jojortz's picture
add initial visualize app
3caa485
import sys
import gradio as gr
sys.path.append(".")
sys.path.append("..")
sys.path.append("../..")
from cluster import cluster
from extract import extract_endpoint
from generate_answers import generate_relevant_chunks
queries = [
"What is the size, shape, and energy (watt hour) or capacity (Amp hour) of battery discussed in the paper?",
"What specific mechanical testing methods were used to quantify strength?",
"What parameters they used to quantify the benefit of their individual design (mass saving, increased run time, etc.)?",
"What material chemistry combination (on the anode, cathode, separator, and electrolyte) was used in these papers?",
"What kind of end use application they targeted?",
]
MAX_CATEGORIES = 10
def change_button(text):
if len(text) > 0:
return gr.Button(interactive=True)
else:
return gr.Button(interactive=False)
def generate_category_btn(cluster_output):
unique_categories = set()
for item in cluster_output:
unique_categories.update(item["categories"])
update_show = [gr.Button(visible=True, value=w) for w in unique_categories]
update_hide = [
gr.Button(visible=False, value="")
for _ in range(MAX_CATEGORIES - len(unique_categories))
]
return update_show + update_hide
def get_query(btn):
return btn
btn_list = []
with gr.Blocks() as app:
gr.Markdown(
"""
# Paper Query Clustering + Visualization
This app extracts text from papers and then searches for relevant excerpts based on a query. It then clusters and visualizes the relevant excerpts to find common themes across the papers.
### Input
1. A group of research papers that you want to run the query on.
1. Query that you would like to know about these papers.
### Output
Clustering and visualization of the relevant excerpts which answer the query across the papers.
# 1. Upload + Extract
First, upload the papers you want to analyze. Currently, we only support PDFs. Once they're uploaded, you can extract the text data from the papers.
"""
)
file_upload = gr.Files()
extract_btn = gr.Button("Extract", interactive=False)
with gr.Tab(label="Table"):
extract_df = gr.Dataframe(
datatype="markdown", column_widths=[100, 400], wrap=True
)
with gr.Tab(label="JSON"):
extract_output = gr.JSON(label="Extract Output")
gr.Markdown(
"""
----------------
# 2. Extract Relevant Excerpts
Enter a query about these papers. This will search the papers to find the most relevant excerpts.
"""
)
gr.Markdown(
"""
### Input
"""
)
query = gr.Textbox(
label="Query", value=queries[1], lines=3, placeholder="Enter a query"
)
gr.Markdown(
"""
You can also select some example queries below.
"""
)
with gr.Row():
q0_btn = gr.Button(queries[0])
q1_btn = gr.Button(queries[1])
q2_btn = gr.Button(queries[2])
q3_btn = gr.Button(queries[3])
q4_btn = gr.Button(queries[4])
gr.Markdown(
"""
----
"""
)
relevant_btn = gr.Button("Extract Excerpts", interactive=False)
gr.Markdown(
"""
### Output
"""
)
with gr.Tab(label="Output Table"):
relevant_df = gr.Dataframe(
datatype="markdown", column_widths=[100, 100, 300], wrap=True
)
with gr.Tab(label="JSON"):
relevant_output = gr.JSON(label="Relevant Chunks Output")
gr.Markdown(
"""
----------------
# 3. Cluster & Visualize
Cluster the relevant excerpts to find common themes and visualize the results.
"""
)
with gr.Row():
with gr.Column():
gr.Markdown(
"""
### Input
"""
)
cluster_btn = gr.Button("Cluster", interactive=False)
cluster_output = gr.JSON(label="Cluster Output", visible=False)
gr.Markdown(
"""
### Visualization
"""
)
visualize_output = gr.Plot()
with gr.Row():
for i in range(MAX_CATEGORIES):
btn = gr.Button(visible=False)
btn_list.append(btn)
with gr.Tab(label="By Paper"):
cluster_df = gr.Dataframe(
datatype="markdown", column_widths=[100, 100, 300], wrap=True
)
with gr.Tab(label="By Excerpt"):
cluster_granular_df = gr.Dataframe(
datatype="markdown", column_widths=[100, 100, 300], wrap=True
)
# Event handlers
file_upload.change(fn=change_button, inputs=[file_upload], outputs=[extract_btn])
extract_btn.click(
fn=extract_endpoint,
inputs=[file_upload],
outputs=[extract_output, extract_df],
)
extract_output.change(
fn=change_button,
inputs=[extract_output],
outputs=[relevant_btn],
)
q0_btn.click(
fn=get_query,
inputs=[q0_btn],
outputs=[query],
)
q1_btn.click(
fn=get_query,
inputs=[q1_btn],
outputs=[query],
)
q2_btn.click(
fn=get_query,
inputs=[q2_btn],
outputs=[query],
)
q3_btn.click(
fn=get_query,
inputs=[q3_btn],
outputs=[query],
)
q4_btn.click(
fn=get_query,
inputs=[q4_btn],
outputs=[query],
)
relevant_btn.click(
fn=generate_relevant_chunks,
inputs=[query, extract_output],
outputs=[relevant_output, relevant_df],
api_name="relevant_chunks",
)
relevant_output.change(
fn=change_button, inputs=[relevant_output], outputs=[cluster_btn]
)
cluster_btn.click(
fn=cluster,
inputs=[query, relevant_output],
outputs=[cluster_output, cluster_df, visualize_output, cluster_granular_df],
api_name="cluster",
)
cluster_output.change(
fn=generate_category_btn,
inputs=[cluster_output],
outputs=btn_list,
)
if __name__ == "__main__":
app.launch()