File size: 29,700 Bytes
b96cf5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c578e5
 
 
 
b96cf5d
c190b7c
b96cf5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81ba850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5037c92
81ba850
 
 
b96cf5d
81ba850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95bed10
 
 
5e3ac87
b96cf5d
 
 
 
 
 
 
 
 
 
 
 
 
 
81ba850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5037c92
81ba850
 
 
 
 
 
 
 
 
 
 
5037c92
b96cf5d
 
 
 
 
 
 
 
81ba850
 
92eada7
81ba850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95bed10
ae6ac81
 
81ba850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b96cf5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81ba850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5037c92
 
 
ae6ac81
5037c92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8549ac5
5037c92
81ba850
 
 
 
 
941b752
 
 
 
5037c92
81ba850
 
 
 
 
 
 
 
95bed10
3c64996
 
 
 
 
 
 
5037c92
 
941b752
5e3ac87
5037c92
941b752
5037c92
 
5e3ac87
95bed10
 
 
5e3ac87
365ab50
5037c92
81ba850
941b752
81ba850
 
 
941b752
81ba850
 
5037c92
 
 
 
81ba850
 
5037c92
 
81ba850
5037c92
 
81ba850
b96cf5d
81ba850
 
 
 
5037c92
 
81ba850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b96cf5d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
import gradio as gr	
import torch	
from omegaconf import OmegaConf	
from gligen.task_grounded_generation import grounded_generation_box, load_ckpt, load_common_ckpt	
import json	
import numpy as np	
from PIL import Image, ImageDraw, ImageFont	
from functools import partial	
from collections import Counter	
import math	
import gc	
from gradio import processing_utils	
from typing import Optional	
import warnings	
from datetime import datetime	
from huggingface_hub import hf_hub_download	
hf_hub_download = partial(hf_hub_download, library_name="gligen_demo")	
import sys	

import os
import openai

sys.tracebacklimit = 0	

def load_from_hf(repo_id, filename='diffusion_pytorch_model.bin', subfolder=None):	
    cache_file = hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder)	
    return torch.load(cache_file, map_location='cpu')	
def load_ckpt_config_from_hf(modality):	
    ckpt = load_from_hf('gligen/demo_ckpts_legacy', filename=f'{modality}.pth', subfolder='model')	
    config = load_from_hf('gligen/demo_ckpts_legacy', filename=f'{modality}.pth', subfolder='config')	
    return ckpt, config	
def ckpt_load_helper(modality, is_inpaint, is_style, common_instances=None):	
    pretrained_ckpt_gligen, config = load_ckpt_config_from_hf(modality)	
    config = OmegaConf.create( config["_content"] ) # config used in training	
    config.alpha_scale = 1.0	
    config.model['params']['is_inpaint'] = is_inpaint	
    config.model['params']['is_style'] = is_style	
    if common_instances is None:	
        common_ckpt = load_from_hf('gligen/demo_ckpts_legacy', filename=f'common.pth', subfolder='model')	
        common_instances = load_common_ckpt(config, common_ckpt)	
    loaded_model_list = load_ckpt(config, pretrained_ckpt_gligen, common_instances)	
    return loaded_model_list, common_instances	
class Instance:	
    def __init__(self, capacity = 2):	
        self.model_type = 'base'	
        self.loaded_model_list = {}	
        self.counter = Counter()	
        self.global_counter = Counter()	
        self.loaded_model_list['base'], self.common_instances = ckpt_load_helper(	
            'gligen-generation-text-box',	
            is_inpaint=False, is_style=False, common_instances=None	
        )	
        self.capacity = capacity	
    def _log(self, model_type, batch_size, instruction, phrase_list):	
        self.counter[model_type] += 1	
        self.global_counter[model_type] += 1	
        current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")	
        print('[{}] Current: {}, All: {}. Samples: {}, prompt: {}, phrases: {}'.format(	
            current_time, dict(self.counter), dict(self.global_counter), batch_size, instruction, phrase_list	
        ))	
    def get_model(self, model_type, batch_size, instruction, phrase_list):	
        if model_type in self.loaded_model_list:	
            self._log(model_type, batch_size, instruction, phrase_list)	
            return self.loaded_model_list[model_type]	
        if self.capacity == len(self.loaded_model_list):	
            least_used_type = self.counter.most_common()[-1][0]	
            del self.loaded_model_list[least_used_type]	
            del self.counter[least_used_type]	
            gc.collect()	
            torch.cuda.empty_cache()	
        self.loaded_model_list[model_type] = self._get_model(model_type)	
        self._log(model_type, batch_size, instruction, phrase_list)	
        return self.loaded_model_list[model_type]	
    def _get_model(self, model_type):	
        if model_type == 'base':	
            return ckpt_load_helper(	
                'gligen-generation-text-box',	
                is_inpaint=False, is_style=False, common_instances=self.common_instances	
            )[0]	
        elif model_type == 'inpaint':	
            return ckpt_load_helper(	
                'gligen-inpainting-text-box',	
                is_inpaint=True, is_style=False, common_instances=self.common_instances	
            )[0]	
        elif model_type == 'style':	
            return ckpt_load_helper(	
                'gligen-generation-text-image-box',	
                is_inpaint=False, is_style=True, common_instances=self.common_instances	
            )[0]	
        	
