Spaces:
Runtime error
Runtime error
Automating grounding instruction step so users type in input and model automatically parses subjects for them
Browse files
app.py
CHANGED
@@ -1,118 +1,91 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
3 |
from omegaconf import OmegaConf
|
4 |
-
from gligen.task_grounded_generation import grounded_generation_box, load_ckpt
|
|
|
5 |
|
6 |
import json
|
7 |
import numpy as np
|
8 |
from PIL import Image, ImageDraw, ImageFont
|
9 |
from functools import partial
|
10 |
-
from collections import Counter
|
11 |
import math
|
12 |
-
import
|
13 |
|
14 |
from gradio import processing_utils
|
15 |
from typing import Optional
|
16 |
|
17 |
-
import warnings
|
18 |
-
|
19 |
-
from datetime import datetime
|
20 |
-
|
21 |
from huggingface_hub import hf_hub_download
|
22 |
hf_hub_download = partial(hf_hub_download, library_name="gligen_demo")
|
23 |
|
24 |
-
import
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
return torch.load(cache_file, map_location='cpu')
|
31 |
|
32 |
def load_ckpt_config_from_hf(modality):
|
33 |
-
ckpt = load_from_hf('gligen/
|
34 |
-
config = load_from_hf('gligen/
|
35 |
return ckpt, config
|
36 |
|
37 |
|
38 |
-
|
39 |
-
pretrained_ckpt_gligen, config = load_ckpt_config_from_hf(
|
40 |
config = OmegaConf.create( config["_content"] ) # config used in training
|
41 |
-
config.
|
42 |
-
config.model['params']['is_inpaint'] =
|
43 |
-
config.model['params']['is_style'] =
|
44 |
-
|
45 |
-
if common_instances is None:
|
46 |
-
common_ckpt = load_from_hf('gligen/demo_ckpts_legacy', filename=f'common.pth', subfolder='model')
|
47 |
-
common_instances = load_common_ckpt(config, common_ckpt)
|
48 |
-
|
49 |
-
loaded_model_list = load_ckpt(config, pretrained_ckpt_gligen, common_instances)
|
50 |
|
51 |
-
return loaded_model_list, common_instances
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
class Instance:
|
55 |
-
def __init__(self, capacity = 2):
|
56 |
-
self.model_type = 'base'
|
57 |
-
self.loaded_model_list = {}
|
58 |
-
self.counter = Counter()
|
59 |
-
self.global_counter = Counter()
|
60 |
-
self.loaded_model_list['base'], self.common_instances = ckpt_load_helper(
|
61 |
-
'gligen-generation-text-box',
|
62 |
-
is_inpaint=False, is_style=False, common_instances=None
|
63 |
-
)
|
64 |
-
self.capacity = capacity
|
65 |
-
|
66 |
-
def _log(self, model_type, batch_size, instruction, phrase_list):
|
67 |
-
self.counter[model_type] += 1
|
68 |
-
self.global_counter[model_type] += 1
|
69 |
-
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
70 |
-
print('[{}] Current: {}, All: {}. Samples: {}, prompt: {}, phrases: {}'.format(
|
71 |
-
current_time, dict(self.counter), dict(self.global_counter), batch_size, instruction, phrase_list
|
72 |
-
))
|
73 |
-
|
74 |
-
def get_model(self, model_type, batch_size, instruction, phrase_list):
|
75 |
-
if model_type in self.loaded_model_list:
|
76 |
-
self._log(model_type, batch_size, instruction, phrase_list)
|
77 |
-
return self.loaded_model_list[model_type]
|
78 |
-
|
79 |
-
if self.capacity == len(self.loaded_model_list):
|
80 |
-
least_used_type = self.counter.most_common()[-1][0]
|
81 |
-
del self.loaded_model_list[least_used_type]
|
82 |
-
del self.counter[least_used_type]
|
83 |
-
gc.collect()
|
84 |
-
torch.cuda.empty_cache()
|
85 |
-
|
86 |
-
self.loaded_model_list[model_type] = self._get_model(model_type)
|
87 |
-
self._log(model_type, batch_size, instruction, phrase_list)
|
88 |
-
return self.loaded_model_list[model_type]
|
89 |
-
|
90 |
-
def _get_model(self, model_type):
|
91 |
-
if model_type == 'base':
|
92 |
-
return ckpt_load_helper(
|
93 |
-
'gligen-generation-text-box',
|
94 |
-
is_inpaint=False, is_style=False, common_instances=self.common_instances
|
95 |
-
)[0]
|
96 |
-
elif model_type == 'inpaint':
|
97 |
-
return ckpt_load_helper(
|
98 |
-
'gligen-inpainting-text-box',
|
99 |
-
is_inpaint=True, is_style=False, common_instances=self.common_instances
|
100 |
-
)[0]
|
101 |
-
elif model_type == 'style':
|
102 |
-
return ckpt_load_helper(
|
103 |
-
'gligen-generation-text-image-box',
|
104 |
-
is_inpaint=False, is_style=True, common_instances=self.common_instances
|
105 |
-
)[0]
|
106 |
-
|
107 |
-
assert False
|
108 |
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
|
112 |
def load_clip_model():
|
113 |
from transformers import CLIPProcessor, CLIPModel
|
114 |
version = "openai/clip-vit-large-patch14"
|
115 |
-
model = CLIPModel.from_pretrained(version).
