File size: 7,637 Bytes
81ba850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import torch
import numpy as np
from tqdm import tqdm
from functools import partial
from copy import deepcopy
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like


class PLMSSampler(object):
    def __init__(self, diffusion, model, schedule="linear", alpha_generator_func=None, set_alpha_scale=None):
        super().__init__()
        self.diffusion = diffusion
        self.model = model
        self.device = diffusion.betas.device
        self.ddpm_num_timesteps = diffusion.num_timesteps
        self.schedule = schedule
        self.alpha_generator_func = alpha_generator_func
        self.set_alpha_scale = set_alpha_scale

    def register_buffer(self, name, attr):
        if type(attr) == torch.Tensor:
            attr = attr.to(self.device)
        setattr(self, name, attr)

    def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=False):
        if ddim_eta != 0:
            raise ValueError('ddim_eta must be 0 for PLMS')
        self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
                                                  num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
        alphas_cumprod = self.diffusion.alphas_cumprod
        assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
        to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.device)

        self.register_buffer('betas', to_torch(self.diffusion.betas))
        self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
        self.register_buffer('alphas_cumprod_prev', to_torch(self.diffusion.alphas_cumprod_prev))

        # calculations for diffusion q(x_t | x_{t-1}) and others
        self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
        self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
        self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
        self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
        self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))

        # ddim sampling parameters
        ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
                                                                                   ddim_timesteps=self.ddim_timesteps,
                                                                                   eta=ddim_eta,verbose=verbose)
        self.register_buffer('ddim_sigmas', ddim_sigmas)
        self.register_buffer('ddim_alphas', ddim_alphas)
        self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
        self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
        sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
            (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
                        1 - self.alphas_cumprod / self.alphas_cumprod_prev))
        self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)


    @torch.no_grad()
    def sample(self, S, shape, input, uc=None, guidance_scale=1, mask=None, x0=None):
        self.make_schedule(ddim_num_steps=S)
        return self.plms_sampling(shape, input, uc, guidance_scale, mask=mask, x0=x0)


    @torch.no_grad()
    def plms_sampling(self, shape, input, uc=None, guidance_scale=1, mask=None, x0=None):

        b = shape[0]
        
        img = input["x"]
        if img == None:     
            img = torch.randn(shape, device=self.device)
            input["x"] = img

        time_range = np.flip(self.ddim_timesteps)
        total_steps = self.ddim_timesteps.shape[0]

        old_eps = []

        if self.alpha_generator_func != None:
            alphas = self.alpha_generator_func(len(time_range))

        for i, step in enumerate(time_range):

            # set alpha 
            if self.alpha_generator_func != None:
                self.set_alpha_scale(self.model, alphas[i])

            # run 
            index = total_steps - i - 1
            ts = torch.full((b,), step, device=self.device, dtype=torch.long)
            ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=self.device, dtype=torch.long)

            if mask is not None:
                assert x0 is not None
                img_orig = self.diffusion.q_sample(x0, ts)  
                img = img_orig * mask + (1. - mask) * img
                input["x"] = img

            img, pred_x0, e_t = self.p_sample_plms(input, ts, index=index, uc=uc, guidance_scale=guidance_scale, old_eps=old_eps, t_next=ts_next)
            input["x"] = img
            old_eps.append(e_t)
            if len(old_eps) >= 4:
                old_eps.pop(0)

        return img


    @torch.no_grad()
    def p_sample_plms(self, input, t, index, guidance_scale=1., uc=None, old_eps=None, t_next=None):
        x = deepcopy(input["x"]) 
        b = x.shape[0]

        def get_model_output(input):
            e_t = self.model(input) 
            if uc is not None and guidance_scale != 1:
                unconditional_input = dict(x=input["x"], timesteps=input["timesteps"], context=uc)
                if "inpainting_extra_input" in input:
                    unconditional_input["inpainting_extra_input"] = input["inpainting_extra_input"]
                e_t_uncond = self.model( unconditional_input ) 
                e_t = e_t_uncond + guidance_scale * (e_t - e_t_uncond)
            return e_t


        def get_x_prev_and_pred_x0(e_t, index):
            # select parameters corresponding to the currently considered timestep
            a_t = torch.full((b, 1, 1, 1), self.ddim_alphas[index], device=self.device)
            a_prev = torch.full((b, 1, 1, 1), self.ddim_alphas_prev[index], device=self.device)
            sigma_t = torch.full((b, 1, 1, 1), self.ddim_sigmas[index], device=self.device)
            sqrt_one_minus_at = torch.full((b, 1, 1, 1), self.ddim_sqrt_one_minus_alphas[index],device=self.device)

            # current prediction for x_0
            pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()

            # direction pointing to x_t
            dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
            noise = sigma_t * torch.randn_like(x)
            x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
            return x_prev, pred_x0

        input["timesteps"] = t 
        e_t = get_model_output(input)
        if len(old_eps) == 0:
            # Pseudo Improved Euler (2nd order)
            x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
            input["x"] = x_prev
            input["timesteps"] = t_next
            e_t_next = get_model_output(input)
            e_t_prime = (e_t + e_t_next) / 2
        elif len(old_eps) == 1:
            # 2nd order Pseudo Linear Multistep (Adams-Bashforth)
            e_t_prime = (3 * e_t - old_eps[-1]) / 2
        elif len(old_eps) == 2:
            # 3nd order Pseudo Linear Multistep (Adams-Bashforth)
            e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
        elif len(old_eps) >= 3:
            # 4nd order Pseudo Linear Multistep (Adams-Bashforth)
            e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24

        x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)

        return x_prev, pred_x0, e_t