Spaces:
Runtime error
Runtime error
File size: 31,421 Bytes
7b056a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 |
import torch.nn as nn
import torch
from torchvision.ops.boxes import nms as nms_torch
import torch.nn.functional as F
import math
from functools import partial
def nms(dets, thresh):
return nms_torch(dets[:, :4], dets[:, 4], thresh)
class SeparableConvBlock(nn.Module):
def __init__(self, in_channels, out_channels=None, norm=True, activation=False, onnx_export=False):
super(SeparableConvBlock, self).__init__()
if out_channels is None:
out_channels = in_channels
# Q: whether separate conv
# share bias between depthwise_conv and pointwise_conv
# or just pointwise_conv apply bias.
# A: Confirmed, just pointwise_conv applies bias, depthwise_conv has no bias.
self.depthwise_conv = Conv2dStaticSamePadding(in_channels, in_channels,
kernel_size=3, stride=1, groups=in_channels, bias=False)
self.pointwise_conv = Conv2dStaticSamePadding(in_channels, out_channels, kernel_size=1, stride=1)
self.norm = norm
if self.norm:
# Warning: pytorch momentum is different from tensorflow's, momentum_pytorch = 1 - momentum_tensorflow
self.bn = nn.BatchNorm2d(num_features=out_channels, momentum=0.01, eps=1e-3)
self.activation = activation
if self.activation:
self.swish = MemoryEfficientSwish() if not onnx_export else Swish()
def forward(self, x):
x = self.depthwise_conv(x)
x = self.pointwise_conv(x)
if self.norm:
x = self.bn(x)
if self.activation:
x = self.swish(x)
return x
class BiFPN(nn.Module):
def __init__(self, num_channels, conv_channels, first_time=False, epsilon=1e-4, onnx_export=False, attention=True,
use_p8=False):
"""
Args:
num_channels:
conv_channels:
first_time: whether the input comes directly from the efficientnet,
if True, downchannel it first, and downsample P5 to generate P6 then P7
epsilon: epsilon of fast weighted attention sum of BiFPN, not the BN's epsilon
onnx_export: if True, use Swish instead of MemoryEfficientSwish
"""
super(BiFPN, self).__init__()
self.epsilon = epsilon
self.use_p8 = use_p8
# Conv layers
self.conv6_up = SeparableConvBlock(num_channels, onnx_export=onnx_export)
self.conv5_up = SeparableConvBlock(num_channels, onnx_export=onnx_export)
self.conv4_up = SeparableConvBlock(num_channels, onnx_export=onnx_export)
self.conv3_up = SeparableConvBlock(num_channels, onnx_export=onnx_export)
self.conv4_down = SeparableConvBlock(num_channels, onnx_export=onnx_export)
self.conv5_down = SeparableConvBlock(num_channels, onnx_export=onnx_export)
self.conv6_down = SeparableConvBlock(num_channels, onnx_export=onnx_export)
self.conv7_down = SeparableConvBlock(num_channels, onnx_export=onnx_export)
if use_p8:
self.conv7_up = SeparableConvBlock(num_channels, onnx_export=onnx_export)
self.conv8_down = SeparableConvBlock(num_channels, onnx_export=onnx_export)
# Feature scaling layers
self.p6_upsample = nn.Upsample(scale_factor=2, mode='nearest')
self.p5_upsample = nn.Upsample(scale_factor=2, mode='nearest')
self.p4_upsample = nn.Upsample(scale_factor=2, mode='nearest')
self.p3_upsample = nn.Upsample(scale_factor=2, mode='nearest')
self.p4_downsample = MaxPool2dStaticSamePadding(3, 2)
self.p5_downsample = MaxPool2dStaticSamePadding(3, 2)
self.p6_downsample = MaxPool2dStaticSamePadding(3, 2)
self.p7_downsample = MaxPool2dStaticSamePadding(3, 2)
if use_p8:
self.p7_upsample = nn.Upsample(scale_factor=2, mode='nearest')