        assert False	
instance = Instance()	
def load_clip_model():	
    from transformers import CLIPProcessor, CLIPModel	
    version = "openai/clip-vit-large-patch14"	
    model = CLIPModel.from_pretrained(version).cuda()	
    processor = CLIPProcessor.from_pretrained(version)	
    return {	
        'version': version,	
        'model': model,	
        'processor': processor,	
    }	

clip_model = load_clip_model()


class ImageMask(gr.components.Image):
    """
    Sets: source="canvas", tool="sketch"
    """

    is_template = True

    def __init__(self, **kwargs):
        super().__init__(source="upload", tool="sketch", interactive=True, **kwargs)

    def preprocess(self, x):
        if x is None:
            return x
        if self.tool == "sketch" and self.source in ["upload", "webcam"] and type(x) != dict:
            decode_image = processing_utils.decode_base64_to_image(x)
            width, height = decode_image.size
            mask = np.zeros((height, width, 4), dtype=np.uint8)
            mask[..., -1] = 255
            mask = self.postprocess(mask)
            x = {'image': x, 'mask': mask}
        return super().preprocess(x)


class Blocks(gr.Blocks):

    def __init__(
        self,
        theme: str = "default",
        analytics_enabled: Optional[bool] = None,
        mode: str = "blocks",
        title: str = "Gradio",
        css: Optional[str] = None,
        **kwargs,
    ):

        self.extra_configs = {
            'thumbnail': kwargs.pop('thumbnail', ''),
            'url': kwargs.pop('url', 'https://gradio.app/'),
            'creator': kwargs.pop('creator', 'Jenny Sun'),
        }

        super(Blocks, self).__init__(theme, analytics_enabled, mode, title, css, **kwargs)
        warnings.filterwarnings("ignore")
    def get_config_file(self):
        config = super(Blocks, self).get_config_file()

        for k, v in self.extra_configs.items():
            config[k] = v
        
        return config

'''
inference model
'''

@torch.no_grad()
def inference(task, language_instruction, grounding_instruction, inpainting_boxes_nodrop, image,
              alpha_sample, guidance_scale, batch_size,
              fix_seed, rand_seed, actual_mask, style_image,
              *args, **kwargs):
    grounding_instruction = json.loads(grounding_instruction)
    phrase_list, location_list = [], []
    for k, v  in grounding_instruction.items():
        phrase_list.append(k)
        location_list.append(v)

    placeholder_image = Image.open('images/teddy.jpg').convert("RGB")    
    image_list = [placeholder_image] * len(phrase_list) # placeholder input for visual prompt, which is disabled

    batch_size = int(batch_size)
    if not 1 <= batch_size <= 4:
        batch_size = 2

    if style_image == None:
        has_text_mask = 1 
        has_image_mask = 0 # then we hack above 'image_list' 
    else:
        valid_phrase_len = len(phrase_list)

        phrase_list += ['placeholder']
        has_text_mask = [1]*valid_phrase_len + [0]

        image_list = [placeholder_image]*valid_phrase_len + [style_image]
        has_image_mask = [0]*valid_phrase_len + [1]
        
        location_list += [ [0.0, 0.0, 1, 0.01]  ] # style image grounding location

    if task == 'Grounded Inpainting':
        alpha_sample = 1.0

    instruction = dict(
        prompt = language_instruction,
        phrases = phrase_list,
        images = image_list,
        locations = location_list,
        alpha_type = [alpha_sample, 0, 1.0 - alpha_sample], 
        has_text_mask = has_text_mask,
        has_image_mask = has_image_mask,
        save_folder_name = language_instruction,
        guidance_scale = guidance_scale,
        batch_size = batch_size,
        fix_seed = bool(fix_seed),
        rand_seed = int(rand_seed),
        actual_mask = actual_mask,
        inpainting_boxes_nodrop = inpainting_boxes_nodrop,
    )