|
116 |
processor = CLIPProcessor.from_pretrained(version)
|
117 |
|
118 |
return {
|
@@ -162,11 +135,10 @@ class Blocks(gr.Blocks):
|
|
162 |
self.extra_configs = {
|
163 |
'thumbnail': kwargs.pop('thumbnail', ''),
|
164 |
'url': kwargs.pop('url', 'https://gradio.app/'),
|
165 |
-
'creator': kwargs.pop('creator', '
|
166 |
}
|
167 |
|
168 |
super(Blocks, self).__init__(theme, analytics_enabled, mode, title, css, **kwargs)
|
169 |
-
warnings.filterwarnings("ignore")
|
170 |
|
171 |
def get_config_file(self):
|
172 |
config = super(Blocks, self).get_config_file()
|
@@ -232,21 +204,17 @@ def inference(task, language_instruction, grounding_instruction, inpainting_boxe
|
|
232 |
inpainting_boxes_nodrop = inpainting_boxes_nodrop,
|
233 |
)
|
234 |
|
235 |
-
|
236 |
-
|
237 |
-
instruction=language_instruction,
|
238 |
-
phrase_list=phrase_list)
|
239 |
-
|
240 |
-
with torch.autocast(device_type='cuda', dtype=torch.float16):
|
241 |
if task == 'Grounded Generation':
|
242 |
if style_image == None:
|
243 |
-
return grounded_generation_box(
|
244 |
else:
|
245 |
-
return grounded_generation_box(
|
246 |
elif task == 'Grounded Inpainting':
|
247 |
assert image is not None
|
248 |
instruction['input_image'] = image.convert("RGB")
|
249 |
-
return grounded_generation_box(
|
250 |
|
251 |
|
252 |
def draw_box(boxes=[], texts=[], img=None):
|
@@ -283,11 +251,9 @@ def auto_append_grounding(language_instruction, grounding_texts):
|
|
283 |
for grounding_text in grounding_texts:
|
284 |
if grounding_text not in language_instruction and grounding_text != 'auto':
|
285 |
language_instruction += "; " + grounding_text
|
|
|
286 |
return language_instruction
|
287 |
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
def generate(task, language_instruction, grounding_texts, sketch_pad,
|
292 |
alpha_sample, guidance_scale, batch_size,
|
293 |
fix_seed, rand_seed, use_actual_mask, append_grounding, style_cond_image,
|
@@ -297,14 +263,7 @@ def generate(task, language_instruction, grounding_texts, sketch_pad,
|
|
297 |
|
298 |
boxes = state['boxes']
|
299 |
grounding_texts = [x.strip() for x in grounding_texts.split(';')]
|
300 |
-
|
301 |
-
if len(boxes) != len(grounding_texts):
|
302 |
-
if len(boxes) < len(grounding_texts):
|
303 |
-
raise ValueError("""The number of boxes should be equal to the number of grounding objects.
|
304 |
-
Number of boxes drawn: {}, number of grounding tokens: {}.