self.p8_downsample = MaxPool2dStaticSamePadding(3, 2)
self.swish = MemoryEfficientSwish() if not onnx_export else Swish()
self.first_time = first_time
if self.first_time:
self.p5_down_channel = nn.Sequential(
Conv2dStaticSamePadding(conv_channels[2], num_channels, 1),
nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
)
self.p4_down_channel = nn.Sequential(
Conv2dStaticSamePadding(conv_channels[1], num_channels, 1),
nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
)
self.p3_down_channel = nn.Sequential(
Conv2dStaticSamePadding(conv_channels[0], num_channels, 1),
nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
)
self.p5_to_p6 = nn.Sequential(
Conv2dStaticSamePadding(conv_channels[2], num_channels, 1),
nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
MaxPool2dStaticSamePadding(3, 2)
)
self.p6_to_p7 = nn.Sequential(
MaxPool2dStaticSamePadding(3, 2)
)
if use_p8:
self.p7_to_p8 = nn.Sequential(
MaxPool2dStaticSamePadding(3, 2)
)
self.p4_down_channel_2 = nn.Sequential(
Conv2dStaticSamePadding(conv_channels[1], num_channels, 1),
nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
)
self.p5_down_channel_2 = nn.Sequential(
Conv2dStaticSamePadding(conv_channels[2], num_channels, 1),
nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3),
)
# Weight
self.p6_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
self.p6_w1_relu = nn.ReLU()
self.p5_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
self.p5_w1_relu = nn.ReLU()
self.p4_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
self.p4_w1_relu = nn.ReLU()
self.p3_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
self.p3_w1_relu = nn.ReLU()
self.p4_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
self.p4_w2_relu = nn.ReLU()
self.p5_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
self.p5_w2_relu = nn.ReLU()
self.p6_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
self.p6_w2_relu = nn.ReLU()
self.p7_w2 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
self.p7_w2_relu = nn.ReLU()
self.attention = attention
def forward(self, inputs):
"""
illustration of a minimal bifpn unit
P7_0 -------------------------> P7_2 -------->
|-------------| β
β |
P6_0 ---------> P6_1 ---------> P6_2 -------->
|-------------|--------------β β
β |
P5_0 ---------> P5_1 ---------> P5_2 -------->
|-------------|--------------β β
β |
P4_0 ---------> P4_1 ---------> P4_2 -------->
|-------------|--------------β β
|--------------β |
P3_0 -------------------------> P3_2 -------->
"""
# downsample channels using same-padding conv2d to target phase's if not the same
# judge: same phase as target,
# if same, pass;
# elif earlier phase, downsample to target phase's by pooling
# elif later phase, upsample to target phase's by nearest interpolation
if self.attention:
outs = self._forward_fast_attention(inputs)
else:
outs = self._forward(inputs)
return outs
def _forward_fast_attention(self, inputs):
if self.first_time:
p3, p4, p5 = inputs
p6_in = self.p5_to_p6(p5)
p7_in = self.p6_to_p7(p6_in)
p3_in = self.p3_down_channel(p3)
p4_in = self.p4_down_channel(p4)
p5_in = self.p5_down_channel(p5)
else:
# P3_0, P4_0, P5_0, P6_0 and P7_0
p3_in, p4_in, p5_in, p6_in, p7_in = inputs
# P7_0 to P7_2
# Weights for P6_0 and P7_0 to P6_1
p6_w1 = self.p6_w1_relu(self.p6_w1)
weight = p6_w1 / (torch.sum(p6_w1, dim=0) + self.epsilon)