    # for debugging purposes, uncomment to view all instruction values
    # fed into the model
    # print("instruction values", instruction)

    get_model = partial(instance.get_model,	
                            batch_size=batch_size,	
                            instruction=language_instruction,	
                            phrase_list=phrase_list)	
    with torch.autocast(device_type='cuda', dtype=torch.float16):	
        if task == 'Grounded Generation':	
            if style_image == None:	
                return grounded_generation_box(get_model('base'), instruction, *args, **kwargs)	
            else:	
                return grounded_generation_box(get_model('style'), instruction, *args, **kwargs)	
        elif task == 'Grounded Inpainting':	
            assert image is not None	
            instruction['input_image'] = image.convert("RGB")	
            return grounded_generation_box(get_model('inpaint'), instruction, *args, **kwargs)


def draw_box(boxes=[], texts=[], img=None):
    if len(boxes) == 0 and img is None:
        return None

    if img is None:
        img = Image.new('RGB', (512, 512), (255, 255, 255))
    colors = ["red", "olive", "blue", "green", "orange", "brown", "cyan", "purple"]
    draw = ImageDraw.Draw(img)
    font = ImageFont.truetype("DejaVuSansMono.ttf", size=18)
    for bid, box in enumerate(boxes):
        draw.rectangle([box[0], box[1], box[2], box[3]], outline=colors[bid % len(colors)], width=4)
        anno_text = texts[bid]
        draw.rectangle([box[0], box[3] - int(font.size * 1.2), box[0] + int((len(anno_text) + 0.8) * font.size * 0.6), box[3]], outline=colors[bid % len(colors)], fill=colors[bid % len(colors)], width=4)
        draw.text([box[0] + int(font.size * 0.2), box[3] - int(font.size*1.2)], anno_text, font=font, fill=(255,255,255))
    return img

def get_concat(ims):
    if len(ims) == 1:
        n_col = 1
    else:
        n_col = 2
    n_row = math.ceil(len(ims) / 2)
    dst = Image.new('RGB', (ims[0].width * n_col, ims[0].height * n_row), color="white")
    for i, im in enumerate(ims):
        row_id = i // n_col
        col_id = i % n_col
        dst.paste(im, (im.width * col_id, im.height * row_id))
    return dst


def auto_append_grounding(language_instruction, grounding_texts):
    for grounding_text in grounding_texts:
        if grounding_text not in language_instruction and grounding_text != 'auto':
            language_instruction += "; " + grounding_text
    print(language_instruction)
    return language_instruction

def generate(task, language_instruction, grounding_texts, sketch_pad,
             alpha_sample, guidance_scale, batch_size,
             fix_seed, rand_seed, use_actual_mask, append_grounding, style_cond_image,
             state):
    if 'boxes' not in state:
        state['boxes'] = []

    boxes = state['boxes']
    grounding_texts = [x.strip() for x in grounding_texts.split(';')]
    assert len(boxes) == len(grounding_texts)
    if len(boxes) != len(grounding_texts):	
        if len(boxes) < len(grounding_texts):	
            raise ValueError("""The number of boxes should be equal to the number of grounding objects.	
Number of boxes drawn: {}, number of grounding tokens: {}.	
Please draw boxes accordingly on the sketch pad.""".format(len(boxes), len(grounding_texts)))	
        grounding_texts = grounding_texts + [""] * (len(boxes) - len(grounding_texts))


    boxes = (np.asarray(boxes) / 512).tolist()
    grounding_instruction = json.dumps({obj: box for obj,box in zip(grounding_texts, boxes)})
    print("GROUNDING instruction -- should be separated text semicolon", grounding_instruction)

    image = None
    actual_mask = None
    if task == 'Grounded Inpainting':
        image = state.get('original_image', sketch_pad['image']).copy()
        image = center_crop(image)
        image = Image.fromarray(image)

        if use_actual_mask:
            actual_mask = sketch_pad['mask'].copy()
            if actual_mask.ndim == 3:
                actual_mask = actual_mask[..., 0]
            actual_mask = center_crop(actual_mask, tgt_size=(64, 64))
            actual_mask = torch.from_numpy(actual_mask == 0).float()

        if state.get('inpaint_hw', None):
            boxes = np.asarray(boxes) * 0.9 + 0.05
            boxes = boxes.tolist()
            grounding_instruction = json.dumps({obj: box for obj,box in zip(grounding_texts, boxes) if obj != 'auto'})
    
