Spaces:
Runtime error
Runtime error
File size: 11,199 Bytes
b81628e 0c94397 b81628e ac1bb79 3f722df b81628e ac1bb79 b81628e 0c94397 b81628e 9182e7b 0c94397 9182e7b b81628e 9182e7b b81628e 0736615 b81628e 0c94397 efa98d8 0c94397 daa7784 b81628e 0c94397 b81628e 0c94397 ac1bb79 0c94397 ac1bb79 0c94397 efa98d8 0c94397 efa98d8 0c94397 ac1bb79 0c94397 ac1bb79 0c94397 ac1bb79 0c94397 ac1bb79 0c94397 ac1bb79 0c94397 ac1bb79 0c94397 ac1bb79 0c94397 3f722df ac1bb79 0c94397 ac1bb79 0c94397 ac1bb79 0c94397 ac1bb79 daa7784 ac1bb79 0c94397 ac1bb79 daa7784 ac1bb79 3f722df ac1bb79 0c94397 3f722df efa98d8 3f722df ac1bb79 b81628e ac1bb79 b81628e 0c94397 3e6ca8f 1519667 0c94397 b81628e 0c94397 b81628e 0c94397 b81628e 3257c6c 3f722df 3257c6c 3f722df ac1bb79 3257c6c 0c94397 3257c6c ac1bb79 3257c6c ac1bb79 3257c6c 0c94397 3257c6c 543b514 3257c6c 543b514 3257c6c 3f722df 3257c6c 3f722df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
# https://huggingface.co/spaces/jordyvl/ece
import evaluate
import datasets
import numpy as np
from typing import Dict, Optional
# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {Expected Calibration Error},
authors={Jordy Van Landeghem},
year={2022}
}
"""
# TODO: Add description of the module here
_DESCRIPTION = """\
This new module is designed to evaluate the calibration of a probabilistic classifier.
More concretely, we provide a binned empirical estimator of top-1 calibration error. [1]
"""
# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of predictions to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
y_true : array-like
Ground truth labels.
p_hat : array-like
Array of confidence estimates.
n_bins : int, default=15
Number of bins of :math:`[\\frac{1}{n_{\\text{classes}},1]` for the confidence estimates.
n_classes : int default=None
Number of classes. Estimated from `y` and `y_pred` if not given.
p : int, default=1
Power of the calibration error, :math:`1 \\leq p \\leq \\infty`.
Returns
Expected calibration error (ECE), float.
Examples:
>>> my_new_module = evaluate.load("jordyvl/ece")
>>> results = my_new_module.compute(references=[0, 1, 2], predictions=[[0.6, 0.2, 0.2], [0, 0.95, 0.05], [0.7, 0.1 ,0.2]])
>>> print(results)
{'ECE': 0.1333333333333334}
"""
# TODO: Define external resources urls if needed
BAD_WORDS_URL = ""
# Discretization and binning
def create_bins(n_bins=10, scheme="equal-range", bin_range=None, P=None):
assert scheme in [
"equal-range",
"equal-mass",
], f"This binning scheme {scheme} is not implemented yet"
if bin_range is None:
if P is None:
bin_range = [0, 1] # no way to know range
else:
bin_range = [min(P), max(P)]
if scheme == "equal-range":
bins = np.linspace(bin_range[0], bin_range[1], n_bins + 1) # equal range
# bins = np.tile(np.linspace(bin_range[0], bin_range[1], n_bins + 1), (n_classes,1))
elif scheme == "equal-mass":
assert P.size >= n_bins, "Fewer points than bins"
# assume global equal mass binning; not discriminated per class
P = P.flatten()
# split sorted probabilities into groups of approx equal size
groups = np.array_split(np.sort(P), n_bins)
bin_upper_edges = list()
# rightmost entry per equal size group
for cur_group in range(n_bins - 1):
bin_upper_edges += [max(groups[cur_group])]
bin_upper_edges += [1.01] #[np.inf] # always +1 for right edges
bins = np.array(bin_upper_edges)
#OverflowError: cannot convert float infinity to integer
return bins
def discretize_into_bins(P, bins):
oneDbins = np.digitize(P, bins) - 1 # since bins contains extra righmost & leftmost bins
# Fix to scipy.binned_dd_statistic:
# Tie-breaking to the left for rightmost bin
# Using `digitize`, values that fall on an edge are put in the right bin.
# For the rightmost bin, we want values equal to the right
# edge to be counted in the last bin, and not as an outlier.
for k in range(P.shape[-1]):
# Find the rounding precision
dedges_min = np.diff(bins).min()
if dedges_min == 0:
raise ValueError("The smallest edge difference is numerically 0.")