# Connections for P6_0 and P7_0 to P6_1 respectively
p6_up = self.conv6_up(self.swish(weight[0] * p6_in + weight[1] * self.p6_upsample(p7_in)))
# Weights for P5_0 and P6_1 to P5_1
p5_w1 = self.p5_w1_relu(self.p5_w1)
weight = p5_w1 / (torch.sum(p5_w1, dim=0) + self.epsilon)
# Connections for P5_0 and P6_1 to P5_1 respectively
p5_up = self.conv5_up(self.swish(weight[0] * p5_in + weight[1] * self.p5_upsample(p6_up)))
# Weights for P4_0 and P5_1 to P4_1
p4_w1 = self.p4_w1_relu(self.p4_w1)
weight = p4_w1 / (torch.sum(p4_w1, dim=0) + self.epsilon)
# Connections for P4_0 and P5_1 to P4_1 respectively
p4_up = self.conv4_up(self.swish(weight[0] * p4_in + weight[1] * self.p4_upsample(p5_up)))
# Weights for P3_0 and P4_1 to P3_2
p3_w1 = self.p3_w1_relu(self.p3_w1)
weight = p3_w1 / (torch.sum(p3_w1, dim=0) + self.epsilon)
# Connections for P3_0 and P4_1 to P3_2 respectively
p3_out = self.conv3_up(self.swish(weight[0] * p3_in + weight[1] * self.p3_upsample(p4_up)))
if self.first_time:
p4_in = self.p4_down_channel_2(p4)
p5_in = self.p5_down_channel_2(p5)
# Weights for P4_0, P4_1 and P3_2 to P4_2
p4_w2 = self.p4_w2_relu(self.p4_w2)
weight = p4_w2 / (torch.sum(p4_w2, dim=0) + self.epsilon)
# Connections for P4_0, P4_1 and P3_2 to P4_2 respectively
p4_out = self.conv4_down(
self.swish(weight[0] * p4_in + weight[1] * p4_up + weight[2] * self.p4_downsample(p3_out)))
# Weights for P5_0, P5_1 and P4_2 to P5_2
p5_w2 = self.p5_w2_relu(self.p5_w2)
weight = p5_w2 / (torch.sum(p5_w2, dim=0) + self.epsilon)
# Connections for P5_0, P5_1 and P4_2 to P5_2 respectively
p5_out = self.conv5_down(
self.swish(weight[0] * p5_in + weight[1] * p5_up + weight[2] * self.p5_downsample(p4_out)))
# Weights for P6_0, P6_1 and P5_2 to P6_2
p6_w2 = self.p6_w2_relu(self.p6_w2)
weight = p6_w2 / (torch.sum(p6_w2, dim=0) + self.epsilon)
# Connections for P6_0, P6_1 and P5_2 to P6_2 respectively
p6_out = self.conv6_down(
self.swish(weight[0] * p6_in + weight[1] * p6_up + weight[2] * self.p6_downsample(p5_out)))
# Weights for P7_0 and P6_2 to P7_2
p7_w2 = self.p7_w2_relu(self.p7_w2)
weight = p7_w2 / (torch.sum(p7_w2, dim=0) + self.epsilon)
# Connections for P7_0 and P6_2 to P7_2
p7_out = self.conv7_down(self.swish(weight[0] * p7_in + weight[1] * self.p7_downsample(p6_out)))
return p3_out, p4_out, p5_out, p6_out, p7_out
def _forward(self, inputs):
if self.first_time:
p3, p4, p5 = inputs
p6_in = self.p5_to_p6(p5)
p7_in = self.p6_to_p7(p6_in)
if self.use_p8:
p8_in = self.p7_to_p8(p7_in)
p3_in = self.p3_down_channel(p3)
p4_in = self.p4_down_channel(p4)
p5_in = self.p5_down_channel(p5)
else:
if self.use_p8:
# P3_0, P4_0, P5_0, P6_0, P7_0 and P8_0
p3_in, p4_in, p5_in, p6_in, p7_in, p8_in = inputs
else:
# P3_0, P4_0, P5_0, P6_0 and P7_0
p3_in, p4_in, p5_in, p6_in, p7_in = inputs
if self.use_p8:
# P8_0 to P8_2
# Connections for P7_0 and P8_0 to P7_1 respectively
p7_up = self.conv7_up(self.swish(p7_in + self.p7_upsample(p8_in)))
# Connections for P6_0 and P7_0 to P6_1 respectively
p6_up = self.conv6_up(self.swish(p6_in + self.p6_upsample(p7_up)))
else:
# P7_0 to P7_2
# Connections for P6_0 and P7_0 to P6_1 respectively
p6_up = self.conv6_up(self.swish(p6_in + self.p6_upsample(p7_in)))
# Connections for P5_0 and P6_1 to P5_1 respectively
p5_up = self.conv5_up(self.swish(p5_in + self.p5_upsample(p6_up)))
# Connections for P4_0 and P5_1 to P4_1 respectively
p4_up = self.conv4_up(self.swish(p4_in + self.p4_upsample(p5_up)))