    # Removing append grounding
    # if append_grounding:
    #     language_instruction = auto_append_grounding(language_instruction, grounding_texts)

    gen_images, gen_overlays = inference(
        task, language_instruction, grounding_instruction, boxes, image,
        alpha_sample, guidance_scale, batch_size,
        fix_seed, rand_seed, actual_mask, style_cond_image, clip_model=clip_model,
    )

    for idx, gen_image in enumerate(gen_images):

        if task == 'Grounded Inpainting' and state.get('inpaint_hw', None):
            hw = min(*state['original_image'].shape[:2])
            gen_image = sized_center_fill(state['original_image'].copy(), np.array(gen_image.resize((hw, hw))), hw, hw)
            gen_image = Image.fromarray(gen_image)
        
        gen_images[idx] = gen_image

    blank_samples = batch_size % 2 if batch_size > 1 else 0
    gen_images = [gr.Image.update(value=x, visible=True) for i,x in enumerate(gen_images)] \
                    + [gr.Image.update(value=None, visible=True) for _ in range(blank_samples)] \
                    + [gr.Image.update(value=None, visible=False) for _ in range(4 - batch_size - blank_samples)]

    return gen_images + [state]


def binarize(x):
    return (x != 0).astype('uint8') * 255

def sized_center_crop(img, cropx, cropy):
    y, x = img.shape[:2]
    startx = x // 2 - (cropx // 2)
    starty = y // 2 - (cropy // 2)    
    return img[starty:starty+cropy, startx:startx+cropx]

def sized_center_fill(img, fill, cropx, cropy):
    y, x = img.shape[:2]
    startx = x // 2 - (cropx // 2)
    starty = y // 2 - (cropy // 2)    
    img[starty:starty+cropy, startx:startx+cropx] = fill
    return img

def sized_center_mask(img, cropx, cropy):
    y, x = img.shape[:2]
    startx = x // 2 - (cropx // 2)
    starty = y // 2 - (cropy // 2)    
    center_region = img[starty:starty+cropy, startx:startx+cropx].copy()
    img = (img * 0.2).astype('uint8')
    img[starty:starty+cropy, startx:startx+cropx] = center_region
    return img

def center_crop(img, HW=None, tgt_size=(512, 512)):
    if HW is None:
        H, W = img.shape[:2]
        HW = min(H, W)
    img = sized_center_crop(img, HW, HW)
    img = Image.fromarray(img)
    img = img.resize(tgt_size)
    return np.array(img)

def draw(task, input, grounding_texts, new_image_trigger, state):
    if type(input) == dict:
        image = input['image']
        mask = input['mask']
    else:
        mask = input

    if mask.ndim == 3:
        mask = mask[..., 0]

    image_scale = 1.0

    # resize trigger
    if task == "Grounded Inpainting":
        mask_cond = mask.sum() == 0
        # size_cond = mask.shape != (512, 512)
        if mask_cond and 'original_image' not in state:
            image = Image.fromarray(image)
            width, height = image.size
            scale = 600 / min(width, height)
            image = image.resize((int(width * scale), int(height * scale)))
            state['original_image'] = np.array(image).copy()
            image_scale = float(height / width)
            return [None, new_image_trigger + 1, image_scale, state]
        else:
            original_image = state['original_image']
            H, W = original_image.shape[:2]
            image_scale = float(H / W)

    mask = binarize(mask)
    if mask.shape != (512, 512):
        # assert False, "should not receive any non- 512x512 masks."
        if 'original_image' in state and state['original_image'].shape[:2] == mask.shape:
            mask = center_crop(mask, state['inpaint_hw'])
            image = center_crop(state['original_image'], state['inpaint_hw'])
        else:
            mask = np.zeros((512, 512), dtype=np.uint8)
    # mask = center_crop(mask)
    mask = binarize(mask)

