jennysun's picture
Duplicate from gligen/demo
81ba850
import torch
import numpy as np
from tqdm import tqdm
from functools import partial
from copy import deepcopy
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
class PLMSSampler(object):
def __init__(self, diffusion, model, schedule="linear", alpha_generator_func=None, set_alpha_scale=None):
super().__init__()
self.diffusion = diffusion
self.model = model
self.device = diffusion.betas.device
self.ddpm_num_timesteps = diffusion.num_timesteps
self.schedule = schedule
self.alpha_generator_func = alpha_generator_func
self.set_alpha_scale = set_alpha_scale
def register_buffer(self, name, attr):
if type(attr) == torch.Tensor:
attr = attr.to(self.device)
setattr(self, name, attr)
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=False):
if ddim_eta != 0:
raise ValueError('ddim_eta must be 0 for PLMS')
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
alphas_cumprod = self.diffusion.alphas_cumprod
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.device)
self.register_buffer('betas', to_torch(self.diffusion.betas))
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
self.register_buffer('alphas_cumprod_prev', to_torch(self.diffusion.alphas_cumprod_prev))
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
# ddim sampling parameters
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
ddim_timesteps=self.ddim_timesteps,
eta=ddim_eta,verbose=verbose)
self.register_buffer('ddim_sigmas', ddim_sigmas)
self.register_buffer('ddim_alphas', ddim_alphas)
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
@torch.no_grad()
def sample(self, S, shape, input, uc=None, guidance_scale=1, mask=None, x0=None):
self.make_schedule(ddim_num_steps=S)
return self.plms_sampling(shape, input, uc, guidance_scale, mask=mask, x0=x0)
@torch.no_grad()
def plms_sampling(self, shape, input, uc=None, guidance_scale=1, mask=None, x0=None):
b = shape[0]
img = input["x"]
if img == None:
img = torch.randn(shape, device=self.device)
input["x"] = img
time_range = np.flip(self.ddim_timesteps)
total_steps = self.ddim_timesteps.shape[0]
old_eps = []
if self.alpha_generator_func != None:
alphas = self.alpha_generator_func(len(time_range))
for i, step in enumerate(time_range):
# set alpha
if self.alpha_generator_func != None:
self.set_alpha_scale(self.model, alphas[i])
# run
index = total_steps - i - 1
ts = torch.full((b,), step, device=self.device, dtype=torch.long)
ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=self.device, dtype=torch.long)
if mask is not None:
assert x0 is not None
img_orig = self.diffusion.q_sample(x0, ts)
img = img_orig * mask + (1. - mask) * img
input["x"] = img
img, pred_x0, e_t = self.p_sample_plms(input, ts, index=index, uc=uc, guidance_scale=guidance_scale, old_eps=old_eps, t_next=ts_next)
input["x"] = img
old_eps.append(e_t)
if len(old_eps) >= 4:
old_eps.pop(0)
return img
@torch.no_grad()
def p_sample_plms(self, input, t, index, guidance_scale=1., uc=None, old_eps=None, t_next=None):
x = deepcopy(input["x"])
b = x.shape[0]
def get_model_output(input):
e_t = self.model(input)
if uc is not None and guidance_scale != 1:
unconditional_input = dict(x=input["x"], timesteps=input["timesteps"], context=uc)
if "inpainting_extra_input" in input:
unconditional_input["inpainting_extra_input"] = input["inpainting_extra_input"]
e_t_uncond = self.model( unconditional_input )
e_t = e_t_uncond + guidance_scale * (e_t - e_t_uncond)
return e_t
def get_x_prev_and_pred_x0(e_t, index):
# select parameters corresponding to the currently considered timestep
a_t = torch.full((b, 1, 1, 1), self.ddim_alphas[index], device=self.device)
a_prev = torch.full((b, 1, 1, 1), self.ddim_alphas_prev[index], device=self.device)
sigma_t = torch.full((b, 1, 1, 1), self.ddim_sigmas[index], device=self.device)
sqrt_one_minus_at = torch.full((b, 1, 1, 1), self.ddim_sqrt_one_minus_alphas[index],device=self.device)
# current prediction for x_0
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
# direction pointing to x_t
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
noise = sigma_t * torch.randn_like(x)
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
return x_prev, pred_x0
input["timesteps"] = t
e_t = get_model_output(input)
if len(old_eps) == 0:
# Pseudo Improved Euler (2nd order)
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
input["x"] = x_prev
input["timesteps"] = t_next
e_t_next = get_model_output(input)
e_t_prime = (e_t + e_t_next) / 2
elif len(old_eps) == 1:
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
e_t_prime = (3 * e_t - old_eps[-1]) / 2
elif len(old_eps) == 2:
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
elif len(old_eps) >= 3:
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
return x_prev, pred_x0, e_t