# Connections for P3_0 and P4_1 to P3_2 respectively
p3_out = self.conv3_up(self.swish(p3_in + self.p3_upsample(p4_up)))
if self.first_time:
p4_in = self.p4_down_channel_2(p4)
p5_in = self.p5_down_channel_2(p5)
# Connections for P4_0, P4_1 and P3_2 to P4_2 respectively
p4_out = self.conv4_down(
self.swish(p4_in + p4_up + self.p4_downsample(p3_out)))
# Connections for P5_0, P5_1 and P4_2 to P5_2 respectively
p5_out = self.conv5_down(
self.swish(p5_in + p5_up + self.p5_downsample(p4_out)))
# Connections for P6_0, P6_1 and P5_2 to P6_2 respectively
p6_out = self.conv6_down(
self.swish(p6_in + p6_up + self.p6_downsample(p5_out)))
if self.use_p8:
# Connections for P7_0, P7_1 and P6_2 to P7_2 respectively
p7_out = self.conv7_down(
self.swish(p7_in + p7_up + self.p7_downsample(p6_out)))
# Connections for P8_0 and P7_2 to P8_2
p8_out = self.conv8_down(self.swish(p8_in + self.p8_downsample(p7_out)))
return p3_out, p4_out, p5_out, p6_out, p7_out, p8_out
else:
# Connections for P7_0 and P6_2 to P7_2
p7_out = self.conv7_down(self.swish(p7_in + self.p7_downsample(p6_out)))
return p3_out, p4_out, p5_out, p6_out, p7_out
class Regressor(nn.Module):
def __init__(self, in_channels, num_anchors, num_layers, pyramid_levels=5, onnx_export=False):
super(Regressor, self).__init__()
self.num_layers = num_layers
self.conv_list = nn.ModuleList(
[SeparableConvBlock(in_channels, in_channels, norm=False, activation=False) for i in range(num_layers)])
self.bn_list = nn.ModuleList(
[nn.ModuleList([nn.BatchNorm2d(in_channels, momentum=0.01, eps=1e-3) for i in range(num_layers)]) for j in
range(pyramid_levels)])
self.header = SeparableConvBlock(in_channels, num_anchors * 4, norm=False, activation=False)
self.swish = MemoryEfficientSwish() if not onnx_export else Swish()
def forward(self, inputs):
feats = []
for feat, bn_list in zip(inputs, self.bn_list):
for i, bn, conv in zip(range(self.num_layers), bn_list, self.conv_list):
feat = conv(feat)
feat = bn(feat)
feat = self.swish(feat)
feat = self.header(feat)
feat = feat.permute(0, 2, 3, 1)
feat = feat.contiguous().view(feat.shape[0], -1, 4)
feats.append(feat)
feats = torch.cat(feats, dim=1)
return feats
class Conv3x3BNSwish(nn.Module):
def __init__(self, in_channels, out_channels, upsample=False):
super().__init__()
self.swish = Swish()
self.upsample = upsample
self.block = nn.Sequential(
Conv2dStaticSamePadding(in_channels, out_channels, kernel_size=(3, 3), stride=1, padding=1, bias=False),
nn.BatchNorm2d(out_channels, momentum=0.01, eps=1e-3),
)
self.conv_sp = SeparableConvBlock(out_channels, onnx_export=False)
# self.block = nn.Sequential(
# nn.Conv2d(
# in_channels, out_channels, (3, 3), stride=1, padding=1, bias=False
# ),
# nn.GroupNorm(32, out_channels),
# nn.ReLU(inplace=True),
# )
def forward(self, x):
x = self.conv_sp(self.swish(self.block(x)))
if self.upsample:
x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
return x
class SegmentationBlock(nn.Module):
def __init__(self, in_channels, out_channels, n_upsamples=0):
super().__init__()
blocks = [Conv3x3BNSwish(in_channels, out_channels, upsample=bool(n_upsamples))]
if n_upsamples > 1:
for _ in range(1, n_upsamples):
blocks.append(Conv3x3BNSwish(out_channels, out_channels, upsample=True))
self.block = nn.Sequential(*blocks)
def forward(self, x):
return self.block(x)
class MergeBlock(nn.Module):
def __init__(self, policy):
super().__init__()
