josedolot's picture
Upload hybridnets/model.py
7b056a9
raw
history blame
31.4 kB
import torch.nn as nn
import torch
from torchvision.ops.boxes import nms as nms_torch
import torch.nn.functional as F
import math
from functools import partial
def nms(dets, thresh):
return nms_torch(dets[:, :4], dets[:, 4], thresh)
class SeparableConvBlock(nn.Module):
def __init__(self, in_channels, out_channels=None, norm=True, activation=False, onnx_export=False):
super(SeparableConvBlock, self).__init__()
if out_channels is None:
out_channels = in_channels
# Q: whether separate conv
# share bias between depthwise_conv and pointwise_conv
# or just pointwise_conv apply bias.
# A: Confirmed, just pointwise_conv applies bias, depthwise_conv has no bias.
self.depthwise_conv = Conv2dStaticSamePadding(in_channels, in_channels,
kernel_size=3, stride=1, groups=in_channels, bias=False)
self.pointwise_conv = Conv2dStaticSamePadding(in_channels, out_channels, kernel_size=1, stride=1)
self.norm = norm
if self.norm:
# Warning: pytorch momentum is different from tensorflow's, momentum_pytorch = 1 - momentum_tensorflow
self.bn = nn.BatchNorm2d(num_features=out_channels, momentum=0.01, eps=1e-3)
self.activation = activation
if self.activation:
self.swish = MemoryEfficientSwish() if not onnx_export else Swish()
def forward(self, x):
x = self.depthwise_conv(x)
x = self.pointwise_conv(x)
if self.norm:
x = self.bn(x)
if self.activation:
x = self.swish(x)
return x
class BiFPN(nn.Module):
def __init__(self, num_channels, conv_channels, first_time=False, epsilon=1e-4, onnx_export=False, attention=True,
use_p8=False):
"""
Args:
num_channels:
conv_channels:
first_time: whether the input comes directly from the efficientnet,
if True, downchannel it first, and downsample P5 to generate P6 then P7
epsilon: epsilon of fast weighted attention sum of BiFPN, not the BN's epsilon
onnx_export: if True, use Swish instead of MemoryEfficientSwish
"""
super(BiFPN, self).__init__()
self.epsilon = epsilon
self.use_p8 = use_p8
# Conv layers
self.conv6_up = SeparableConvBlock(num_channels, onnx_export=onnx_export)
self.conv5_up = SeparableConvBlock(num_channels, onnx_export=onnx_export)
self.conv4_up = SeparableConvBlock(num_channels, onnx_export=onnx_export)
self.conv3_up = SeparableConvBlock(num_channels, onnx_export=onnx_export)
self.conv4_down = SeparableConvBlock(num_channels, onnx_export=onnx_export)
self.conv5_down = SeparableConvBlock(num_channels, onnx_export=onnx_export)
self.conv6_down = SeparableConvBlock(num_channels, onnx_export=onnx_export)
self.conv7_down = SeparableConvBlock(num_channels, onnx_export=onnx_export)
if use_p8:
self.conv7_up = SeparableConvBlock(num_channels, onnx_export=onnx_export)
self.conv8_down = SeparableConvBlock(num_channels, onnx_export=onnx_export)
# Feature scaling layers
self.p6_upsample = nn.Upsample(scale_factor=2, mode='nearest')
self.p5_upsample = nn.Upsample(scale_factor=2, mode='nearest')
self.p4_upsample = nn.Upsample(scale_factor=2, mode='nearest')
self.p3_upsample = nn.Upsample(scale_factor=2, mode='nearest')
self.p4_downsample = MaxPool2dStaticSamePadding(3, 2)
self.p5_downsample = MaxPool2dStaticSamePadding(3, 2)
self.p6_downsample = MaxPool2dStaticSamePadding(3, 2)
self.p7_downsample = MaxPool2dStaticSamePadding(3, 2)
if use_p8:
self.p7_upsample = nn.Upsample(scale_factor=2, mode='nearest')
