File size: 4,564 Bytes
78263be 7907d0c adad2af 78263be 7907d0c 868e527 78263be 7907d0c 78263be 7907d0c 78263be adad2af 7907d0c 78263be 48fe872 80db327 7907d0c 78263be bef0550 78263be adad2af 78263be 7907d0c 78263be 7907d0c 78263be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import openai
from google.cloud import vision
from google.oauth2 import service_account
import io
import google.generativeai as genai
from diffusers import AutoPipelineForText2Image
import torch
import os
import spaces
# Utilize the Google Cloud Vision API to recognize text in the
# input input_images (diary input_images), https://cloud.google.com/vision.
def detect_text_in_image(image_path, credentials):
# Create a Vision API client using the credentials
client = vision.ImageAnnotatorClient(credentials=credentials)
# Open the image file
with io.open(image_path, 'rb') as image_file:
content = image_file.read()
# Create an image object for the Vision API
image = vision.Image(content=content)
# Use the Vision API to detect text
response = client.text_detection(image=image)
texts = response.text_annotations
# Check for errors in the response
if response.error.message:
raise Exception(f'{response.error.message}')
# Return the detected text or an empty string
return texts[0].description if texts else ''
# Utilize the PaLM 2 Bison for Text model to conduct NLP tasks such as
# text summarization and condensing on the diary text, https://ai.google.dev/palm_docs/palm.
def summarize_diary_text(text, api_key):
# Initialize the OpenAI client
client = openai.Client(api_key=api_key)
# Use the client to call the chat completion API
response = client.chat.completions.create(
model="gpt-4", # Use GPT-4
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": f"Summarize the following diary entry: {text}"}
],
max_tokens=150,
temperature=0.7,
n=1 # Number of completions to generate
)
# Extract the summary from the response
return response.choices[0].message.content
# Utilize the Gemini 1.0 Pro Vision to input an image of the diary writer,
# and output a textual description of the image,
# https://ai.google.dev/gemini-api/docs/models/gemini.
# Mock example assuming an API request to Gemini
def analyze_writer_image(image_path, api_key):
genai.configure(api_key=api_key)
model = genai.GenerativeModel("gemini-1.5-flash")
myfile = genai.upload_file(image_path)
result = model.generate_content(
[myfile, "\n\n", "Can you give a very short description of the person in the image?"]
)
return result.text
# Now that you have text from the diary and text describing the diary writer,
# you can utilize the SDXL-Turbo stable diffusion model to generate
# input_images https://huggingface.co/stabilityai/sdxl-turbo.
# You can try to output several input_images for a diary entry. Analyze how accurate the results,
# and think about what could be improved.
@spaces.GPU
def generate_comic_book(diary_text, writer_description, num_pages=4):
pipe = AutoPipelineForText2Image.from_pretrained(
"stabilityai/sdxl-turbo",
torch_dtype=torch.float16,
variant="fp16",
cache_dir="./SDXL-Turbo"
)
# # Check for available device: CUDA, MPS, or CPU
# if torch.cuda.is_available():
# device = "cuda"
# print("Using CUDA backend.")
# elif torch.backends.mps.is_available():
# device = "mps"
# print("Using MPS backend.")
# else:
# device = "cpu"
# print("CUDA and MPS not available. Falling back to CPU.")
# Move the model to the selected device
pipe.to('cuda')
# Create a directory to store the comic book input_images
os.makedirs("comic_book", exist_ok=True)
# Split diary text into multiple segments/scenes for comic book pages
diary_scenes = diary_text.split('.')[:num_pages] # Split by periods, limiting to `num_pages`
# Iterate over each scene, generating a page for each one
for i, scene in enumerate(diary_scenes):
prompt = (f'Comic Book Style: \n'
f'Actor Description: {writer_description} \n'
f'Diary Scene: {scene.strip()}\n'
f'Generate an cartoon image to represent this diary scene.')
print(f"Generating comic page {i + 1} with prompt:\n{prompt}\n")
# Generate the image
image = pipe(prompt=prompt, num_inference_steps=30, guidance_scale=7.5).images[0]
# Save the generated image
image_path = f"comic_book/page_{i + 1}.png"
image.save(image_path)
print(f"Page {i + 1} saved as {image_path}")
print("Comic book generation complete!")
|