|
305 |
-
Please draw boxes accordingly on the sketch pad.""".format(len(boxes), len(grounding_texts)))
|
306 |
-
grounding_texts = grounding_texts + [""] * (len(boxes) - len(grounding_texts))
|
307 |
-
|
308 |
boxes = (np.asarray(boxes) / 512).tolist()
|
309 |
grounding_instruction = json.dumps({obj: box for obj,box in zip(grounding_texts, boxes)})
|
310 |
|
@@ -488,19 +447,30 @@ def clear(task, sketch_pad_trigger, batch_size, state, switch_task=False):
|
|
488 |
return [None, sketch_pad_trigger, None, 1.0] + out_images + [state]
|
489 |
|
490 |
css = """
|
491 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
492 |
{
|
493 |
height: var(--height) !important;
|
494 |
max-height: var(--height) !important;
|
495 |
min-height: var(--height) !important;
|
496 |
}
|
|
|
|
|
|
|
497 |
#paper-info a {
|
498 |
color:#008AD7;
|
499 |
-
text-decoration: none;
|
500 |
}
|
501 |
#paper-info a:hover {
|
502 |
cursor: pointer;
|
503 |
-
text-decoration: none;
|
504 |
}
|
505 |
"""
|
506 |
|
@@ -517,28 +487,95 @@ function(x) {
|
|
517 |
}
|
518 |
"""
|
519 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
520 |
with Blocks(
|
521 |
css=css,
|
522 |
analytics_enabled=False,
|
523 |
title="GLIGen demo",
|
524 |
) as main:
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
<span style="font-size: 18px" id="paper-info">
|
529 |
-
[<a href="https://gligen.github.io" target="_blank">Project Page</a>]
|
530 |
-
[<a href="https://arxiv.org/abs/2301.07093" target="_blank">Paper</a>]
|
531 |
-
[<a href="https://github.com/gligen/GLIGEN" target="_blank">GitHub</a>]
|
532 |
-
</span>
|
533 |
-
</p>
|
534 |
-
<p>
|
535 |
-
To ground concepts of interest with desired spatial specification, please (1) ⌨️ enter the concept names in <em> Grounding Instruction</em>, and (2) 🖱️ draw their corresponding bounding boxes one by one using <em> Sketch Pad</em> -- the parsed boxes will be displayed automatically.
|
536 |
-
<br>
|
537 |
-
For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/gligen/demo?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a>
|
538 |
-
</p>
|
539 |
-
"""
|
540 |
-
gr.HTML(description)
|
541 |
-
|
542 |
with gr.Row():
|
543 |
with gr.Column(scale=4):
|
544 |
sketch_pad_trigger = gr.Number(value=0, visible=False)
|
@@ -547,45 +584,89 @@ with Blocks(
|
|
547 |
image_scale = gr.Number(value=0, elem_id="image_scale", visible=False)
|
548 |
new_image_trigger = gr.Number(value=0, visible=False)
|
549 |
|
|
|
550 |
task = gr.Radio(
|
551 |
choices=["Grounded Generation", 'Grounded Inpainting'],
|
552 |
type="value",
|
553 |
value="Grounded Generation",
|
554 |
label="Task",
|
555 |
)
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
562 |
with gr.Row():
|
563 |
sketch_pad = ImageMask(label="Sketch Pad", elem_id="img2img_image")
|
564 |
out_imagebox = gr.Image(type="pil", label="Parsed Sketch Pad")
|
565 |
with gr.Row():
|
566 |
clear_btn = gr.Button(value='Clear')
|
567 |
-
gen_btn = gr.Button(value='Generate')
|
568 |
with gr.Accordion("Advanced Options", open=False):
|
569 |
with gr.Column():
|
570 |
-
alpha_sample = gr.Slider(minimum=0, maximum=1.0, step=0.1, value=0.3, label="Scheduled Sampling (Ο)")
|
571 |
-
guidance_scale = gr.Slider(minimum=0, maximum=50, step=0.5, value=
|
572 |
-
batch_size = gr.Slider(minimum=1, maximum=4, step=1, value=
|
573 |
-
append_grounding = gr.Checkbox(value=True, label="Append grounding instructions to the caption")
|
574 |
use_actual_mask = gr.Checkbox(value=False, label="Use actual mask for inpainting", visible=False)
|
575 |
with gr.Row():
|
576 |
-
fix_seed = gr.Checkbox(value=
|
577 |
-
rand_seed = gr.Slider(minimum=0, maximum=1000, step=1, value=0, label="Seed")
|
578 |
with gr.Row():
|
579 |
-
use_style_cond = gr.Checkbox(value=False, label="Enable Style Condition")
|
580 |
-
style_cond_image = gr.Image(type="pil", label="Style Condition",
|
581 |
with gr.Column(scale=4):
|
582 |
-
gr.