self.p8_downsample = MaxPool2dStaticSamePadding(3, 2)
self.swish = MemoryEfficientSwish() if not onnx_export else Swish()
self.first_time = first_time
if self.first_time:
self.p5_down_channel = nn.Sequential(
Conv2dStaticSamePadding(conv_channels[2], num_channels, 1),
nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
)
self.p4_down_channel = nn.Sequential(
Conv2dStaticSamePadding(conv_channels[1], num_channels, 1),
nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
)
self.p3_down_channel = nn.Sequential(
Conv2dStaticSamePadding(conv_channels[0], num_channels, 1),
nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
)
self.p5_to_p6 = nn.Sequential(
Conv2dStaticSamePadding(conv_channels[2], num_channels, 1),
nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
MaxPool2dStaticSamePadding(3, 2)
)
self.p6_to_p7 = nn.Sequential(
MaxPool2dStaticSamePadding(3, 2)
)
if use_p8:
self.p7_to_p8 = nn.Sequential(
MaxPool2dStaticSamePadding(3, 2)
)
self.p4_down_channel_2 = nn.Sequential(
Conv2dStaticSamePadding(conv_channels[1], num_channels, 1),
nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
)
self.p5_down_channel_2 = nn.Sequential(
Conv2dStaticSamePadding(conv_channels[2], num_channels, 1),
nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
)
# Weight
self.p6_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
self.p6_w1_relu = nn.ReLU()
self.p5_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
self.p5_w1_relu = nn.ReLU()
self.p4_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
self.p4_w1_relu = nn.ReLU()
self.p3_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
self.p3_w1_relu = nn.ReLU()
self.p4_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
self.p4_w2_relu = nn.ReLU()
self.p5_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
self.p5_w2_relu = nn.ReLU()
self.p6_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
self.p6_w2_relu = nn.ReLU()
self.p7_w2 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
self.p7_w2_relu = nn.ReLU()
self.attention = attention
def forward(self, inputs):
"""
illustration of a minimal bifpn unit
P7_0 -------------------------> P7_2 -------->
|-------------| ↑
↓ |
P6_0 ---------> P6_1 ---------> P6_2 -------->
|-------------|--------------↑ ↑
↓ |
P5_0 ---------> P5_1 ---------> P5_2 -------->
|-------------|--------------↑ ↑
↓ |
P4_0 ---------> P4_1 ---------> P4_2 -------->
|-------------|--------------↑ ↑
|--------------↓ |
P3_0 -------------------------> P3_2 -------->
"""
# downsample channels using same-padding conv2d to target phase's if not the same
# judge: same phase as target,
# if same, pass;
# elif earlier phase, downsample to target phase's by pooling
# elif later phase, upsample to target phase's by nearest interpolation
if self.attention:
outs = self._forward_fast_attention(inputs)
else:
outs = self._forward(inputs)
return outs
def _forward_fast_attention(self, inputs):
if self.first_time:
p3, p4, p5 = inputs
p6_in = self.p5_to_p6(p5)
p7_in = self.p6_to_p7(p6_in)
p3_in = self.p3_down_channel(p3)
p4_in = self.p4_down_channel(p4)
p5_in = self.p5_down_channel(p5)
else:
# P3_0, P4_0, P5_0, P6_0 and P7_0
p3_in, p4_in, p5_in, p6_in, p7_in = inputs
# P7_0 to P7_2
# Weights for P6_0 and P7_0 to P6_1
p6_w1 = self.p6_w1_relu(self.p6_w1)
weight = p6_w1 / (torch.sum(p6_w1, dim=0) + self.epsilon)