if policy not in ["add", "cat"]:
raise ValueError(
"`merge_policy` must be one of: ['add', 'cat'], got {}".format(
policy
)
)
self.policy = policy
def forward(self, x):
if self.policy == 'add':
return sum(x)
elif self.policy == 'cat':
return torch.cat(x, dim=1)
else:
raise ValueError(
"`merge_policy` must be one of: ['add', 'cat'], got {}".format(self.policy)
)
class BiFPNDecoder(nn.Module):
def __init__(
self,
encoder_depth=5,
pyramid_channels=64,
segmentation_channels=64,
dropout=0.2,
merge_policy="add", ):
super().__init__()
self.seg_blocks = nn.ModuleList([
SegmentationBlock(pyramid_channels, segmentation_channels, n_upsamples=n_upsamples)
for n_upsamples in [5,4, 3, 2, 1]
])
self.seg_p2 = SegmentationBlock(32, 64, n_upsamples=0)
self.merge = MergeBlock(merge_policy)
self.dropout = nn.Dropout2d(p=dropout, inplace=True)
def forward(self, inputs):
p2, p3, p4, p5, p6, p7 = inputs
feature_pyramid = [seg_block(p) for seg_block, p in zip(self.seg_blocks, [p7, p6, p5, p4, p3])]
p2 = self.seg_p2(p2)
p3,p4,p5,p6,p7 = feature_pyramid
x = self.merge((p2,p3,p4,p5,p6,p7))
x = self.dropout(x)
return x
class Classifier(nn.Module):
def __init__(self, in_channels, num_anchors, num_classes, num_layers, pyramid_levels=5, onnx_export=False):
super(Classifier, self).__init__()
self.num_anchors = num_anchors
self.num_classes = num_classes
self.num_layers = num_layers
self.conv_list = nn.ModuleList(
[SeparableConvBlock(in_channels, in_channels, norm=False, activation=False) for i in range(num_layers)])
self.bn_list = nn.ModuleList(
[nn.ModuleList([nn.BatchNorm2d(in_channels, momentum=0.01, eps=1e-3) for i in range(num_layers)]) for j in
range(pyramid_levels)])
self.header = SeparableConvBlock(in_channels, num_anchors * num_classes, norm=False, activation=False)
self.swish = MemoryEfficientSwish() if not onnx_export else Swish()
def forward(self, inputs):
feats = []
for feat, bn_list in zip(inputs, self.bn_list):
for i, bn, conv in zip(range(self.num_layers), bn_list, self.conv_list):
feat = conv(feat)
feat = bn(feat)
feat = self.swish(feat)
feat = self.header(feat)
feat = feat.permute(0, 2, 3, 1)
feat = feat.contiguous().view(feat.shape[0], feat.shape[1], feat.shape[2], self.num_anchors,
self.num_classes)
feat = feat.contiguous().view(feat.shape[0], -1, self.num_classes)
feats.append(feat)
feats = torch.cat(feats, dim=1)
feats = feats.sigmoid()
return feats
class SwishImplementation(torch.autograd.Function):
@staticmethod
def forward(ctx, i):
result = i * torch.sigmoid(i)
ctx.save_for_backward(i)
return result
@staticmethod
def backward(ctx, grad_output):
i = ctx.saved_variables[0]
sigmoid_i = torch.sigmoid(i)
return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i)))
class MemoryEfficientSwish(nn.Module):
def forward(self, x):
return SwishImplementation.apply(x)
class Swish(nn.Module):
def forward(self, x):
return x * torch.sigmoid(x)
def drop_connect(inputs, p, training):
""" Drop connect. """
if not training: return inputs
batch_size = inputs.shape[0]
keep_prob = 1 - p
random_tensor = keep_prob
random_tensor += torch.rand([batch_size, 1, 1, 1], dtype=inputs.dtype, device=inputs.device)
binary_tensor = torch.floor(random_tensor)
output = inputs / keep_prob * binary_tensor
return output
def get_same_padding_conv2d(image_size=None):
""" Chooses static padding if you have specified an image size, and dynamic padding otherwise.