|
583 |
with gr.Row():
|
584 |
out_gen_1 = gr.Image(type="pil", visible=True, show_label=False)
|
585 |
out_gen_2 = gr.Image(type="pil", visible=True, show_label=False)
|
586 |
with gr.Row():
|
587 |
-
out_gen_3 = gr.Image(type="pil", visible=
|
588 |
-
out_gen_4 = gr.Image(type="pil", visible=
|
589 |
|
590 |
state = gr.State({})
|
591 |
|
@@ -687,6 +768,14 @@ with Blocks(
|
|
687 |
outputs=[out_gen_1, out_gen_2, out_gen_3, out_gen_4, state],
|
688 |
queue=True
|
689 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
690 |
sketch_pad_resize_trigger.change(
|
691 |
None,
|
692 |
None,
|
@@ -710,65 +799,5 @@ with Blocks(
|
|
710 |
outputs=[use_style_cond, style_cond_image, alpha_sample, use_actual_mask],
|
711 |
queue=False)
|
712 |
|
713 |
-
with gr.Column():
|
714 |
-
gr.Examples(
|
715 |
-
examples=[
|
716 |
-
[
|
717 |
-
"images/blank.png",
|
718 |
-
"Grounded Generation",
|
719 |
-
"a dog and an apple",
|
720 |
-
"a dog;an apple",
|
721 |
-
],
|
722 |
-
[
|
723 |
-
"images/blank.png",
|
724 |
-
"Grounded Generation",
|
725 |
-
"John Lennon is using a pc",
|
726 |
-
"John Lennon;a pc",
|
727 |
-
[
|
728 |
-
"images/blank.png",
|
729 |
-
"Grounded Generation",
|
730 |
-
"a painting of a fox sitting in a field at sunrise in the style of Claude Mone",
|
731 |
-
"fox;sunrise",
|
732 |
-
],
|
733 |
-
],
|
734 |
-
[
|
735 |
-
"images/blank.png",
|
736 |
-
"Grounded Generation",
|
737 |
-
"a beautiful painting of hot dog by studio ghibli, octane render, brilliantly coloured",
|
738 |
-
"hot dog",
|
739 |
-
],
|
740 |
-
[
|
741 |
-
"images/blank.png",
|
742 |
-
"Grounded Generation",
|
743 |
-
"a sport car, unreal engine, global illumination, ray tracing",
|
744 |
-
"a sport car",
|
745 |
-
],
|
746 |
-
[
|
747 |
-
"images/flower_beach.jpg",
|
748 |
-
"Grounded Inpainting",
|
749 |
-
"a squirrel and the space needle",
|
750 |
-
"a squirrel;the space needle",
|
751 |
-
],
|
752 |
-
[
|
753 |
-
"images/arg_corgis.jpeg",
|
754 |
-
"Grounded Inpainting",
|
755 |
-
"a dog and a birthday cake",
|
756 |
-
"a dog; a birthday cake",
|
757 |
-
],
|
758 |
-
[
|
759 |
-
"images/teddy.jpg",
|
760 |
-
"Grounded Inpainting",
|
761 |
-
"a teddy bear wearing a santa claus red shirt; holding a Christmas gift box on hand",
|
762 |
-
"a santa claus shirt; a Christmas gift box",
|
763 |
-
],
|
764 |
-
],
|
765 |
-
inputs=[sketch_pad, task, language_instruction, grounding_instruction],
|
766 |
-
outputs=None,
|
767 |
-
fn=None,
|
768 |
-
cache_examples=False,
|
769 |
-
)
|
770 |
-
|
771 |
main.queue(concurrency_count=1, api_open=False)
|
772 |
-
main.launch(share=False, show_api=False
|
773 |
-
|
774 |
-
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
import argparse
|
4 |
from omegaconf import OmegaConf
|
5 |
+
from gligen.task_grounded_generation import grounded_generation_box, load_ckpt
|
6 |
+
from ldm.util import default_device
|
7 |
|
8 |
import json
|
9 |
import numpy as np
|
10 |
from PIL import Image, ImageDraw, ImageFont
|
11 |
from functools import partial
|
|
|
12 |
import math
|
13 |
+
from contextlib import nullcontext
|
14 |
|
15 |
from gradio import processing_utils
|
16 |
from typing import Optional
|
17 |
|
|
|
|
|
|
|
|
|
18 |
from huggingface_hub import hf_hub_download
|
19 |
hf_hub_download = partial(hf_hub_download, library_name="gligen_demo")
|
20 |
|
21 |
+
import openai
|
22 |
+
from gradio.components import Textbox, Text
|
23 |
+
import os
|
24 |
+
|
25 |
+
arg_bool = lambda x: x.lower() == 'true'
|
26 |
+
device = default_device()
|
27 |
+
|
28 |
+
print(f"GLIGEN uses {device.upper()} device.")
|
29 |
+
if device == "cpu":
|
30 |
+
print("It will be sloooow. Consider using GPU support with CUDA or (in case of M1/M2 Apple Silicon) MPS.")
|
31 |
+
elif device == "mps":
|
32 |
+
print("The fastest you can get on M1/2 Apple Silicon. Yet, still many opimizations are switched off and it will is much slower than CUDA.")
|
33 |
+
|
34 |
+
def parse_option():
|
35 |
+
parser = argparse.ArgumentParser('GLIGen Demo', add_help=False)
|
36 |
+
parser.add_argument("--folder", type=str, default="create_samples", help="path to OUTPUT")
|
37 |
+
parser.add_argument("--official_ckpt", type=str, default='ckpts/sd-v1-4.ckpt', help="")
|
38 |
+
parser.add_argument("--guidance_scale", type=float, default=5, help="")
|
39 |
+
parser.add_argument("--alpha_scale", type=float, default=1, help="scale tanh(alpha). If 0, the behaviour is same as original model")
|
40 |
+
parser.add_argument("--load-text-box-generation", type=arg_bool, default=True, help="Load text-box generation pipeline.")
