Spaces:
Runtime error
Runtime error
File size: 31,492 Bytes
b96cf5d 3c578e5 b96cf5d c190b7c b96cf5d 81ba850 5037c92 81ba850 b96cf5d 81ba850 b96cf5d 81ba850 5037c92 81ba850 5037c92 b96cf5d 81ba850 ae6ac81 81ba850 b96cf5d 81ba850 5037c92 ae6ac81 5037c92 59e065f 5037c92 8549ac5 5037c92 81ba850 5037c92 81ba850 5037c92 3c64996 5037c92 8549ac5 59e065f 45c3663 365ab50 45c3663 116a165 5037c92 ae6ac81 5037c92 81ba850 c190b7c 81ba850 5037c92 81ba850 5037c92 81ba850 5037c92 81ba850 b96cf5d 81ba850 5037c92 81ba850 365ab50 81ba850 b96cf5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 |
import gradio as gr
import torch
from omegaconf import OmegaConf
from gligen.task_grounded_generation import grounded_generation_box, load_ckpt, load_common_ckpt
import json
import numpy as np
from PIL import Image, ImageDraw, ImageFont
from functools import partial
from collections import Counter
import math
import gc
from gradio import processing_utils
from typing import Optional
import warnings
from datetime import datetime
from huggingface_hub import hf_hub_download
hf_hub_download = partial(hf_hub_download, library_name="gligen_demo")
import sys
import os
import openai
from gradio.components import Textbox, Text
sys.tracebacklimit = 0
def load_from_hf(repo_id, filename='diffusion_pytorch_model.bin', subfolder=None):
cache_file = hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder)
return torch.load(cache_file, map_location='cpu')
def load_ckpt_config_from_hf(modality):
ckpt = load_from_hf('gligen/demo_ckpts_legacy', filename=f'{modality}.pth', subfolder='model')
config = load_from_hf('gligen/demo_ckpts_legacy', filename=f'{modality}.pth', subfolder='config')
return ckpt, config
def ckpt_load_helper(modality, is_inpaint, is_style, common_instances=None):
pretrained_ckpt_gligen, config = load_ckpt_config_from_hf(modality)
config = OmegaConf.create( config["_content"] ) # config used in training
config.alpha_scale = 1.0
config.model['params']['is_inpaint'] = is_inpaint
config.model['params']['is_style'] = is_style
if common_instances is None:
common_ckpt = load_from_hf('gligen/demo_ckpts_legacy', filename=f'common.pth', subfolder='model')
common_instances = load_common_ckpt(config, common_ckpt)
loaded_model_list = load_ckpt(config, pretrained_ckpt_gligen, common_instances)
return loaded_model_list, common_instances
class Instance:
def __init__(self, capacity = 2):
self.model_type = 'base'
self.loaded_model_list = {}
self.counter = Counter()
self.global_counter = Counter()
self.loaded_model_list['base'], self.common_instances = ckpt_load_helper(
'gligen-generation-text-box',
is_inpaint=False, is_style=False, common_instances=None
)
self.capacity = capacity
def _log(self, model_type, batch_size, instruction, phrase_list):
self.counter[model_type] += 1
self.global_counter[model_type] += 1
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
print('[{}] Current: {}, All: {}. Samples: {}, prompt: {}, phrases: {}'.format(
current_time, dict(self.counter), dict(self.global_counter), batch_size, instruction, phrase_list
))
def get_model(self, model_type, batch_size, instruction, phrase_list):
if model_type in self.loaded_model_list:
self._log(model_type, batch_size, instruction, phrase_list)
return self.loaded_model_list[model_type]
if self.capacity == len(self.loaded_model_list):
least_used_type = self.counter.most_common()[-1][0]
del self.loaded_model_list[least_used_type]
del self.counter[least_used_type]
gc.collect()
torch.cuda.empty_cache()
self.loaded_model_list[model_type] = self._get_model(model_type)
self._log(model_type, batch_size, instruction, phrase_list)
return self.loaded_model_list[model_type]
def _get_model(self, model_type):
if model_type == 'base':
