File size: 6,085 Bytes
3caa485
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import sys

import gradio as gr

sys.path.append(".")
sys.path.append("..")
sys.path.append("../..")

from cluster import cluster
from extract import extract_endpoint
from generate_answers import generate_relevant_chunks

queries = [
    "What is the size, shape, and energy (watt hour) or capacity (Amp hour) of battery discussed in the paper?",
    "What specific mechanical testing methods were used to quantify strength?",
    "What parameters they used to quantify the benefit of their individual design (mass saving, increased run time, etc.)?",
    "What material chemistry combination (on the anode, cathode, separator, and electrolyte) was used in these papers?",
    "What kind of end use application they targeted?",
]
MAX_CATEGORIES = 10


def change_button(text):
    if len(text) > 0:
        return gr.Button(interactive=True)
    else:
        return gr.Button(interactive=False)


def generate_category_btn(cluster_output):
    unique_categories = set()
    for item in cluster_output:
        unique_categories.update(item["categories"])

    update_show = [gr.Button(visible=True, value=w) for w in unique_categories]
    update_hide = [
        gr.Button(visible=False, value="")
        for _ in range(MAX_CATEGORIES - len(unique_categories))
    ]
    return update_show + update_hide


def get_query(btn):
    return btn


btn_list = []


with gr.Blocks() as app:
    gr.Markdown(
        """
    # Paper Query Clustering + Visualization
    This app extracts text from papers and then searches for relevant excerpts based on a query. It then clusters and visualizes the relevant excerpts to find common themes across the papers.

    ### Input
    1. A group of research papers that you want to run the query on.
    1. Query that you would like to know about these papers.

    ### Output
    Clustering and visualization of the relevant excerpts which answer the query across the papers.

    # 1. Upload + Extract
    First, upload the papers you want to analyze. Currently, we only support PDFs. Once they're uploaded, you can extract the text data from the papers.
    """
    )
    file_upload = gr.Files()
    extract_btn = gr.Button("Extract", interactive=False)
    with gr.Tab(label="Table"):
        extract_df = gr.Dataframe(
            datatype="markdown", column_widths=[100, 400], wrap=True
        )
    with gr.Tab(label="JSON"):
        extract_output = gr.JSON(label="Extract Output")

    gr.Markdown(
        """
    ----------------
    # 2. Extract Relevant Excerpts
    Enter a query about these papers. This will search the papers to find the most relevant excerpts.
    """
    )

    gr.Markdown(
        """
    ### Input
    """
    )
    query = gr.Textbox(
        label="Query", value=queries[1], lines=3, placeholder="Enter a query"
    )
    gr.Markdown(
        """
    You can also select some example queries below.
    """
    )
    with gr.Row():
        q0_btn = gr.Button(queries[0])
        q1_btn = gr.Button(queries[1])
        q2_btn = gr.Button(queries[2])
        q3_btn = gr.Button(queries[3])
        q4_btn = gr.Button(queries[4])
    gr.Markdown(
        """
    ----
    """
    )
    relevant_btn = gr.Button("Extract Excerpts", interactive=False)
    gr.Markdown(
        """
    ### Output
    """
    )
    with gr.Tab(label="Output Table"):
        relevant_df = gr.Dataframe(
            datatype="markdown", column_widths=[100, 100, 300], wrap=True
        )
    with gr.Tab(label="JSON"):
        relevant_output = gr.JSON(label="Relevant Chunks Output")

    gr.Markdown(
        """
    ----------------
    # 3. Cluster & Visualize
    Cluster the relevant excerpts to find common themes and visualize the results.
    """
    )
    with gr.Row():
        with gr.Column():
            gr.Markdown(
                """
            ### Input
            """
            )
            cluster_btn = gr.Button("Cluster", interactive=False)
            cluster_output = gr.JSON(label="Cluster Output", visible=False)

    gr.Markdown(
        """
    ### Visualization
    """
    )
    visualize_output = gr.Plot()
    with gr.Row():
        for i in range(MAX_CATEGORIES):
            btn = gr.Button(visible=False)
            btn_list.append(btn)
    with gr.Tab(label="By Paper"):
        cluster_df = gr.Dataframe(
            datatype="markdown", column_widths=[100, 100, 300], wrap=True
        )

    with gr.Tab(label="By Excerpt"):
        cluster_granular_df = gr.Dataframe(
            datatype="markdown", column_widths=[100, 100, 300], wrap=True
        )

    # Event handlers
    file_upload.change(fn=change_button, inputs=[file_upload], outputs=[extract_btn])

    extract_btn.click(
        fn=extract_endpoint,
        inputs=[file_upload],
        outputs=[extract_output, extract_df],
    )

    extract_output.change(
        fn=change_button,
        inputs=[extract_output],
        outputs=[relevant_btn],
    )

    q0_btn.click(
        fn=get_query,
        inputs=[q0_btn],
        outputs=[query],
    )

    q1_btn.click(
        fn=get_query,
        inputs=[q1_btn],
        outputs=[query],
    )

    q2_btn.click(
        fn=get_query,
        inputs=[q2_btn],
        outputs=[query],
    )

    q3_btn.click(
        fn=get_query,
        inputs=[q3_btn],
        outputs=[query],
    )

    q4_btn.click(
        fn=get_query,
        inputs=[q4_btn],
        outputs=[query],
    )

    relevant_btn.click(
        fn=generate_relevant_chunks,
        inputs=[query, extract_output],
        outputs=[relevant_output, relevant_df],
        api_name="relevant_chunks",
    )

    relevant_output.change(
        fn=change_button, inputs=[relevant_output], outputs=[cluster_btn]
    )

    cluster_btn.click(
        fn=cluster,
        inputs=[query, relevant_output],
        outputs=[cluster_output, cluster_df, visualize_output, cluster_granular_df],
        api_name="cluster",
    )

    cluster_output.change(
        fn=generate_category_btn,
        inputs=[cluster_output],
        outputs=btn_list,
    )

if __name__ == "__main__":
    app.launch()