Static padding is necessary for ONNX exporting of models. """
if image_size is None:
return Conv2dDynamicSamePadding
else:
return partial(Conv2dStaticSamePadding, image_size=image_size)
class Conv2dDynamicSamePadding(nn.Conv2d):
""" 2D Convolutions like TensorFlow, for a dynamic image size """
def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, groups=1, bias=True):
super().__init__(in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias)
self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2
def forward(self, x):
ih, iw = x.size()[-2:]
kh, kw = self.weight.size()[-2:]
sh, sw = self.stride
oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)
pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0)
pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0)
if pad_h > 0 or pad_w > 0:
x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2])
return F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
class MBConvBlock(nn.Module):
"""
Mobile Inverted Residual Bottleneck Block
Args:
block_args (namedtuple): BlockArgs, see above
global_params (namedtuple): GlobalParam, see above
Attributes:
has_se (bool): Whether the block contains a Squeeze and Excitation layer.
"""
def __init__(self, block_args, global_params):
super().__init__()
self._block_args = block_args
self._bn_mom = 1 - global_params.batch_norm_momentum
self._bn_eps = global_params.batch_norm_epsilon
self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1)
self.id_skip = block_args.id_skip # skip connection and drop connect
# Get static or dynamic convolution depending on image size
Conv2d = get_same_padding_conv2d(image_size=global_params.image_size)
# Expansion phase
inp = self._block_args.input_filters # number of input channels
oup = self._block_args.input_filters * self._block_args.expand_ratio # number of output channels
if self._block_args.expand_ratio != 1:
self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False)
self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)
# Depthwise convolution phase
k = self._block_args.kernel_size
s = self._block_args.stride
self._depthwise_conv = Conv2d(
in_channels=oup, out_channels=oup, groups=oup, # groups makes it depthwise
kernel_size=k, stride=s, bias=False)
self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps)
# Squeeze and Excitation layer, if desired
if self.has_se:
num_squeezed_channels = max(1, int(self._block_args.input_filters * self._block_args.se_ratio))
self._se_reduce = Conv2d(in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1)
self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1)
# Output phase
final_oup = self._block_args.output_filters
self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False)
self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps)
self._swish = MemoryEfficientSwish()
def forward(self, inputs, drop_connect_rate=None):
"""
:param inputs: input tensor
:param drop_connect_rate: drop connect rate (float, between 0 and 1)
:return: output of block
"""
# Expansion and Depthwise Convolution
x = inputs
if self._block_args.expand_ratio != 1:
x = self._expand_conv(inputs)
x = self._bn0(x)
x = self._swish(x)
x = self._depthwise_conv(x)
x = self._bn1(x)
x = self._swish(x)
# Squeeze and Excitation
if self.has_se:
x_squeezed = F.adaptive_avg_pool2d(x, 1)
x_squeezed = self._se_reduce(x_squeezed)
x_squeezed = self._swish(x_squeezed)
x_squeezed = self._se_expand(x_squeezed)
x = torch.sigmoid(x_squeezed) * x
x = self._project_conv(x)
x = self._bn2(x)
# Skip connection and drop connect
input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters
if self.id_skip and self._block_args.stride == 1 and input_filters == output_filters:
if drop_connect_rate:
x = drop_connect(x, p=drop_connect_rate, training=self.training)
x = x + inputs # skip connection
return x
def set_swish(self, memory_efficient=True):
"""Sets swish function as memory efficient (for training) or standard (for export)"""
self._swish = MemoryEfficientSwish() if memory_efficient else Swish()