    if type(mask) != np.ndarray:
        mask = np.array(mask)

    if mask.sum() == 0 and task != "Grounded Inpainting":
        state = {}

    if task != 'Grounded Inpainting':
        image = None
    else:
        image = Image.fromarray(image)

    if 'boxes' not in state:
        state['boxes'] = []

    if 'masks' not in state or len(state['masks']) == 0:
        state['masks'] = []
        last_mask = np.zeros_like(mask)
    else:
        last_mask = state['masks'][-1]

    if type(mask) == np.ndarray and mask.size > 1:
        diff_mask = mask - last_mask
    else:
        diff_mask = np.zeros([])

    if diff_mask.sum() > 0:
        x1x2 = np.where(diff_mask.max(0) != 0)[0]
        y1y2 = np.where(diff_mask.max(1) != 0)[0]
        y1, y2 = y1y2.min(), y1y2.max()
        x1, x2 = x1x2.min(), x1x2.max()

        if (x2 - x1 > 5) and (y2 - y1 > 5):
            state['masks'].append(mask.copy())
            state['boxes'].append((x1, y1, x2, y2))

    grounding_texts = [x.strip() for x in grounding_texts.split(';')]
    grounding_texts = [x for x in grounding_texts if len(x) > 0]
    if len(grounding_texts) < len(state['boxes']):
        grounding_texts += [f'Obj. {bid+1}' for bid in range(len(grounding_texts), len(state['boxes']))]

    box_image = draw_box(state['boxes'], grounding_texts, image)

    if box_image is not None and state.get('inpaint_hw', None):
        inpaint_hw = state['inpaint_hw']
        box_image_resize = np.array(box_image.resize((inpaint_hw, inpaint_hw)))
        original_image = state['original_image'].copy()
        box_image = sized_center_fill(original_image, box_image_resize, inpaint_hw, inpaint_hw)

    return [box_image, new_image_trigger, image_scale, state]

def clear(task, sketch_pad_trigger, batch_size, state, switch_task=False):
    if task != 'Grounded Inpainting':
        sketch_pad_trigger = sketch_pad_trigger + 1
    blank_samples = batch_size % 2 if batch_size > 1 else 0
    out_images = [gr.Image.update(value=None, visible=True) for i in range(batch_size)] \
                    + [gr.Image.update(value=None, visible=True) for _ in range(blank_samples)] \
                    + [gr.Image.update(value=None, visible=False) for _ in range(4 - batch_size - blank_samples)]
    state = {}
    return [None, sketch_pad_trigger, None, 1.0] + out_images + [state]

css = """	
#img2img_image, #img2img_image > .fixed-height, #img2img_image > .fixed-height > div, #img2img_image > .fixed-height > div > img	
{	
    height: var(--height) !important;	
    max-height: var(--height) !important;	
    min-height: var(--height) !important;	
}	
#paper-info a {	
    color:#008AD7;	
    text-decoration: none;	
}	
#paper-info a:hover {	
    cursor: pointer;	
    text-decoration: none;	
}	
"""

rescale_js = """
function(x) {
    const root = document.querySelector('gradio-app').shadowRoot || document.querySelector('gradio-app');
    let image_scale = parseFloat(root.querySelector('#image_scale input').value) || 1.0;
    const image_width = root.querySelector('#img2img_image').clientWidth;
    const target_height = parseInt(image_width * image_scale);
    document.body.style.setProperty('--height', `${target_height}px`);
    root.querySelectorAll('button.justify-center.rounded')[0].style.display='none';
    root.querySelectorAll('button.justify-center.rounded')[1].style.display='none';
    return x;
}
"""