return ckpt_load_helper(
'gligen-generation-text-box',
is_inpaint=False, is_style=False, common_instances=self.common_instances
)[0]
elif model_type == 'inpaint':
return ckpt_load_helper(
'gligen-inpainting-text-box',
is_inpaint=True, is_style=False, common_instances=self.common_instances
)[0]
elif model_type == 'style':
return ckpt_load_helper(
'gligen-generation-text-image-box',
is_inpaint=False, is_style=True, common_instances=self.common_instances
)[0]
assert False
instance = Instance()
def load_clip_model():
from transformers import CLIPProcessor, CLIPModel
version = "openai/clip-vit-large-patch14"
model = CLIPModel.from_pretrained(version).cuda()
processor = CLIPProcessor.from_pretrained(version)
return {
'version': version,
'model': model,
'processor': processor,
}
clip_model = load_clip_model()
class ImageMask(gr.components.Image):
"""
Sets: source="canvas", tool="sketch"
"""
is_template = True
def __init__(self, **kwargs):
super().__init__(source="upload", tool="sketch", interactive=True, **kwargs)
def preprocess(self, x):
if x is None:
return x
if self.tool == "sketch" and self.source in ["upload", "webcam"] and type(x) != dict:
decode_image = processing_utils.decode_base64_to_image(x)
width, height = decode_image.size
mask = np.zeros((height, width, 4), dtype=np.uint8)
mask[..., -1] = 255
mask = self.postprocess(mask)
x = {'image': x, 'mask': mask}
return super().preprocess(x)
class Blocks(gr.Blocks):
def __init__(
self,
theme: str = "default",
analytics_enabled: Optional[bool] = None,
mode: str = "blocks",
title: str = "Gradio",
css: Optional[str] = None,
**kwargs,
):
self.extra_configs = {
'thumbnail': kwargs.pop('thumbnail', ''),
'url': kwargs.pop('url', 'https://gradio.app/'),
'creator': kwargs.pop('creator', 'Jenny Sun'),
}
super(Blocks, self).__init__(theme, analytics_enabled, mode, title, css, **kwargs)
warnings.filterwarnings("ignore")
def get_config_file(self):
config = super(Blocks, self).get_config_file()
for k, v in self.extra_configs.items():
config[k] = v
return config
'''
inference model
'''
@torch.no_grad()
def inference(task, language_instruction, grounding_instruction, inpainting_boxes_nodrop, image,
alpha_sample, guidance_scale, batch_size,
fix_seed, rand_seed, actual_mask, style_image,
*args, **kwargs):
grounding_instruction = json.loads(grounding_instruction)
phrase_list, location_list = [], []
for k, v in grounding_instruction.items():
phrase_list.append(k)
location_list.append(v)
placeholder_image = Image.open('images/teddy.jpg').convert("RGB")
image_list = [placeholder_image] * len(phrase_list) # placeholder input for visual prompt, which is disabled
batch_size = int(batch_size)
if not 1 <= batch_size <= 4:
batch_size = 2
if style_image == None:
has_text_mask = 1
has_image_mask = 0 # then we hack above 'image_list'
else:
valid_phrase_len = len(phrase_list)
phrase_list += ['placeholder']
has_text_mask = [1]*valid_phrase_len + [0]
image_list = [placeholder_image]*valid_phrase_len + [style_image]
has_image_mask = [0]*valid_phrase_len + [1]
location_list += [ [0.0, 0.0, 1, 0.01] ] # style image grounding location
if task == 'Grounded Inpainting':
alpha_sample = 1.0
instruction = dict(
prompt = language_instruction,
phrases = phrase_list,
images = image_list,
locations = location_list,
alpha_type = [alpha_sample, 0, 1.0 - alpha_sample],
has_text_mask = has_text_mask,
has_image_mask = has_image_mask,
save_folder_name = language_instruction,
guidance_scale = guidance_scale,
batch_size = batch_size,
fix_seed = bool(fix_seed),
rand_seed = int(rand_seed),
actual_mask = actual_mask,
inpainting_boxes_nodrop = inpainting_boxes_nodrop,
)
get_model = partial(instance.get_model,
batch_size=batch_size,
instruction=language_instruction,