class Conv2dStaticSamePadding(nn.Module):
"""
The real keras/tensorflow conv2d with same padding
"""
def __init__(self, in_channels, out_channels, kernel_size, stride=1, bias=True, groups=1, dilation=1, **kwargs):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride,
bias=bias, groups=groups)
self.stride = self.conv.stride
self.kernel_size = self.conv.kernel_size
self.dilation = self.conv.dilation
if isinstance(self.stride, int):
self.stride = [self.stride] * 2
elif len(self.stride) == 1:
self.stride = [self.stride[0]] * 2
if isinstance(self.kernel_size, int):
self.kernel_size = [self.kernel_size] * 2
elif len(self.kernel_size) == 1:
self.kernel_size = [self.kernel_size[0]] * 2
def forward(self, x):
h, w = x.shape[-2:]
extra_h = (math.ceil(w / self.stride[1]) - 1) * self.stride[1] - w + self.kernel_size[1]
extra_v = (math.ceil(h / self.stride[0]) - 1) * self.stride[0] - h + self.kernel_size[0]
left = extra_h // 2
right = extra_h - left
top = extra_v // 2
bottom = extra_v - top
x = F.pad(x, [left, right, top, bottom])
x = self.conv(x)
return x
class MaxPool2dStaticSamePadding(nn.Module):
"""
The real keras/tensorflow MaxPool2d with same padding
"""
def __init__(self, *args, **kwargs):
super().__init__()
self.pool = nn.MaxPool2d(*args, **kwargs)
self.stride = self.pool.stride
self.kernel_size = self.pool.kernel_size
if isinstance(self.stride, int):
self.stride = [self.stride] * 2
elif len(self.stride) == 1:
self.stride = [self.stride[0]] * 2
if isinstance(self.kernel_size, int):
self.kernel_size = [self.kernel_size] * 2
elif len(self.kernel_size) == 1:
self.kernel_size = [self.kernel_size[0]] * 2
def forward(self, x):
h, w = x.shape[-2:]
extra_h = (math.ceil(w / self.stride[1]) - 1) * self.stride[1] - w + self.kernel_size[1]
extra_v = (math.ceil(h / self.stride[0]) - 1) * self.stride[0] - h + self.kernel_size[0]
left = extra_h // 2
right = extra_h - left
top = extra_v // 2
bottom = extra_v - top
x = F.pad(x, [left, right, top, bottom])
x = self.pool(x)
return x
class Activation(nn.Module):
def __init__(self, name, **params):
super().__init__()
if name is None or name == 'identity':
self.activation = nn.Identity(**params)
elif name == 'sigmoid':
self.activation = nn.Sigmoid()
elif name == 'softmax2d':
self.activation = nn.Softmax(dim=1, **params)
elif name == 'softmax':
self.activation = nn.Softmax(**params)
elif name == 'logsoftmax':
self.activation = nn.LogSoftmax(**params)
elif name == 'tanh':
self.activation = nn.Tanh()
# elif name == 'argmax':
# self.activation = ArgMax(**params)
# elif name == 'argmax2d':
# self.activation = ArgMax(dim=1, **params)
# elif name == 'clamp':
# self.activation = Clamp(**params)
elif callable(name):
self.activation = name(**params)
else:
raise ValueError('Activation should be callable/sigmoid/softmax/logsoftmax/tanh/None; got {}'.format(name))
def forward(self, x):
return self.activation(x)
class SegmentationHead(nn.Sequential):
def __init__(self, in_channels, out_channels, kernel_size=3, activation=None, upsampling=1):
conv2d = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=kernel_size // 2)
upsampling = nn.UpsamplingBilinear2d(scale_factor=upsampling) if upsampling > 1 else nn.Identity()
activation = Activation(activation)
super().__init__(conv2d, upsampling, activation)
class ClassificationHead(nn.Sequential):
def __init__(self, in_channels, classes, pooling="avg", dropout=0.2, activation=None):
if pooling not in ("max", "avg"):
raise ValueError("Pooling should be one of ('max', 'avg'), got {}.".format(pooling))
pool = nn.AdaptiveAvgPool2d(1) if pooling == 'avg' else nn.AdaptiveMaxPool2d(1)
flatten = nn.Flatten()
dropout = nn.Dropout(p=dropout, inplace=True) if dropout else nn.Identity()
linear = nn.Linear(in_channels, classes, bias=True)
activation = Activation(activation)
super().__init__(pool, flatten, dropout, linear, activation)
if __name__ == '__main__':
from tensorboardX import SummaryWriter
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
|