# Set up OpenAI API key
openai.api_key = os.environ['OPENAI_API_KEY']

prompt_base = 'Separate the subjects in this sentence by semicolons. For example, the sentence "a tiger and a horse running in a greenland" should output "tiger; horse". If there are numbers, make each subject unique. For example, "2 dogs and 1 duck" would be "dog; dog; duck." Do the same for the following sentence: \n'

original_input = ""
separated_subjects = ""

def separate_subjects(input_text):
    prompt = prompt_base + input_text
    response = openai.Completion.create(
        engine="text-davinci-002",
        prompt=prompt,
        max_tokens=1024,
        n=1,
        stop=None,
        temperature=0.7,
    )
    output_text = response.choices[0].text.strip()
    return output_text

with Blocks(
    css=css,
    analytics_enabled=False,
    title="GLIGen demo",
) as main:
    gr.Markdown('<h1 style="text-align: center;">MSR: Multi-Subject Render Model</h1>')
    gr.Markdown('<h3 style="text-align: center;">Using NLP and Grounding Inputs to improve image generation of multiple subjects with base Stable Diffusion Model</h3>')
    gr.Markdown('<h4 style="text-align: center;">jwsun Computer Science Independent Work Spring 2023</h4>')
    gr.Markdown('<h4 style="text-align: center;">Princeton University</h4>')
    
    with gr.Row():
        with gr.Column(scale=4):
            sketch_pad_trigger = gr.Number(value=0, visible=False)
            sketch_pad_resize_trigger = gr.Number(value=0, visible=False)
            init_white_trigger = gr.Number(value=0, visible=False)
            image_scale = gr.Number(value=0, elem_id="image_scale", visible=False)
            new_image_trigger = gr.Number(value=0, visible=False)

            # Make Visible True if desired to include inpainting
            task = gr.Radio(
                choices=["Version 1: Single Layer", 'Version 2: Inpainting w/ Multiple Layers'],
                type="value",
                value="Grounded Generation",
                label="Task",
                visible=False,
            )

            with gr.Column():
                user_input = gr.Text(label="STEP 1: Enter your prompt here:")
            gr.Examples(["2 horses running", "A cowboy and ninja fighting", "An apple and an orange on a table"], inputs=[user_input])
            with gr.Column():
                btn = gr.Button("STEP 2: Parse Subjects")
            with gr.Column():
                separated_text = gr.Text(label="Subjects Separated by Semicolon")
            btn.click(separate_subjects, inputs=[user_input], outputs=[separated_text])

            # set the language and grounding instruction to user input
            # and separated subjects, respectively
            language_instruction=user_input
            grounding_instruction=separated_text

            with gr.Row():
                sketch_pad = ImageMask(label="STEP 3: Sketch Boundaries", elem_id="img2img_image")
                out_imagebox = gr.Image(type="pil", label="Parsed Sketch Pad")
            with gr.Row():
                clear_btn = gr.Button(value='Clear')
                gen_btn = gr.Button(value='STEP 4: Generate')
            with gr.Accordion("Advanced Options", open=False):
                with gr.Column():
                    alpha_sample = gr.Slider(minimum=0, maximum=1.0, step=0.1, value=0.3, label="Scheduled Sampling (Ο„)", visible=False)
                    guidance_scale = gr.Slider(minimum=0, maximum=50, step=0.5, value=20, label="Guidance Scale (how closely it adheres to your prompt)")
                    batch_size = gr.Slider(minimum=1, maximum=4, step=1, value=4, label="Number of Images")
                    append_grounding = gr.Checkbox(value=True, label="Append grounding instructions to the caption", visible=False)
                    use_actual_mask = gr.Checkbox(value=False, label="Use actual mask for inpainting", visible=False)
                    with gr.Row():
                        fix_seed = gr.Checkbox(value=False, label="Fixed seed", visible=False)
                        rand_seed = gr.Slider(minimum=0, maximum=1000, step=1, value=0, label="Seed", visible=False)
                    with gr.Row():
                        use_style_cond = gr.Checkbox(value=False, label="Enable Style Condition", visible=False)
                        style_cond_image = gr.Image(type="pil", label="Style Condition", interactive=True, visible=False)
        with gr.Column(scale=4):
            gr.HTML('<span style="font-size: 20px; font-weight: bold">Generated Images</span>')
            with gr.Row():
                out_gen_1 = gr.Image(type="pil", visible=True, show_label=False)
                out_gen_2 = gr.Image(type="pil", visible=True, show_label=False)
            with gr.Row():
                out_gen_3 = gr.Image(type="pil", visible=True, show_label=False)
                out_gen_4 = gr.Image(type="pil", visible=True, show_label=False)

        state = gr.State({})

        class Controller:
            def __init__(self):
                self.calls = 0
                self.tracks = 0
                self.resizes = 0
                self.scales = 0

