ece / ece.py
jordyvl's picture
small update to include visual definition of ECE
0736615
raw
history blame
11.2 kB
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
# https://huggingface.co/spaces/jordyvl/ece
import evaluate
import datasets
import numpy as np
from typing import Dict, Optional
# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {Expected Calibration Error},
authors={Jordy Van Landeghem},
year={2022}
}
"""
# TODO: Add description of the module here
_DESCRIPTION = """\
This new module is designed to evaluate the calibration of a probabilistic classifier.
More concretely, we provide a binned empirical estimator of top-1 calibration error. [1]
"""
# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of predictions to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
y_true : array-like
Ground truth labels.
p_hat : array-like
Array of confidence estimates.
n_bins : int, default=15
Number of bins of :math:`[\\frac{1}{n_{\\text{classes}},1]` for the confidence estimates.
n_classes : int default=None
Number of classes. Estimated from `y` and `y_pred` if not given.
p : int, default=1
Power of the calibration error, :math:`1 \\leq p \\leq \\infty`.
Returns
Expected calibration error (ECE), float.
Examples:
>>> my_new_module = evaluate.load("jordyvl/ece")
>>> results = my_new_module.compute(references=[0, 1, 2], predictions=[[0.6, 0.2, 0.2], [0, 0.95, 0.05], [0.7, 0.1 ,0.2]])
>>> print(results)
{'ECE': 0.1333333333333334}
"""
# TODO: Define external resources urls if needed
BAD_WORDS_URL = ""
# Discretization and binning
def create_bins(n_bins=10, scheme="equal-range", bin_range=None, P=None):
assert scheme in [
"equal-range",
"equal-mass",
], f"This binning scheme {scheme} is not implemented yet"
if bin_range is None:
if P is None:
bin_range = [0, 1] # no way to know range
else:
bin_range = [min(P), max(P)]
if scheme == "equal-range":
bins = np.linspace(bin_range[0], bin_range[1], n_bins + 1) # equal range
# bins = np.tile(np.linspace(bin_range[0], bin_range[1], n_bins + 1), (n_classes,1))
elif scheme == "equal-mass":
assert P.size >= n_bins, "Fewer points than bins"
# assume global equal mass binning; not discriminated per class
P = P.flatten()
# split sorted probabilities into groups of approx equal size
groups = np.array_split(np.sort(P), n_bins)
bin_upper_edges = list()
# rightmost entry per equal size group
for cur_group in range(n_bins - 1):
bin_upper_edges += [max(groups[cur_group])]
bin_upper_edges += [1.01] #[np.inf] # always +1 for right edges
bins = np.array(bin_upper_edges)
#OverflowError: cannot convert float infinity to integer
return bins
def discretize_into_bins(P, bins):
oneDbins = np.digitize(P, bins) - 1 # since bins contains extra righmost & leftmost bins
# Fix to scipy.binned_dd_statistic:
# Tie-breaking to the left for rightmost bin
# Using `digitize`, values that fall on an edge are put in the right bin.
# For the rightmost bin, we want values equal to the right
# edge to be counted in the last bin, and not as an outlier.
for k in range(P.shape[-1]):
# Find the rounding precision
dedges_min = np.diff(bins).min()
if dedges_min == 0:
raise ValueError("The smallest edge difference is numerically 0.")
decimal = int(-np.log10(dedges_min)) + 6
# Find which points are on the rightmost edge.
on_edge = np.where(
(P[:, k] >= bins[-1]) & (np.around(P[:, k], decimal) == np.around(bins[-1], decimal))
)[0]