phrase_list=phrase_list)
with torch.autocast(device_type='cuda', dtype=torch.float16):
if task == 'Grounded Generation':
if style_image == None:
return grounded_generation_box(get_model('base'), instruction, *args, **kwargs)
else:
return grounded_generation_box(get_model('style'), instruction, *args, **kwargs)
elif task == 'Grounded Inpainting':
assert image is not None
instruction['input_image'] = image.convert("RGB")
return grounded_generation_box(get_model('inpaint'), instruction, *args, **kwargs)
def draw_box(boxes=[], texts=[], img=None):
if len(boxes) == 0 and img is None:
return None
if img is None:
img = Image.new('RGB', (512, 512), (255, 255, 255))
colors = ["red", "olive", "blue", "green", "orange", "brown", "cyan", "purple"]
draw = ImageDraw.Draw(img)
font = ImageFont.truetype("DejaVuSansMono.ttf", size=18)
for bid, box in enumerate(boxes):
draw.rectangle([box[0], box[1], box[2], box[3]], outline=colors[bid % len(colors)], width=4)
anno_text = texts[bid]
draw.rectangle([box[0], box[3] - int(font.size * 1.2), box[0] + int((len(anno_text) + 0.8) * font.size * 0.6), box[3]], outline=colors[bid % len(colors)], fill=colors[bid % len(colors)], width=4)
draw.text([box[0] + int(font.size * 0.2), box[3] - int(font.size*1.2)], anno_text, font=font, fill=(255,255,255))
return img
def get_concat(ims):
if len(ims) == 1:
n_col = 1
else:
n_col = 2
n_row = math.ceil(len(ims) / 2)
dst = Image.new('RGB', (ims[0].width * n_col, ims[0].height * n_row), color="white")
for i, im in enumerate(ims):
row_id = i // n_col
col_id = i % n_col
dst.paste(im, (im.width * col_id, im.height * row_id))
return dst
def auto_append_grounding(language_instruction, grounding_texts):
for grounding_text in grounding_texts:
if grounding_text not in language_instruction and grounding_text != 'auto':
language_instruction += "; " + grounding_text
print(language_instruction)
return language_instruction
def generate(task, language_instruction, grounding_texts, sketch_pad,
alpha_sample, guidance_scale, batch_size,
fix_seed, rand_seed, use_actual_mask, append_grounding, style_cond_image,
state):
if 'boxes' not in state:
state['boxes'] = []
boxes = state['boxes']
grounding_texts = [x.strip() for x in grounding_texts.split(';')]
assert len(boxes) == len(grounding_texts)
if len(boxes) != len(grounding_texts):
if len(boxes) < len(grounding_texts):
raise ValueError("""The number of boxes should be equal to the number of grounding objects.
Number of boxes drawn: {}, number of grounding tokens: {}.
Please draw boxes accordingly on the sketch pad.""".format(len(boxes), len(grounding_texts)))
grounding_texts = grounding_texts + [""] * (len(boxes) - len(grounding_texts))
boxes = (np.asarray(boxes) / 512).tolist()
grounding_instruction = json.dumps({obj: box for obj,box in zip(grounding_texts, boxes)})
image = None
actual_mask = None
if task == 'Grounded Inpainting':
image = state.get('original_image', sketch_pad['image']).copy()
image = center_crop(image)
image = Image.fromarray(image)
if use_actual_mask:
actual_mask = sketch_pad['mask'].copy()
if actual_mask.ndim == 3:
actual_mask = actual_mask[..., 0]
actual_mask = center_crop(actual_mask, tgt_size=(64, 64))
actual_mask = torch.from_numpy(actual_mask == 0).float()
if state.get('inpaint_hw', None):
boxes = np.asarray(boxes) * 0.9 + 0.05
boxes = boxes.tolist()
grounding_instruction = json.dumps({obj: box for obj,box in zip(grounding_texts, boxes) if obj != 'auto'})
# Try to remove append grounding
# if append_grounding:
# language_instruction = auto_append_grounding(language_instruction, grounding_texts)
gen_images, gen_overlays = inference(
task, language_instruction, grounding_instruction, boxes, image,
alpha_sample, guidance_scale, batch_size,