|
41 |
+
parser.add_argument("--load-text-box-inpainting", type=arg_bool, default=False, help="Load text-box inpainting pipeline.")
|
42 |
+
parser.add_argument("--load-text-image-box-generation", type=arg_bool, default=False, help="Load text-image-box generation pipeline.")
|
43 |
+
args = parser.parse_args()
|
44 |
+
return args
|
45 |
+
args = parse_option()
|
46 |
+
|
47 |
+
|
48 |
+
def load_from_hf(repo_id, filename='diffusion_pytorch_model.bin'):
|
49 |
+
cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
|
50 |
return torch.load(cache_file, map_location='cpu')
|
51 |
|
52 |
def load_ckpt_config_from_hf(modality):
|
53 |
+
ckpt = load_from_hf(f'gligen/{modality}')
|
54 |
+
config = load_from_hf('gligen/demo_config_legacy', filename=f'{modality}.pth')
|
55 |
return ckpt, config
|
56 |
|
57 |
|
58 |
+
if args.load_text_box_generation:
|
59 |
+
pretrained_ckpt_gligen, config = load_ckpt_config_from_hf('gligen-generation-text-box')
|
60 |
config = OmegaConf.create( config["_content"] ) # config used in training
|
61 |
+
config.update( vars(args) )
|
62 |
+
config.model['params']['is_inpaint'] = False
|
63 |
+
config.model['params']['is_style'] = False
|
64 |
+
loaded_model_list = load_ckpt(config, pretrained_ckpt_gligen)
|
|
|
|
|
|
|
|
|
|
|
65 |
|
|
|
66 |
|
67 |
+
if args.load_text_box_inpainting:
|
68 |
+
pretrained_ckpt_gligen_inpaint, config = load_ckpt_config_from_hf('gligen-inpainting-text-box')
|
69 |
+
config = OmegaConf.create( config["_content"] ) # config used in training
|
70 |
+
config.update( vars(args) )
|
71 |
+
config.model['params']['is_inpaint'] = True
|
72 |
+
config.model['params']['is_style'] = False
|
73 |
+
loaded_model_list_inpaint = load_ckpt(config, pretrained_ckpt_gligen_inpaint)
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
if args.load_text_image_box_generation:
|
77 |
+
pretrained_ckpt_gligen_style, config = load_ckpt_config_from_hf('gligen-generation-text-image-box')
|
78 |
+
config = OmegaConf.create( config["_content"] ) # config used in training
|
79 |
+
config.update( vars(args) )
|
80 |
+
config.model['params']['is_inpaint'] = False
|
81 |
+
config.model['params']['is_style'] = True
|
82 |
+
loaded_model_list_style = load_ckpt(config, pretrained_ckpt_gligen_style)
|
83 |
|
84 |
|
85 |
def load_clip_model():
|
86 |
from transformers import CLIPProcessor, CLIPModel
|
87 |
version = "openai/clip-vit-large-patch14"
|
88 |
+
model = CLIPModel.from_pretrained(version).to(device)
|
89 |
processor = CLIPProcessor.from_pretrained(version)
|
90 |
|
91 |
return {
|
|
|
135 |
self.extra_configs = {
|
136 |
'thumbnail': kwargs.pop('thumbnail', ''),
|
137 |
'url': kwargs.pop('url', 'https://gradio.app/'),
|
138 |
+
'creator': kwargs.pop('creator', 'Jenny Sun'),
|
139 |
}
|
140 |
|
141 |
super(Blocks, self).__init__(theme, analytics_enabled, mode, title, css, **kwargs)
|
|
|
142 |
|
143 |
def get_config_file(self):
|
144 |
config = super(Blocks, self).get_config_file()
|
|
|
204 |
inpainting_boxes_nodrop = inpainting_boxes_nodrop,
|
205 |
)
|
206 |
|
207 |
+
# float16 autocasting only CUDA device
|
208 |
+
with torch.autocast(device_type='cuda', dtype=torch.float16) if device == "cuda" else nullcontext():
|
|
|
|
|
|
|
|
|
209 |
if task == 'Grounded Generation':
|
210 |
if style_image == None:
|
211 |
+
return grounded_generation_box(loaded_model_list, instruction, *args, **kwargs)
|
212 |
else:
|
213 |
+
return grounded_generation_box(loaded_model_list_style, instruction, *args, **kwargs)
|
214 |
elif task == 'Grounded Inpainting':
|
215 |
assert image is not None
|
216 |
instruction['input_image'] = image.convert("RGB")
|
217 |
+
return grounded_generation_box(loaded_model_list_inpaint, instruction, *args, **kwargs)