            def init_white(self, init_white_trigger):
                self.calls += 1
                return np.ones((512, 512), dtype='uint8') * 255, 1.0, init_white_trigger+1

            def change_n_samples(self, n_samples):
                blank_samples = n_samples % 2 if n_samples > 1 else 0
                return [gr.Image.update(visible=True) for _ in range(n_samples + blank_samples)] \
                    + [gr.Image.update(visible=False) for _ in range(4 - n_samples - blank_samples)]

            def resize_centercrop(self, state):
                self.resizes += 1
                image = state['original_image'].copy()
                inpaint_hw = int(0.9 * min(*image.shape[:2]))
                state['inpaint_hw'] = inpaint_hw
                image_cc = center_crop(image, inpaint_hw)
                # print(f'resize triggered {self.resizes}', image.shape, '->', image_cc.shape)
                return image_cc, state

            def resize_masked(self, state):
                self.resizes += 1
                image = state['original_image'].copy()
                inpaint_hw = int(0.9 * min(*image.shape[:2]))
                state['inpaint_hw'] = inpaint_hw
                image_mask = sized_center_mask(image, inpaint_hw, inpaint_hw)
                state['masked_image'] = image_mask.copy()
                # print(f'mask triggered {self.resizes}')
                return image_mask, state
            
            def switch_task_hide_cond(self, task):
                cond = False
                if task == "Grounded Generation":
                    cond = True

                return gr.Checkbox.update(visible=cond, value=False), gr.Image.update(value=None, visible=False), gr.Slider.update(visible=cond), gr.Checkbox.update(visible=(not cond), value=False)

        controller = Controller()
        main.load(
            lambda x:x+1,
            inputs=sketch_pad_trigger,
            outputs=sketch_pad_trigger,
            queue=False)
        sketch_pad.edit(
            draw,
            inputs=[task, sketch_pad, grounding_instruction, sketch_pad_resize_trigger, state],
            outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, state],
            queue=False,
        )
        grounding_instruction.change(
            draw,
            inputs=[task, sketch_pad, grounding_instruction, sketch_pad_resize_trigger, state],
            outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, state],
            queue=False,
        )
        clear_btn.click(
            clear,
            inputs=[task, sketch_pad_trigger, batch_size, state],
            outputs=[sketch_pad, sketch_pad_trigger, out_imagebox, image_scale, out_gen_1, out_gen_2, out_gen_3, out_gen_4, state],
            queue=False)
        task.change(
            partial(clear, switch_task=True),
            inputs=[task, sketch_pad_trigger, batch_size, state],
            outputs=[sketch_pad, sketch_pad_trigger, out_imagebox, image_scale, out_gen_1, out_gen_2, out_gen_3, out_gen_4, state],
            queue=False)
        sketch_pad_trigger.change(
            controller.init_white,
            inputs=[init_white_trigger],
            outputs=[sketch_pad, image_scale, init_white_trigger],
            queue=False)
        sketch_pad_resize_trigger.change(
            controller.resize_masked,
            inputs=[state],
            outputs=[sketch_pad, state],
            queue=False)
        batch_size.change(
            controller.change_n_samples,
            inputs=[batch_size],
            outputs=[out_gen_1, out_gen_2, out_gen_3, out_gen_4],
            queue=False)
        gen_btn.click(
            generate,
            inputs=[
                task, language_instruction, grounding_instruction, sketch_pad,
                alpha_sample, guidance_scale, batch_size,
                fix_seed, rand_seed,
                use_actual_mask,
                append_grounding, style_cond_image,
                state,
            ],
            outputs=[out_gen_1, out_gen_2, out_gen_3, out_gen_4, state],
            queue=True
        )
        sketch_pad_resize_trigger.change(
            None,
            None,
            sketch_pad_resize_trigger,
            _js=rescale_js,
            queue=False)
        init_white_trigger.change(
            None,
            None,
            init_white_trigger,
            _js=rescale_js,
            queue=False)
        use_style_cond.change(
            lambda cond: gr.Image.update(visible=cond),
            use_style_cond,
            style_cond_image,
            queue=False)
        task.change(
            controller.switch_task_hide_cond,
            inputs=task,
            outputs=[use_style_cond, style_cond_image, alpha_sample, use_actual_mask],
            queue=False)

main.queue(concurrency_count=1, api_open=False)
main.launch(share=False, show_api=False, show_error=True)