# Connections for P6_0 and P7_0 to P6_1 respectively
p6_up = self.conv6_up(self.swish(weight[0] * p6_in + weight[1] * self.p6_upsample(p7_in)))
# Weights for P5_0 and P6_1 to P5_1
p5_w1 = self.p5_w1_relu(self.p5_w1)
weight = p5_w1 / (torch.sum(p5_w1, dim=0) + self.epsilon)
# Connections for P5_0 and P6_1 to P5_1 respectively
p5_up = self.conv5_up(self.swish(weight[0] * p5_in + weight[1] * self.p5_upsample(p6_up)))
# Weights for P4_0 and P5_1 to P4_1
p4_w1 = self.p4_w1_relu(self.p4_w1)
weight = p4_w1 / (torch.sum(p4_w1, dim=0) + self.epsilon)
# Connections for P4_0 and P5_1 to P4_1 respectively
p4_up = self.conv4_up(self.swish(weight[0] * p4_in + weight[1] * self.p4_upsample(p5_up)))
# Weights for P3_0 and P4_1 to P3_2
p3_w1 = self.p3_w1_relu(self.p3_w1)
weight = p3_w1 / (torch.sum(p3_w1, dim=0) + self.epsilon)
# Connections for P3_0 and P4_1 to P3_2 respectively
p3_out = self.conv3_up(self.swish(weight[0] * p3_in + weight[1] * self.p3_upsample(p4_up)))
if self.first_time:
p4_in = self.p4_down_channel_2(p4)
p5_in = self.p5_down_channel_2(p5)
# Weights for P4_0, P4_1 and P3_2 to P4_2
p4_w2 = self.p4_w2_relu(self.p4_w2)
weight = p4_w2 / (torch.sum(p4_w2, dim=0) + self.epsilon)
# Connections for P4_0, P4_1 and P3_2 to P4_2 respectively
p4_out = self.conv4_down(
self.swish(weight[0] * p4_in + weight[1] * p4_up + weight[2] * self.p4_downsample(p3_out)))
# Weights for P5_0, P5_1 and P4_2 to P5_2
p5_w2 = self.p5_w2_relu(self.p5_w2)
weight = p5_w2 / (torch.sum(p5_w2, dim=0) + self.epsilon)
# Connections for P5_0, P5_1 and P4_2 to P5_2 respectively
p5_out = self.conv5_down(
self.swish(weight[0] * p5_in + weight[1] * p5_up + weight[2] * self.p5_downsample(p4_out)))
# Weights for P6_0, P6_1 and P5_2 to P6_2
p6_w2 = self.p6_w2_relu(self.p6_w2)
weight = p6_w2 / (torch.sum(p6_w2, dim=0) + self.epsilon)
# Connections for P6_0, P6_1 and P5_2 to P6_2 respectively
p6_out = self.conv6_down(
self.swish(weight[0] * p6_in + weight[1] * p6_up + weight[2] * self.p6_downsample(p5_out)))
# Weights for P7_0 and P6_2 to P7_2
p7_w2 = self.p7_w2_relu(self.p7_w2)
weight = p7_w2 / (torch.sum(p7_w2, dim=0) + self.epsilon)
# Connections for P7_0 and P6_2 to P7_2
p7_out = self.conv7_down(self.swish(weight[0] * p7_in + weight[1] * self.p7_downsample(p6_out)))
return p3_out, p4_out, p5_out, p6_out, p7_out
def _forward(self, inputs):
if self.first_time:
p3, p4, p5 = inputs
p6_in = self.p5_to_p6(p5)
p7_in = self.p6_to_p7(p6_in)
if self.use_p8:
p8_in = self.p7_to_p8(p7_in)
p3_in = self.p3_down_channel(p3)
p4_in = self.p4_down_channel(p4)
p5_in = self.p5_down_channel(p5)
else:
if self.use_p8:
# P3_0, P4_0, P5_0, P6_0, P7_0 and P8_0
p3_in, p4_in, p5_in, p6_in, p7_in, p8_in = inputs
else:
# P3_0, P4_0, P5_0, P6_0 and P7_0
p3_in, p4_in, p5_in, p6_in, p7_in = inputs
if self.use_p8:
# P8_0 to P8_2
# Connections for P7_0 and P8_0 to P7_1 respectively
p7_up = self.conv7_up(self.swish(p7_in + self.p7_upsample(p8_in)))
# Connections for P6_0 and P7_0 to P6_1 respectively
p6_up = self.conv6_up(self.swish(p6_in + self.p6_upsample(p7_up)))
else:
# P7_0 to P7_2
# Connections for P6_0 and P7_0 to P6_1 respectively
p6_up = self.conv6_up(self.swish(p6_in + self.p6_upsample(p7_in)))
# Connections for P5_0 and P6_1 to P5_1 respectively
p5_up = self.conv5_up(self.swish(p5_in + self.p5_upsample(p6_up)))
# Connections for P4_0 and P5_1 to P4_1 respectively
p4_up = self.conv4_up(self.swish(p4_in + self.p4_upsample(p5_up)))