|
218 |
|
219 |
|
220 |
def draw_box(boxes=[], texts=[], img=None):
|
|
|
251 |
for grounding_text in grounding_texts:
|
252 |
if grounding_text not in language_instruction and grounding_text != 'auto':
|
253 |
language_instruction += "; " + grounding_text
|
254 |
+
print(language_instruction)
|
255 |
return language_instruction
|
256 |
|
|
|
|
|
|
|
257 |
def generate(task, language_instruction, grounding_texts, sketch_pad,
|
258 |
alpha_sample, guidance_scale, batch_size,
|
259 |
fix_seed, rand_seed, use_actual_mask, append_grounding, style_cond_image,
|
|
|
263 |
|
264 |
boxes = state['boxes']
|
265 |
grounding_texts = [x.strip() for x in grounding_texts.split(';')]
|
266 |
+
assert len(boxes) == len(grounding_texts)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
boxes = (np.asarray(boxes) / 512).tolist()
|
268 |
grounding_instruction = json.dumps({obj: box for obj,box in zip(grounding_texts, boxes)})
|
269 |
|
|
|
447 |
return [None, sketch_pad_trigger, None, 1.0] + out_images + [state]
|
448 |
|
449 |
css = """
|
450 |
+
#generate-btn {
|
451 |
+
--tw-border-opacity: 1;
|
452 |
+
border-color: rgb(255 216 180 / var(--tw-border-opacity));
|
453 |
+
--tw-gradient-from: rgb(255 216 180 / .7);
|
454 |
+
--tw-gradient-to: rgb(255 216 180 / 0);
|
455 |
+
--tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to);
|
456 |
+
--tw-gradient-to: rgb(255 176 102 / .8);
|
457 |
+
--tw-text-opacity: 1;
|
458 |
+
color: rgb(238 116 0 / var(--tw-text-opacity));
|
459 |
+
}
|
460 |
+
#img2img_image, #img2img_image > .h-60, #img2img_image > .h-60 > div, #img2img_image > .h-60 > div > img
|
461 |
{
|
462 |
height: var(--height) !important;
|
463 |
max-height: var(--height) !important;
|
464 |
min-height: var(--height) !important;
|
465 |
}
|
466 |
+
#mirrors a:hover {
|
467 |
+
cursor:pointer;
|
468 |
+
}
|
469 |
#paper-info a {
|
470 |
color:#008AD7;
|
|
|
471 |
}
|
472 |
#paper-info a:hover {
|
473 |
cursor: pointer;
|
|
|
474 |
}
|
475 |
"""
|
476 |
|
|
|
487 |
}
|
488 |
"""
|
489 |
|
490 |
+
mirror_js = """
|
491 |
+
function () {
|
492 |
+
const root = document.querySelector('gradio-app').shadowRoot || document.querySelector('gradio-app');
|
493 |
+
const mirrors_div = root.querySelector('#mirrors');
|
494 |
+
const current_url = window.location.href;
|
495 |
+
const mirrors = [
|
496 |
+
'https://dev.hliu.cc/gligen_mirror1/',
|
497 |
+
'https://dev.hliu.cc/gligen_mirror2/',
|
498 |
+
];
|
499 |
+
|
500 |
+
let mirror_html = '';
|
501 |
+
mirror_html += '[<a href="https://gligen.github.io" target="_blank" style="">Project Page</a>]';
|
502 |
+
mirror_html += '[<a href="https://arxiv.org/abs/2301.07093" target="_blank" style="">Paper</a>]';
|
503 |
+
mirror_html += '[<a href="https://github.com/gligen/GLIGEN" target="_blank" style="">GitHub Repo</a>]';
|
504 |
+
mirror_html += ' | ';
|
505 |
+
mirror_html += 'Mirrors: ';
|
506 |
+
|
507 |
+
mirrors.forEach((e, index) => {
|
508 |
+
let cur_index = index + 1;
|
509 |
+
if (current_url.includes(e)) {
|
510 |
+
mirror_html += `[Mirror ${cur_index}] `;
|
511 |
+
} else {
|
512 |
+
mirror_html += `[<a onclick="window.location.href = '${e}'">Mirror ${cur_index}</a>] `;
|
513 |
+
}
|
514 |
+
});
|
515 |
+
|
516 |
+
mirror_html = `<div class="output-markdown gr-prose" style="max-width: 100%;"><h3 style="text-align: center" id="paper-info">${mirror_html}</h3></div>`;
|
517 |
+
|
518 |
+
mirrors_div.innerHTML = mirror_html;
|
519 |
+
}
|
520 |
+
"""
|
521 |
+
|
522 |
+
# Set up OpenAI API key
|
523 |
+
openai.api_key = os.environ['OPENAI_API_KEY']
|
524 |
+
|
525 |
+