# Shift these points one bin to the left.
oneDbins[on_edge, k] -= 1
return oneDbins
def manual_binned_statistic(P, y_correct, bins, statistic="mean"):
bin_assignments = discretize_into_bins(np.expand_dims(P, 0), bins)[0]
result = np.empty([len(bins)], float)
result.fill(np.nan) # cannot assume each bin will have observations
flatcount = np.bincount(bin_assignments, None)
a = flatcount.nonzero()
if statistic == "mean":
flatsum = np.bincount(bin_assignments, y_correct)
result[a] = flatsum[a] / flatcount[a]
return result, bins, bin_assignments + 1 # fix for what happens in discretize_into_bins
def bin_calibrated_accuracy(bins, proxy="upper-edge"):
assert proxy in ["center", "upper-edge"], f"Unsupported proxy{proxy}"
if proxy == "upper-edge":
return bins[1:]
if proxy == "center":
return bins[:-1] + np.diff(bins) / 2
def CE_estimate(y_correct, P, bins=None, p=1, proxy="upper-edge", detail=False):
"""
y_correct: binary (N x 1)
P: normalized (N x 1) either max or per class
Summary: weighted average over the accuracy/confidence difference of discrete bins of prediction probability
"""
n_bins = len(bins) - 1
bin_range = [min(bins), max(bins)]
# average bin probability #55 for bin 50-60, mean per bin; or right/upper bin edges
calibrated_acc = bin_calibrated_accuracy(bins, proxy="upper-edge")
empirical_acc, bin_edges, bin_assignment = manual_binned_statistic(P, y_correct, bins)
bin_numbers, weights_ece = np.unique(bin_assignment, return_counts=True)
anindices = bin_numbers - 1 # reduce bin counts; left edge; indexes right by default
# Expected calibration error
if p < np.inf: # L^p-CE
CE = np.average(
abs(empirical_acc[anindices] - calibrated_acc[anindices]) ** p, weights=weights_ece
)
elif np.isinf(p): # max-ECE
CE = np.max(abs(empirical_acc[anindices] - calibrated_acc[anindices]))
if detail:
return CE, calibrated_acc, empirical_acc, weights_ece
return CE
def top_1_CE(Y, P, **kwargs):
y_correct = (Y == np.argmax(P, -1)).astype(int) # create condition y = ŷ € [K]
p_max = np.max(P, -1) # create p̂ as top-1 softmax probability € [0,1]
bins = create_bins(
n_bins=kwargs["n_bins"], bin_range=kwargs["bin_range"], scheme=kwargs["scheme"], P=p_max
)
CE = CE_estimate(y_correct, p_max, bins=bins, proxy=kwargs["proxy"], detail=kwargs["detail"])
if kwargs["detail"]:
return {"ECE": CE[0], "y_bar": CE[1], "p_bar": CE[2], "bin_freq": CE[3], "p_bar_cont": np.mean(p_max,-1), "accuracy": np.mean(y_correct)}
return CE
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class ECE(evaluate.EvaluationModule):
"""
0. create binning scheme [discretization of f]
1. build histogram P(f(X))
2. build conditional density estimate P(y|f(X))
3. average bin probabilities f_B as center/edge of bin
4. apply L^p norm distance and weights
"""
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.EvaluationModuleInfo(
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("float32")),
"references": datasets.Value("int64"),
}
),
# Homepage of the module for documentation
homepage="https://huggingface.co/spaces/jordyvl/ece",
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"],
)
def init_kwargs(
self,
n_bins: int = 10,
bin_range: Optional[int] = [0, 1],
scheme: str = "equal-range",
proxy: str = "upper-edge",
p=1,
detail: bool = False,
**kwargs,
):
# super(evaluate.EvaluationModule, self).__init__(**kwargs)
self.n_bins = n_bins
self.bin_range = bin_range
self.scheme = scheme
self.proxy = proxy
self.p = p
self.detail = detail
def _compute(self, predictions, references, **kwargs):
# convert to numpy arrays
references = np.array(references, dtype=np.int64)
predictions = np.array(predictions, dtype=np.float32)
assert (
predictions.shape[0] == references.shape[0]
), "Need to pass similar predictions and references"
# Assert that arrays are 2D
if len(predictions.shape) != 2:
raise ValueError("Expected `predictions` to be a 2D vector (N x K)")
if len(references.shape) != 1:
# could check if wrongly passed as onehot
if (references.shape[-1] == predictions.shape[1]) and (
np.sum(references) == predictions.shape[0]
):
references = np.argmax(references, -1)
else:
raise ValueError("Expected `references` to be a 1D vector (N,)")
self.init_kwargs(**kwargs)
"""Returns the scores"""
ECE = top_1_CE(references, predictions, **self.__dict__)
if self.detail:
return ECE
return {
"ECE": ECE,
}
def test_ECE():
N = 10 # N evaluation instances {(x_i,y_i)}_{i=1}^N
K = 5 # K class problem
def random_mc_instance(concentration=1, onehot=False):
reference = np.argmax(
np.random.dirichlet(([concentration for _ in range(K)])), -1
) # class targets
prediction = np.random.dirichlet(([concentration for _ in range(K)])) # probabilities
if onehot:
reference = np.eye(K)[np.argmax(reference, -1)]
return reference, prediction
references, predictions = list(zip(*[random_mc_instance() for i in range(N)]))
references = np.array(references, dtype=np.int64)
predictions = np.array(predictions, dtype=np.float32)
res = ECE()._compute(predictions, references)
print(f"ECE: {res['ECE']}")
res = ECE()._compute(predictions, references, detail=True)
import pdb; pdb.set_trace() # breakpoint 25274412 //
print(f"ECE: {res['ECE']}")
if __name__ == '__main__':
test_ECE()