# Connections for P3_0 and P4_1 to P3_2 respectively
p3_out = self.conv3_up(self.swish(p3_in + self.p3_upsample(p4_up)))
if self.first_time:
p4_in = self.p4_down_channel_2(p4)
p5_in = self.p5_down_channel_2(p5)
# Connections for P4_0, P4_1 and P3_2 to P4_2 respectively
p4_out = self.conv4_down(
self.swish(p4_in + p4_up + self.p4_downsample(p3_out)))
# Connections for P5_0, P5_1 and P4_2 to P5_2 respectively
p5_out = self.conv5_down(
self.swish(p5_in + p5_up + self.p5_downsample(p4_out)))
# Connections for P6_0, P6_1 and P5_2 to P6_2 respectively
p6_out = self.conv6_down(
self.swish(p6_in + p6_up + self.p6_downsample(p5_out)))
if self.use_p8:
# Connections for P7_0, P7_1 and P6_2 to P7_2 respectively
p7_out = self.conv7_down(
self.swish(p7_in + p7_up + self.p7_downsample(p6_out)))
# Connections for P8_0 and P7_2 to P8_2
p8_out = self.conv8_down(self.swish(p8_in + self.p8_downsample(p7_out)))
return p3_out, p4_out, p5_out, p6_out, p7_out, p8_out
else:
# Connections for P7_0 and P6_2 to P7_2
p7_out = self.conv7_down(self.swish(p7_in + self.p7_downsample(p6_out)))
return p3_out, p4_out, p5_out, p6_out, p7_out
class Regressor(nn.Module):
def __init__(self, in_channels, num_anchors, num_layers, pyramid_levels=5, onnx_export=False):
super(Regressor, self).__init__()
self.num_layers = num_layers
self.conv_list = nn.ModuleList(
[SeparableConvBlock(in_channels, in_channels, norm=False, activation=False) for i in range(num_layers)])
self.bn_list = nn.ModuleList(
[nn.ModuleList([nn.BatchNorm2d(in_channels, momentum=0.01, eps=1e-3) for i in range(num_layers)]) for j in
range(pyramid_levels)])
self.header = SeparableConvBlock(in_channels, num_anchors * 4, norm=False, activation=False)
self.swish = MemoryEfficientSwish() if not onnx_export else Swish()
def forward(self, inputs):
feats = []
for feat, bn_list in zip(inputs, self.bn_list):
for i, bn, conv in zip(range(self.num_layers), bn_list, self.conv_list):
feat = conv(feat)
feat = bn(feat)
feat = self.swish(feat)
feat = self.header(feat)
feat = feat.permute(0, 2, 3, 1)
feat = feat.contiguous().view(feat.shape[0], -1, 4)
feats.append(feat)
feats = torch.cat(feats, dim=1)
return feats
class Conv3x3BNSwish(nn.Module):
def __init__(self, in_channels, out_channels, upsample=False):
super().__init__()
self.swish = Swish()
self.upsample = upsample
self.block = nn.Sequential(
Conv2dStaticSamePadding(in_channels, out_channels, kernel_size=(3, 3), stride=1, padding=1, bias=False),
nn.BatchNorm2d(out_channels, momentum=0.01, eps=1e-3),
)
self.conv_sp = SeparableConvBlock(out_channels, onnx_export=False)
# self.block = nn.Sequential(
# nn.Conv2d(
# in_channels, out_channels, (3, 3), stride=1, padding=1, bias=False
# ),
# nn.GroupNorm(32, out_channels),
# nn.ReLU(inplace=True),
# )
def forward(self, x):
x = self.conv_sp(self.swish(self.block(x)))
if self.upsample:
x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
return x
class SegmentationBlock(nn.Module):
def __init__(self, in_channels, out_channels, n_upsamples=0):
super().__init__()
blocks = [Conv3x3BNSwish(in_channels, out_channels, upsample=bool(n_upsamples))]
if n_upsamples > 1:
for _ in range(1, n_upsamples):
blocks.append(Conv3x3BNSwish(out_channels, out_channels, upsample=True))
self.block = nn.Sequential(*blocks)
def forward(self, x):
return self.block(x)
class MergeBlock(nn.Module):
def __init__(self, policy):
super().__init__()