fix_seed, rand_seed, actual_mask, style_cond_image, clip_model=clip_model,
)
for idx, gen_image in enumerate(gen_images):
if task == 'Grounded Inpainting' and state.get('inpaint_hw', None):
hw = min(*state['original_image'].shape[:2])
gen_image = sized_center_fill(state['original_image'].copy(), np.array(gen_image.resize((hw, hw))), hw, hw)
gen_image = Image.fromarray(gen_image)
gen_images[idx] = gen_image
blank_samples = batch_size % 2 if batch_size > 1 else 0
gen_images = [gr.Image.update(value=x, visible=True) for i,x in enumerate(gen_images)] \
+ [gr.Image.update(value=None, visible=True) for _ in range(blank_samples)] \
+ [gr.Image.update(value=None, visible=False) for _ in range(4 - batch_size - blank_samples)]
return gen_images + [state]
def binarize(x):
return (x != 0).astype('uint8') * 255
def sized_center_crop(img, cropx, cropy):
y, x = img.shape[:2]
startx = x // 2 - (cropx // 2)
starty = y // 2 - (cropy // 2)
return img[starty:starty+cropy, startx:startx+cropx]
def sized_center_fill(img, fill, cropx, cropy):
y, x = img.shape[:2]
startx = x // 2 - (cropx // 2)
starty = y // 2 - (cropy // 2)
img[starty:starty+cropy, startx:startx+cropx] = fill
return img
def sized_center_mask(img, cropx, cropy):
y, x = img.shape[:2]
startx = x // 2 - (cropx // 2)
starty = y // 2 - (cropy // 2)
center_region = img[starty:starty+cropy, startx:startx+cropx].copy()
img = (img * 0.2).astype('uint8')
img[starty:starty+cropy, startx:startx+cropx] = center_region
return img
def center_crop(img, HW=None, tgt_size=(512, 512)):
if HW is None:
H, W = img.shape[:2]
HW = min(H, W)
img = sized_center_crop(img, HW, HW)
img = Image.fromarray(img)
img = img.resize(tgt_size)
return np.array(img)
def draw(task, input, grounding_texts, new_image_trigger, state):
if type(input) == dict:
image = input['image']
mask = input['mask']
else:
mask = input
if mask.ndim == 3:
mask = mask[..., 0]
image_scale = 1.0
# resize trigger
if task == "Grounded Inpainting":
mask_cond = mask.sum() == 0
# size_cond = mask.shape != (512, 512)
if mask_cond and 'original_image' not in state:
image = Image.fromarray(image)
width, height = image.size
scale = 600 / min(width, height)
image = image.resize((int(width * scale), int(height * scale)))
state['original_image'] = np.array(image).copy()
image_scale = float(height / width)
return [None, new_image_trigger + 1, image_scale, state]
else:
original_image = state['original_image']
H, W = original_image.shape[:2]
image_scale = float(H / W)
mask = binarize(mask)
if mask.shape != (512, 512):
# assert False, "should not receive any non- 512x512 masks."
if 'original_image' in state and state['original_image'].shape[:2] == mask.shape:
mask = center_crop(mask, state['inpaint_hw'])
image = center_crop(state['original_image'], state['inpaint_hw'])
else:
mask = np.zeros((512, 512), dtype=np.uint8)
# mask = center_crop(mask)
mask = binarize(mask)
if type(mask) != np.ndarray:
mask = np.array(mask)
if mask.sum() == 0 and task != "Grounded Inpainting":
state = {}
if task != 'Grounded Inpainting':
image = None
else:
image = Image.fromarray(image)
if 'boxes' not in state:
state['boxes'] = []
if 'masks' not in state or len(state['masks']) == 0:
state['masks'] = []
last_mask = np.zeros_like(mask)
else:
last_mask = state['masks'][-1]
if type(mask) == np.ndarray and mask.size > 1:
diff_mask = mask - last_mask
else:
diff_mask = np.zeros([])
if diff_mask.sum() > 0:
x1x2 = np.where(diff_mask.max(0) != 0)[0]
y1y2 = np.where(diff_mask.max(1) != 0)[0]
y1, y2 = y1y2.min(), y1y2.max()
x1, x2 = x1x2.min(), x1x2.max()
if (x2 - x1 > 5) and (y2 - y1 > 5):
state['masks'].append(mask.copy())
state['boxes'].append((x1, y1, x2, y2))
grounding_texts = [x.strip() for x in grounding_texts.split(';')]