decimal = int(-np.log10(dedges_min)) + 6
# Find which points are on the rightmost edge.
on_edge = np.where(
(P[:, k] >= bins[-1]) & (np.around(P[:, k], decimal) == np.around(bins[-1], decimal))
)[0]
# Shift these points one bin to the left.
oneDbins[on_edge, k] -= 1
return oneDbins
def manual_binned_statistic(P, y_correct, bins, statistic="mean"):
bin_assignments = discretize_into_bins(np.expand_dims(P, 0), bins)[0]
result = np.empty([len(bins)], float)
result.fill(np.nan) # cannot assume each bin will have observations
flatcount = np.bincount(bin_assignments, None)
a = flatcount.nonzero()
if statistic == "mean":
flatsum = np.bincount(bin_assignments, y_correct)
result[a] = flatsum[a] / flatcount[a]
return result, bins, bin_assignments + 1 # fix for what happens in discretize_into_bins
def bin_calibrated_accuracy(bins, proxy="upper-edge"):
assert proxy in ["center", "upper-edge"], f"Unsupported proxy{proxy}"
if proxy == "upper-edge":
return bins[1:]
if proxy == "center":
return bins[:-1] + np.diff(bins) / 2
def CE_estimate(y_correct, P, bins=None, p=1, proxy="upper-edge", detail=False):
"""
y_correct: binary (N x 1)
P: normalized (N x 1) either max or per class
Summary: weighted average over the accuracy/confidence difference of discrete bins of prediction probability
"""
n_bins = len(bins) - 1
bin_range = [min(bins), max(bins)]
# average bin probability #55 for bin 50-60, mean per bin; or right/upper bin edges
calibrated_acc = bin_calibrated_accuracy(bins, proxy="upper-edge")
empirical_acc, bin_edges, bin_assignment = manual_binned_statistic(P, y_correct, bins)
bin_numbers, weights_ece = np.unique(bin_assignment, return_counts=True)
anindices = bin_numbers - 1 # reduce bin counts; left edge; indexes right by default
# Expected calibration error
if p < np.inf: # L^p-CE
CE = np.average(
abs(empirical_acc[anindices] - calibrated_acc[anindices]) ** p, weights=weights_ece
)
elif np.isinf(p): # max-ECE
CE = np.max(abs(empirical_acc[anindices] - calibrated_acc[anindices]))
if detail:
return CE, calibrated_acc, empirical_acc, weights_ece
return CE
def top_1_CE(Y, P, **kwargs):
y_correct = (Y == np.argmax(P, -1)).astype(int) # create condition y = ŷ € [K]
p_max = np.max(P, -1) # create p̂ as top-1 softmax probability € [0,1]
bins = create_bins(
n_bins=kwargs["n_bins"], bin_range=kwargs["bin_range"], scheme=kwargs["scheme"], P=p_max
)
CE = CE_estimate(y_correct, p_max, bins=bins, proxy=kwargs["proxy"], detail=kwargs["detail"])
if kwargs["detail"]:
return {"ECE": CE[0], "y_bar": CE[1], "p_bar": CE[2], "bin_freq": CE[3], "p_bar_cont": np.mean(p_max,-1), "accuracy": np.mean(y_correct)}
return CE
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class ECE(evaluate.EvaluationModule):
"""
0. create binning scheme [discretization of f]
1. build histogram P(f(X))
2. build conditional density estimate P(y|f(X))
3. average bin probabilities f_B as center/edge of bin
4. apply L^p norm distance and weights
"""
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.EvaluationModuleInfo(
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("float32")),
"references": datasets.Value("int64"),
}
),
# Homepage of the module for documentation
homepage="https://huggingface.co/spaces/jordyvl/ece",
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"],
)
def init_kwargs(
self,
n_bins: int = 10,
bin_range: Optional[int] = [0, 1],
scheme: str = "equal-range",
proxy: str = "upper-edge",
p=1,
detail: bool = False,
**kwargs,
):
# super(evaluate.EvaluationModule, self).__init__(**kwargs)
self.n_bins = n_bins
self.bin_range = bin_range
self.scheme = scheme
self.proxy = proxy
self.p = p
self.detail = detail
def _compute(self, predictions, references, **kwargs):
# convert to numpy arrays
references = np.array(references, dtype=np.int64)
predictions = np.array(predictions, dtype=np.float32)
assert (
predictions.shape[0] == references.shape[0]
), "Need to pass similar predictions and references"
# Assert that arrays are 2D
if len(predictions.shape) != 2:
raise ValueError("Expected `predictions` to be a 2D vector (N x K)")
if len(references.shape) != 1:
# could check if wrongly passed as onehot
if (references.shape[-1] == predictions.shape[1]) and (
np.sum(references) == predictions.shape[0]
):
references = np.argmax(references, -1)
else:
raise ValueError("Expected `references` to be a 1D vector (N,)")
self.init_kwargs(**kwargs)
"""Returns the scores"""
ECE = top_1_CE(references, predictions, **self.__dict__)
if self.detail:
return ECE
return {
"ECE": ECE,
}
def test_ECE():
N = 10 # N evaluation instances {(x_i,y_i)}_{i=1}^N
K = 5 # K class problem
def random_mc_instance(concentration=1, onehot=False):
reference = np.argmax(
np.random.dirichlet(([concentration for _ in range(K)])), -1
) # class targets
prediction = np.random.dirichlet(([concentration for _ in range(K)])) # probabilities
if onehot:
reference = np.eye(K)[np.argmax(reference, -1)]
return reference, prediction
references, predictions = list(zip(*[random_mc_instance() for i in range(N)]))
references = np.array(references, dtype=np.int64)
predictions = np.array(predictions, dtype=np.float32)
res = ECE()._compute(predictions, references)
print(f"ECE: {res['ECE']}")
res = ECE()._compute(predictions, references, detail=True)
import pdb; pdb.set_trace() # breakpoint 25274412 //
print(f"ECE: {res['ECE']}")
if __name__ == '__main__':
test_ECE() |