if policy not in ["add", "cat"]:
raise ValueError(
"`merge_policy` must be one of: ['add', 'cat'], got {}".format(
policy
)
)
self.policy = policy
def forward(self, x):
if self.policy == 'add':
return sum(x)
elif self.policy == 'cat':
return torch.cat(x, dim=1)
else:
raise ValueError(
"`merge_policy` must be one of: ['add', 'cat'], got {}".format(self.policy)
)
class BiFPNDecoder(nn.Module):
def __init__(
self,
encoder_depth=5,
pyramid_channels=64,
segmentation_channels=64,
dropout=0.2,
merge_policy="add", ):
super().__init__()
self.seg_blocks = nn.ModuleList([
SegmentationBlock(pyramid_channels, segmentation_channels, n_upsamples=n_upsamples)
for n_upsamples in [5,4, 3, 2, 1]
])
self.seg_p2 = SegmentationBlock(32, 64, n_upsamples=0)
self.merge = MergeBlock(merge_policy)
self.dropout = nn.Dropout2d(p=dropout, inplace=True)
def forward(self, inputs):
p2, p3, p4, p5, p6, p7 = inputs
feature_pyramid = [seg_block(p) for seg_block, p in zip(self.seg_blocks, [p7, p6, p5, p4, p3])]
p2 = self.seg_p2(p2)
p3,p4,p5,p6,p7 = feature_pyramid
x = self.merge((p2,p3,p4,p5,p6,p7))
x = self.dropout(x)
return x
class Classifier(nn.Module):
def __init__(self, in_channels, num_anchors, num_classes, num_layers, pyramid_levels=5, onnx_export=False):
super(Classifier, self).__init__()
self.num_anchors = num_anchors
self.num_classes = num_classes
self.num_layers = num_layers
self.conv_list = nn.ModuleList(
[SeparableConvBlock(in_channels, in_channels, norm=False, activation=False) for i in range(num_layers)])
self.bn_list = nn.ModuleList(
[nn.ModuleList([nn.BatchNorm2d(in_channels, momentum=0.01, eps=1e-3) for i in range(num_layers)]) for j in
range(pyramid_levels)])
self.header = SeparableConvBlock(in_channels, num_anchors * num_classes, norm=False, activation=False)
self.swish = MemoryEfficientSwish() if not onnx_export else Swish()
def forward(self, inputs):
feats = []
for feat, bn_list in zip(inputs, self.bn_list):
for i, bn, conv in zip(range(self.num_layers), bn_list, self.conv_list):
feat = conv(feat)
feat = bn(feat)
feat = self.swish(feat)
feat = self.header(feat)
feat = feat.permute(0, 2, 3, 1)
feat = feat.contiguous().view(feat.shape[0], feat.shape[1], feat.shape[2], self.num_anchors,
self.num_classes)
feat = feat.contiguous().view(feat.shape[0], -1, self.num_classes)
feats.append(feat)
feats = torch.cat(feats, dim=1)
feats = feats.sigmoid()
return feats
class SwishImplementation(torch.autograd.Function):
@staticmethod
def forward(ctx, i):
result = i * torch.sigmoid(i)
ctx.save_for_backward(i)
return result
@staticmethod
def backward(ctx, grad_output):
i = ctx.saved_variables[0]
sigmoid_i = torch.sigmoid(i)
return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i)))
class MemoryEfficientSwish(nn.Module):
def forward(self, x):
return SwishImplementation.apply(x)
class Swish(nn.Module):
def forward(self, x):
return x * torch.sigmoid(x)
def drop_connect(inputs, p, training):
""" Drop connect. """
if not training: return inputs
batch_size = inputs.shape[0]
keep_prob = 1 - p
random_tensor = keep_prob
random_tensor += torch.rand([batch_size, 1, 1, 1], dtype=inputs.dtype, device=inputs.device)
binary_tensor = torch.floor(random_tensor)
output = inputs / keep_prob * binary_tensor
return output
def get_same_padding_conv2d(image_size=None):
""" Chooses static padding if you have specified an image size, and dynamic padding otherwise.