grounding_texts = [x for x in grounding_texts if len(x) > 0]
if len(grounding_texts) < len(state['boxes']):
grounding_texts += [f'Obj. {bid+1}' for bid in range(len(grounding_texts), len(state['boxes']))]
box_image = draw_box(state['boxes'], grounding_texts, image)
if box_image is not None and state.get('inpaint_hw', None):
inpaint_hw = state['inpaint_hw']
box_image_resize = np.array(box_image.resize((inpaint_hw, inpaint_hw)))
original_image = state['original_image'].copy()
box_image = sized_center_fill(original_image, box_image_resize, inpaint_hw, inpaint_hw)
return [box_image, new_image_trigger, image_scale, state]
def clear(task, sketch_pad_trigger, batch_size, state, switch_task=False):
if task != 'Grounded Inpainting':
sketch_pad_trigger = sketch_pad_trigger + 1
blank_samples = batch_size % 2 if batch_size > 1 else 0
out_images = [gr.Image.update(value=None, visible=True) for i in range(batch_size)] \
+ [gr.Image.update(value=None, visible=True) for _ in range(blank_samples)] \
+ [gr.Image.update(value=None, visible=False) for _ in range(4 - batch_size - blank_samples)]
state = {}
return [None, sketch_pad_trigger, None, 1.0] + out_images + [state]
css = """
#img2img_image, #img2img_image > .fixed-height, #img2img_image > .fixed-height > div, #img2img_image > .fixed-height > div > img
{
height: var(--height) !important;
max-height: var(--height) !important;
min-height: var(--height) !important;
}
#paper-info a {
color:#008AD7;
text-decoration: none;
}
#paper-info a:hover {
cursor: pointer;
text-decoration: none;
}
"""
rescale_js = """
function(x) {
const root = document.querySelector('gradio-app').shadowRoot || document.querySelector('gradio-app');
let image_scale = parseFloat(root.querySelector('#image_scale input').value) || 1.0;
const image_width = root.querySelector('#img2img_image').clientWidth;
const target_height = parseInt(image_width * image_scale);
document.body.style.setProperty('--height', `${target_height}px`);
root.querySelectorAll('button.justify-center.rounded')[0].style.display='none';
root.querySelectorAll('button.justify-center.rounded')[1].style.display='none';
return x;
}
"""
# Set up OpenAI API key
openai.api_key = os.environ['OPENAI_API_KEY']
prompt_base = 'Separate the subjects in this sentence by semicolons. For example, the sentence "a tiger and a horse running in a greenland" should output "tiger; horse". If there are numbers, make each subject unique. For example, "2 dogs and 1 duck" would be "dog; dog; duck." Do the same for the following sentence: \n'
original_input = ""
separated_subjects = ""
# language_instruction = gr.Textbox(
# label="Language Instruction by User",
# value="2 horses running",
# visible=False
# )
# grounding_instruction = gr.Textbox(
# label="Subjects in image (Separated by semicolon)",
# value="horse; horse",
# visible=False
# )
def separate_subjects(input_text):
prompt = prompt_base + input_text
response = openai.Completion.create(
engine="text-davinci-002",
prompt=prompt,
max_tokens=1024,
n=1,
stop=None,
temperature=0.7,
)
output_text = response.choices[0].text.strip()
return output_text
with Blocks(
css=css,
analytics_enabled=False,
title="GLIGen demo",
) as main:
gr.Markdown('<h1 style="text-align: center;">MSR: MultiSubject Render</h1>')
gr.Markdown('<h3 style="text-align: center;">Using NLP and Grounding Processing Techniques to improve image generation of multiple subjects with base Stable Diffusion Model</h3>')
with gr.Row():
with gr.Column(scale=4):
sketch_pad_trigger = gr.Number(value=0, visible=False)
sketch_pad_resize_trigger = gr.Number(value=0, visible=False)
init_white_trigger = gr.Number(value=0, visible=False)
image_scale = gr.Number(value=0, elem_id="image_scale", visible=False)