prompt_base = 'Separate the subjects in this sentence by semicolons. For example, the sentence "a tiger and a horse running in a greenland" should output "tiger; horse". If there are numbers, make each subject unique. For example, "2 dogs and 1 duck" would be "dog; dog; duck." Do the same for the following sentence: \n'
|
526 |
+
|
527 |
+
original_input = ""
|
528 |
+
separated_subjects = ""
|
529 |
+
|
530 |
+
language_instruction = gr.Textbox(
|
531 |
+
label="Language Instruction by User",
|
532 |
+
value="2 horses running",
|
533 |
+
visible=False
|
534 |
+
)
|
535 |
+
grounding_instruction = gr.Textbox(
|
536 |
+
label="Subjects in image (Separated by semicolon)",
|
537 |
+
value="horse; horse",
|
538 |
+
visible=False
|
539 |
+
)
|
540 |
+
|
541 |
+
def separate_subjects(input_text):
|
542 |
+
prompt = prompt_base + input_text
|
543 |
+
response = openai.Completion.create(
|
544 |
+
engine="text-davinci-002",
|
545 |
+
prompt=prompt,
|
546 |
+
max_tokens=1024,
|
547 |
+
n=1,
|
548 |
+
stop=None,
|
549 |
+
temperature=0.7,
|
550 |
+
)
|
551 |
+
output_text = response.choices[0].text.strip()
|
552 |
+
return output_text
|
553 |
+
|
554 |
+
# def update_original_input():
|
555 |
+
# print("start update_original_input")
|
556 |
+
# global original_input
|
557 |
+
# original_input = language_instruction.value
|
558 |
+
# print("original_input in update:", original_input)
|
559 |
+
|
560 |
+
# def update_grounding_instruction():
|
561 |
+
# print("start update_grounding_instruction")
|
562 |
+
# # global original_input # declare you want to use the outer variable
|
563 |
+
# global separated_subjects
|
564 |
+
# update_original_input()
|
565 |
+
# separated_subjects = separate_subjects(language_instruction.value)
|
566 |
+
# # separated_subjects = separate_subjects(original_input)
|
567 |
+
# grounding_instruction.value = separated_subjects
|
568 |
+
# print("original_input:", original_input)
|
569 |
+
# print("separated_subjects", separated_subjects)
|
570 |
+
|
571 |
with Blocks(
|
572 |
css=css,
|
573 |
analytics_enabled=False,
|
574 |
title="GLIGen demo",
|
575 |
) as main:
|
576 |
+
gr.Markdown('<h1 style="text-align: center;">MSR: MultiSubject Render</h1>')
|
577 |
+
gr.Markdown('<h3 style="text-align: center;">Using NLP and Grounding Processing Techniques to improve image generation of multiple subjects with base Stable Diffusion Model</h3>')
|
578 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
579 |
with gr.Row():
|
580 |
with gr.Column(scale=4):
|
581 |
sketch_pad_trigger = gr.Number(value=0, visible=False)
|
|
|
584 |
image_scale = gr.Number(value=0, elem_id="image_scale", visible=False)
|
585 |
new_image_trigger = gr.Number(value=0, visible=False)
|
586 |
|
587 |
+
# UNCOMMENT THIS WHEN YOU WANT TO TOGGLE INPAINTING OPTION
|
588 |
task = gr.Radio(
|
589 |
choices=["Grounded Generation", 'Grounded Inpainting'],
|
590 |
type="value",
|
591 |
value="Grounded Generation",
|
592 |
label="Task",
|
593 |
)
|
594 |
+
|
595 |
+
# language_instruction = gr.Textbox(
|
596 |
+
# label="Enter your prompt here",
|
597 |
+
# )
|
598 |
+
# grounding_instruction = gr.Textbox(
|
599 |
+
# label="Grounding instruction (Separated by semicolon)",
|
600 |
+
# )
|
601 |
+
# grounding_instruction = separate_subjects(language_instruction.value)
|
602 |
+
# print(f"The user entered: {language_instruction}")
|
603 |
+
# print(f"Our function gave: {grounding_instruction}")
|
604 |
+
|
605 |
+
# EXPERIMENTING:
|
606 |
+
with gr.Column():
|
607 |
+
seed = gr.Text(label="Enter your prompt here:")
|
608 |
+
gr.Examples(["2 horses running", "A cowboy and ninja fighting", "An apple and an orange on a table"], inputs=[seed])
|
609 |
+
with gr.Column():
|
610 |
+
btn = gr.Button("Gen")
|
611 |
+
with gr.Column():
|
612 |
+
separated_text = gr.Text(label="Subjects Separated by Semicolon")