Static padding is necessary for ONNX exporting of models. """
if image_size is None:
return Conv2dDynamicSamePadding
else:
return partial(Conv2dStaticSamePadding, image_size=image_size)
class Conv2dDynamicSamePadding(nn.Conv2d):
""" 2D Convolutions like TensorFlow, for a dynamic image size """
def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, groups=1, bias=True):
super().__init__(in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias)
self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2
def forward(self, x):
ih, iw = x.size()[-2:]
kh, kw = self.weight.size()[-2:]
sh, sw = self.stride
oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)
pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)
pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)
if pad_h > 0 or pad_w > 0:
x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2])
return F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
class MBConvBlock(nn.Module):
"""
Mobile Inverted Residual Bottleneck Block
Args:
block_args (namedtuple): BlockArgs, see above
global_params (namedtuple): GlobalParam, see above
Attributes:
has_se (bool): Whether the block contains a Squeeze and Excitation layer.
"""
def __init__(self, block_args, global_params):
super().__init__()
self._block_args = block_args
self._bn_mom = 1 - global_params.batch_norm_momentum
self._bn_eps = global_params.batch_norm_epsilon
self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1)
self.id_skip = block_args.id_skip # skip connection and drop connect
# Get static or dynamic convolution depending on image size
Conv2d = get_same_padding_conv2d(image_size=global_params.image_size)
# Expansion phase
inp = self._block_args.input_filters # number of input channels
oup = self._block_args.input_filters * self._block_args.expand_ratio # number of output channels
if self._block_args.expand_ratio != 1:
self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False)
self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)
# Depthwise convolution phase
k = self._block_args.kernel_size
s = self._block_args.stride
self._depthwise_conv = Conv2d(
in_channels=oup, out_channels=oup, groups=oup, # groups makes it depthwise
kernel_size=k, stride=s, bias=False)
self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)
# Squeeze and Excitation layer, if desired
if self.has_se:
num_squeezed_channels = max(1, int(self._block_args.input_filters * self._block_args.se_ratio))
self._se_reduce = Conv2d(in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1)
self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1)
# Output phase
final_oup = self._block_args.output_filters
self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False)
self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps)
self._swish = MemoryEfficientSwish()
def forward(self, inputs, drop_connect_rate=None):
"""
:param inputs: input tensor
:param drop_connect_rate: drop connect rate (float, between 0 and 1)
:return: output of block
"""
# Expansion and Depthwise Convolution
x = inputs
if self._block_args.expand_ratio != 1:
x = self._expand_conv(inputs)
x = self._bn0(x)
x = self._swish(x)
x = self._depthwise_conv(x)
x = self._bn1(x)
x = self._swish(x)
# Squeeze and Excitation
if self.has_se:
x_squeezed = F.adaptive_avg_pool2d(x, 1)
x_squeezed = self._se_reduce(x_squeezed)
x_squeezed = self._swish(x_squeezed)
x_squeezed = self._se_expand(x_squeezed)
x = torch.sigmoid(x_squeezed) * x
x = self._project_conv(x)
x = self._bn2(x)
# Skip connection and drop connect
input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters
if self.id_skip and self._block_args.stride == 1 and input_filters == output_filters:
if drop_connect_rate:
x = drop_connect(x, p=drop_connect_rate, training=self.training)
x = x + inputs # skip connection
return x
def set_swish(self, memory_efficient=True):
"""Sets swish function as memory efficient (for training) or standard (for export)"""
self._swish = MemoryEfficientSwish() if memory_efficient else Swish()