new_image_trigger = gr.Number(value=0, visible=False)
# UNCOMMENT THIS WHEN YOU WANT TO TOGGLE INPAINTING OPTION
task = gr.Radio(
choices=["Version 1: Single Layer", 'Version 2: Inpainting w/ Multiple Layers'],
type="value",
value="Grounded Generation",
label="Task",
visible=False,
)
# language_instruction = gr.Textbox(
# label="Enter your prompt here",
# )
# grounding_instruction = gr.Textbox(
# label="Grounding instruction (Separated by semicolon)",
# )
# grounding_instruction = separate_subjects(language_instruction.value)
# print(f"The user entered: {language_instruction}")
# print(f"Our function gave: {grounding_instruction}")
# EXPERIMENTING:
with gr.Column():
seed = gr.Text(label="Enter your prompt here:")
gr.Examples(["2 horses running", "A cowboy and ninja fighting", "An apple and an orange on a table"], inputs=[seed])
with gr.Column():
btn = gr.Button("Gen")
with gr.Column():
separated_text = gr.Text(label="Subjects Separated by Semicolon")
btn.click(separate_subjects, inputs=[seed], outputs=[separated_text])
language_instruction = gr.Textbox(
label="Language Instruction by User",
value=seed,
visible=False
)
print("separated_text", separated_text)
grounding_instruction=separated_text
print("grounding instrcc", grounding_instruction)
# language_instruction.value = seed
# grounding_instruction.value = separated_text
####################
# language_instruction = gr.Textbox(
# label="Enter your prompt here",
# )
# original_input = language_instruction.value
# start_btn = gr.Button('Start')
# start_btn.click(update_grounding_instruction)
# print("separated subjects 2:", separated_subjects)
# language_instruction = gr.Textbox(
# label="just needs to be here",
# value=seed,
# visible=False
# )
# grounding_instruction = gr.Textbox(
# label="Subjects in image (Separated by semicolon)",
# value=separated_text,
# visible=False
# )
print("Language instruction Value:", language_instruction.value)
print("Grounding instruction:", grounding_instruction.value)
####################
with gr.Row():
sketch_pad = ImageMask(label="Sketch Pad", elem_id="img2img_image")
out_imagebox = gr.Image(type="pil", label="Parsed Sketch Pad")
with gr.Row():
clear_btn = gr.Button(value='Clear')
gen_btn = gr.Button(value='Generate')
with gr.Accordion("Advanced Options", open=False):
with gr.Column():
alpha_sample = gr.Slider(minimum=0, maximum=1.0, step=0.1, value=0.3, label="Scheduled Sampling (Ο)", visible=False)
guidance_scale = gr.Slider(minimum=0, maximum=50, step=0.5, value=20, label="Guidance Scale (how closely it adheres to your prompt)")
batch_size = gr.Slider(minimum=1, maximum=4, step=1, value=4, label="Number of Images")
append_grounding = gr.Checkbox(value=True, label="Append grounding instructions to the caption", visible=False)
use_actual_mask = gr.Checkbox(value=False, label="Use actual mask for inpainting", visible=False)
with gr.Row():
fix_seed = gr.Checkbox(value=False, label="Fixed seed", visible=False)
rand_seed = gr.Slider(minimum=0, maximum=1000, step=1, value=0, label="Seed", visible=False)
with gr.Row():
use_style_cond = gr.Checkbox(value=False, label="Enable Style Condition", visible=False)
style_cond_image = gr.Image(type="pil", label="Style Condition", interactive=True, visible=False)
with gr.Column(scale=4):
gr.HTML('<span style="font-size: 20px; font-weight: bold">Generated Images</span>')
with gr.Row():
out_gen_1 = gr.Image(type="pil", visible=True, show_label=False)
out_gen_2 = gr.Image(type="pil", visible=True, show_label=False)
with gr.Row():
out_gen_3 = gr.Image(type="pil", visible=True, show_label=False)
out_gen_4 = gr.Image(type="pil", visible=True, show_label=False)
state = gr.State({})
class Controller:
def __init__(self):
self.calls = 0
