV3 wrong model name {}'.format(model_name)
18
+ )
19
+
20
+ self._mode = "small" if "small" in model_name else "large"
21
+ self._depth = depth
22
+ self._out_channels = self._get_channels(self._mode, width_mult)
23
+ self._in_channels = 3
24
+
25
+ # minimal models replace hardswish with relu
26
+ self.model = timm.create_model(
27
+ model_name=model_name,
28
+ scriptable=True, # torch.jit scriptable
29
+ exportable=True, # onnx export
30
+ features_only=True,
31
+ )
32
+
33
+ def _get_channels(self, mode, width_mult):
34
+ if mode == "small":
35
+ channels = [16, 16, 24, 48, 576]
36
+ else:
37
+ channels = [16, 24, 40, 112, 960]
38
+ channels = [3,] + [_make_divisible(x * width_mult) for x in channels]
39
+ return tuple(channels)
40
+
41
+ def get_stages(self):
42
+ if self._mode == 'small':
43
+ return [
44
+ nn.Identity(),
45
+ nn.Sequential(
46
+ self.model.conv_stem,
47
+ self.model.bn1,
48
+ self.model.act1,
49
+ ),
50
+ self.model.blocks[0],
51
+ self.model.blocks[1],
52
+ self.model.blocks[2:4],
53
+ self.model.blocks[4:],
54
+ ]
55
+ elif self._mode == 'large':
56
+ return [
57
+ nn.Identity(),
58
+ nn.Sequential(
59
+ self.model.conv_stem,
60
+ self.model.bn1,
61
+ self.model.act1,
62
+ self.model.blocks[0],
63
+ ),
64
+ self.model.blocks[1],
65
+ self.model.blocks[2],
66
+ self.model.blocks[3:5],
67
+ self.model.blocks[5:],
68
+ ]
69
+ else:
70
+ ValueError('MobileNetV3 mode should be small or large, got {}'.format(self._mode))
71
+
72
+ def forward(self, x):
73
+ stages = self.get_stages()
74
+
75
+ features = []
76
+ for i in range(self._depth + 1):
77
+ x = stages[i](x)
78
+ features.append(x)
79
+
80
+ return features
81
+
82
+ def load_state_dict(self, state_dict, **kwargs):
83
+ state_dict.pop('conv_head.weight', None)
84
+ state_dict.pop('conv_head.bias', None)
85
+ state_dict.pop('classifier.weight', None)
86
+ state_dict.pop('classifier.bias', None)
87
+ self.model.load_state_dict(state_dict, **kwargs)
88
+
89
+
90
+ mobilenetv3_weights = {
91
+ 'tf_mobilenetv3_large_075': {
92
+ 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_075-150ee8b0.pth'
93
+ },
94
+ 'tf_mobilenetv3_large_100': {
95
+ 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_100-427764d5.pth'
96
+ },
97
+ 'tf_mobilenetv3_large_minimal_100': {
98
+ 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_minimal_100-8596ae28.pth'
99
+ },
100
+ 'tf_mobilenetv3_small_075': {
101
+ 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_075-da427f52.pth'
102
+ },
103
+ 'tf_mobilenetv3_small_100': {
104
+ 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_100-37f49e2b.pth'
105
+ },
106
+ 'tf_mobilenetv3_small_minimal_100': {
107
+ 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_minimal_100-922a7843.pth'
108
+ },
109
+
110
+
111
+ }
112
+
113
+ pretrained_settings = {}
114
+ for model_name, sources in mobilenetv3_weights.items():
115
+ pretrained_settings[model_name] = {}
116
+ for source_name, source_url in sources.items():
117
+ pretrained_settings[model_name][source_name] = {
118
+ "url": source_url,
119
+ 'input_range': [0, 1],
120
+ 'mean': [0.485, 0.456, 0.406],
121
+ 'std': [0.229, 0.224, 0.225],
122
+ 'input_space': 'RGB',
123
+ }
124
+
125
+
126
+ timm_mobilenetv3_encoders = {
127
+ 'timm-mobilenetv3_large_075': {
128
+ 'encoder': MobileNetV3Encoder,
129
+ 'pretrained_settings': pretrained_settings['tf_mobilenetv3_large_075'],
130
+ 'params': {
131
+ 'model_name': 'tf_mobilenetv3_large_075',
132
+ 'width_mult': 0.75
133
+ }
134
+ },
135
+ 'timm-mobilenetv3_large_100': {
136
+ 'encoder': MobileNetV3Encoder,
137
+ 'pretrained_settings': pretrained_settings['tf_mobilenetv3_large_100'],
138
+ 'params': {
139
+ 'model_name': 'tf_mobilenetv3_large_100',
140
+ 'width_mult': 1.0
141
+ }
142
+ },
143
+ 'timm-mobilenetv3_large_minimal_100': {
144
+ 'encoder': MobileNetV3Encoder,
145
+ 'pretrained_settings': pretrained_settings['tf_mobilenetv3_large_minimal_100'],
146
+ 'params': {
147
+ 'model_name': 'tf_mobilenetv3_large_minimal_100',
148
+ 'width_mult': 1.0
149
+ }
150
+ },
151
+ 'timm-mobilenetv3_small_075': {
152
+ 'encoder': MobileNetV3Encoder,
153
+ 'pretrained_settings': pretrained_settings['tf_mobilenetv3_small_075'],
154
+ 'params': {
155
+ 'model_name': 'tf_mobilenetv3_small_075',
156
+ 'width_mult': 0.75
157
+ }
158
+ },
159
+ 'timm-mobilenetv3_small_100': {
160
+ 'encoder': MobileNetV3Encoder,
161
+ 'pretrained_settings': pretrained_settings['tf_mobilenetv3_small_100'],
162
+ 'params': {
163
+ 'model_name': 'tf_mobilenetv3_small_100',
164
+ 'width_mult': 1.0
165
+ }
166
+ },
167
+ 'timm-mobilenetv3_small_minimal_100': {
168
+ 'encoder': MobileNetV3Encoder,
169
+ 'pretrained_settings': pretrained_settings['tf_mobilenetv3_small_minimal_100'],
170
+ 'params': {
171
+ 'model_name': 'tf_mobilenetv3_small_minimal_100',
172
+ 'width_mult': 1.0
173
+ }
174
+ },
175
+ }