class Conv2dStaticSamePadding(nn.Module):
"""
The real keras/tensorflow conv2d with same padding
"""
def __init__(self, in_channels, out_channels, kernel_size, stride=1, bias=True, groups=1, dilation=1, **kwargs):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride,
bias=bias, groups=groups)
self.stride = self.conv.stride
self.kernel_size = self.conv.kernel_size
self.dilation = self.conv.dilation
if isinstance(self.stride, int):
self.stride = [self.stride] * 2
elif len(self.stride) == 1:
self.stride = [self.stride[0]] * 2
if isinstance(self.kernel_size, int):
self.kernel_size = [self.kernel_size] * 2
elif len(self.kernel_size) == 1:
self.kernel_size = [self.kernel_size[0]] * 2
def forward(self, x):
h, w = x.shape[-2:]
extra_h = (math.ceil(w / self.stride[1]) - 1) * self.stride[1] - w + self.kernel_size[1]
extra_v = (math.ceil(h / self.stride[0]) - 1) * self.stride[0] - h + self.kernel_size[0]
left = extra_h // 2
right = extra_h - left
top = extra_v // 2
bottom = extra_v - top
x = F.pad(x, [left, right, top, bottom])
x = self.conv(x)
return x
class MaxPool2dStaticSamePadding(nn.Module):
"""
The real keras/tensorflow MaxPool2d with same padding
"""
def __init__(self, *args, **kwargs):
super().__init__()
self.pool = nn.MaxPool2d(*args, **kwargs)
self.stride = self.pool.stride
self.kernel_size = self.pool.kernel_size
if isinstance(self.stride, int):
self.stride = [self.stride] * 2
elif len(self.stride) == 1:
self.stride = [self.stride[0]] * 2
if isinstance(self.kernel_size, int):
self.kernel_size = [self.kernel_size] * 2
elif len(self.kernel_size) == 1:
self.kernel_size = [self.kernel_size[0]] * 2
def forward(self, x):
h, w = x.shape[-2:]
extra_h = (math.ceil(w / self.stride[1]) - 1) * self.stride[1] - w + self.kernel_size[1]
extra_v = (math.ceil(h / self.stride[0]) - 1) * self.stride[0] - h + self.kernel_size[0]
left = extra_h // 2
right = extra_h - left
top = extra_v // 2
bottom = extra_v - top
x = F.pad(x, [left, right, top, bottom])
x = self.pool(x)
return x
class Activation(nn.Module):
def __init__(self, name, **params):
super().__init__()
if name is None or name == 'identity':
self.activation = nn.Identity(**params)
elif name == 'sigmoid':
self.activation = nn.Sigmoid()
elif name == 'softmax2d':
self.activation = nn.Softmax(dim=1, **params)
elif name == 'softmax':
self.activation = nn.Softmax(**params)
elif name == 'logsoftmax':
self.activation = nn.LogSoftmax(**params)
elif name == 'tanh':
self.activation = nn.Tanh()
# elif name == 'argmax':
# self.activation = ArgMax(**params)
# elif name == 'argmax2d':
# self.activation = ArgMax(dim=1, **params)
# elif name == 'clamp':
# self.activation = Clamp(**params)
elif callable(name):
self.activation = name(**params)
else:
raise ValueError('Activation should be callable/sigmoid/softmax/logsoftmax/tanh/None; got {}'.format(name))
def forward(self, x):
return self.activation(x)
class SegmentationHead(nn.Sequential):
def __init__(self, in_channels, out_channels, kernel_size=3, activation=None, upsampling=1):
conv2d = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=kernel_size // 2)
upsampling = nn.UpsamplingBilinear2d(scale_factor=upsampling) if upsampling > 1 else nn.Identity()
activation = Activation(activation)
super().__init__(conv2d, upsampling, activation)
class ClassificationHead(nn.Sequential):
def __init__(self, in_channels, classes, pooling="avg", dropout=0.2, activation=None):
if pooling not in ("max", "avg"):
raise ValueError("Pooling should be one of ('max', 'avg'), got {}.".format(pooling))
pool = nn.AdaptiveAvgPool2d(1) if pooling == 'avg' else nn.AdaptiveMaxPool2d(1)
flatten = nn.Flatten()
dropout = nn.Dropout(p=dropout, inplace=True) if dropout else nn.Identity()
linear = nn.Linear(in_channels, classes, bias=True)
activation = Activation(activation)
super().__init__(pool, flatten, dropout, linear, activation)
if __name__ == '__main__':
from tensorboardX import SummaryWriter
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)