|
613 |
+
btn.click(separate_subjects, inputs=[seed], outputs=[separated_text])
|
614 |
+
|
615 |
+
language_instruction.value = seed
|
616 |
+
grounding_instruction.value = separated_text
|
617 |
+
####################
|
618 |
+
# language_instruction = gr.Textbox(
|
619 |
+
# label="Enter your prompt here",
|
620 |
+
# )
|
621 |
+
# original_input = language_instruction.value
|
622 |
+
# start_btn = gr.Button('Start')
|
623 |
+
# start_btn.click(update_grounding_instruction)
|
624 |
+
# print("separated subjects 2:", separated_subjects)
|
625 |
+
|
626 |
+
# language_instruction = gr.Textbox(
|
627 |
+
# label="just needs to be here",
|
628 |
+
# value=seed,
|
629 |
+
# visible=False
|
630 |
+
# )
|
631 |
+
# grounding_instruction = gr.Textbox(
|
632 |
+
# label="Subjects in image (Separated by semicolon)",
|
633 |
+
# value=separated_text,
|
634 |
+
# visible=False
|
635 |
+
# )
|
636 |
+
|
637 |
+
print("Language instruction:", language_instruction.value)
|
638 |
+
print("Grounding instruction:", grounding_instruction.value)
|
639 |
+
|
640 |
+
|
641 |
+
####################
|
642 |
+
|
643 |
with gr.Row():
|
644 |
sketch_pad = ImageMask(label="Sketch Pad", elem_id="img2img_image")
|
645 |
out_imagebox = gr.Image(type="pil", label="Parsed Sketch Pad")
|
646 |
with gr.Row():
|
647 |
clear_btn = gr.Button(value='Clear')
|
648 |
+
gen_btn = gr.Button(value='Generate', elem_id="generate-btn")
|
649 |
with gr.Accordion("Advanced Options", open=False):
|
650 |
with gr.Column():
|
651 |
+
alpha_sample = gr.Slider(minimum=0, maximum=1.0, step=0.1, value=0.3, label="Scheduled Sampling (Ο)", visible=False)
|
652 |
+
guidance_scale = gr.Slider(minimum=0, maximum=50, step=0.5, value=20, label="Guidance Scale (how closely it adheres to your prompt)")
|
653 |
+
batch_size = gr.Slider(minimum=1, maximum=4, step=1, value=4, label="Number of Images")
|
654 |
+
append_grounding = gr.Checkbox(value=True, label="Append grounding instructions to the caption", visible=False)
|
655 |
use_actual_mask = gr.Checkbox(value=False, label="Use actual mask for inpainting", visible=False)
|
656 |
with gr.Row():
|
657 |
+
fix_seed = gr.Checkbox(value=False, label="Fixed seed", visible=False)
|
658 |
+
rand_seed = gr.Slider(minimum=0, maximum=1000, step=1, value=0, label="Seed", visible=False)
|
659 |
with gr.Row():
|
660 |
+
use_style_cond = gr.Checkbox(value=False, label="Enable Style Condition", visible=False)
|
661 |
+
style_cond_image = gr.Image(type="pil", label="Style Condition", interactive=True, visible=False)
|
662 |
with gr.Column(scale=4):
|
663 |
+
gr.Markdown("### Generated Images")
|
664 |
with gr.Row():
|
665 |
out_gen_1 = gr.Image(type="pil", visible=True, show_label=False)
|
666 |
out_gen_2 = gr.Image(type="pil", visible=True, show_label=False)
|
667 |
with gr.Row():
|
668 |
+
out_gen_3 = gr.Image(type="pil", visible=True, show_label=False)
|
669 |
+
out_gen_4 = gr.Image(type="pil", visible=True, show_label=False)
|
670 |
|
671 |
state = gr.State({})
|
672 |
|
|
|
768 |
outputs=[out_gen_1, out_gen_2, out_gen_3, out_gen_4, state],
|
769 |
queue=True
|
770 |
)
|
771 |
+
# start_btn.click(
|
772 |
+
# update_grounding_instruction,
|
773 |
+
# # inputs=[
|
774 |
+
# # original_input,
|
775 |
+
# # ],
|
776 |
+
# # outputs=[separated_subjects],
|
777 |
+
# # queue=True
|
778 |
+
# )
|
779 |
sketch_pad_resize_trigger.change(
|
780 |
None,
|
781 |
None,
|
|
|
799 |
outputs=[use_style_cond, style_cond_image, alpha_sample, use_actual_mask],
|
800 |
queue=False)
|
801 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
802 |
main.queue(concurrency_count=1, api_open=False)
|
803 |
+
main.launch(share=False, show_api=False)
|
|
|
|