self.tracks = 0
self.resizes = 0
self.scales = 0
def init_white(self, init_white_trigger):
self.calls += 1
return np.ones((512, 512), dtype='uint8') * 255, 1.0, init_white_trigger+1
def change_n_samples(self, n_samples):
blank_samples = n_samples % 2 if n_samples > 1 else 0
return [gr.Image.update(visible=True) for _ in range(n_samples + blank_samples)] \
+ [gr.Image.update(visible=False) for _ in range(4 - n_samples - blank_samples)]
def resize_centercrop(self, state):
self.resizes += 1
image = state['original_image'].copy()
inpaint_hw = int(0.9 * min(*image.shape[:2]))
state['inpaint_hw'] = inpaint_hw
image_cc = center_crop(image, inpaint_hw)
# print(f'resize triggered {self.resizes}', image.shape, '->', image_cc.shape)
return image_cc, state
def resize_masked(self, state):
self.resizes += 1
image = state['original_image'].copy()
inpaint_hw = int(0.9 * min(*image.shape[:2]))
state['inpaint_hw'] = inpaint_hw
image_mask = sized_center_mask(image, inpaint_hw, inpaint_hw)
state['masked_image'] = image_mask.copy()
# print(f'mask triggered {self.resizes}')
return image_mask, state
def switch_task_hide_cond(self, task):
cond = False
if task == "Grounded Generation":
cond = True
return gr.Checkbox.update(visible=cond, value=False), gr.Image.update(value=None, visible=False), gr.Slider.update(visible=cond), gr.Checkbox.update(visible=(not cond), value=False)
controller = Controller()
main.load(
lambda x:x+1,
inputs=sketch_pad_trigger,
outputs=sketch_pad_trigger,
queue=False)
sketch_pad.edit(
draw,
inputs=[task, sketch_pad, grounding_instruction, sketch_pad_resize_trigger, state],
outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, state],
queue=False,
)
grounding_instruction.change(
draw,
inputs=[task, sketch_pad, grounding_instruction, sketch_pad_resize_trigger, state],
outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, state],
queue=False,
)
clear_btn.click(
clear,
inputs=[task, sketch_pad_trigger, batch_size, state],
outputs=[sketch_pad, sketch_pad_trigger, out_imagebox, image_scale, out_gen_1, out_gen_2, out_gen_3, out_gen_4, state],
queue=False)
task.change(
partial(clear, switch_task=True),
inputs=[task, sketch_pad_trigger, batch_size, state],
outputs=[sketch_pad, sketch_pad_trigger, out_imagebox, image_scale, out_gen_1, out_gen_2, out_gen_3, out_gen_4, state],
queue=False)
sketch_pad_trigger.change(
controller.init_white,
inputs=[init_white_trigger],
outputs=[sketch_pad, image_scale, init_white_trigger],
queue=False)
sketch_pad_resize_trigger.change(
controller.resize_masked,
inputs=[state],
outputs=[sketch_pad, state],
queue=False)
batch_size.change(
controller.change_n_samples,
inputs=[batch_size],
outputs=[out_gen_1, out_gen_2, out_gen_3, out_gen_4],
queue=False)
gen_btn.click(
generate,
inputs=[
task, language_instruction, grounding_instruction, sketch_pad,
alpha_sample, guidance_scale, batch_size,
fix_seed, rand_seed,
use_actual_mask,
append_grounding, style_cond_image,
state,
],
outputs=[out_gen_1, out_gen_2, out_gen_3, out_gen_4, state],
queue=True
)
# start_btn.click(
# update_grounding_instruction,
# # inputs=[
# # original_input,
# # ],
# # outputs=[separated_subjects],
# # queue=True
# )
sketch_pad_resize_trigger.change(
None,
None,
sketch_pad_resize_trigger,
_js=rescale_js,
queue=False)
init_white_trigger.change(
None,
None,
init_white_trigger,
_js=rescale_js,
queue=False)
use_style_cond.change(
lambda cond: gr.Image.update(visible=cond),
use_style_cond,
style_cond_image,
queue=False)
task.change(
controller.switch_task_hide_cond,
inputs=task,
outputs=[use_style_cond, style_cond_image, alpha_sample, use_actual_mask],
queue=False)
main.queue(concurrency_count=1, api_open=False)
main.launch(share=False, show_api=False, show_error=True) |