Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import random | |
import gradio as gr | |
import numpy as np | |
import PIL.Image | |
import spaces | |
import torch | |
from diffusers import (AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, | |
StableDiffusionXLPipeline) | |
from torchvision.transforms import ToTensor | |
# pyright: reportPrivateImportUsage=false | |
DESCRIPTION = f""" | |
# 🎨 Inversion-InstantStyle 🎨 | |
This is an interactive demo of noisy DDIM inversion capabilities on top of Instant-Style styling method | |
This method is proposed by *Eyal Benaroche, Clément Chadebec, Onur Tasar, and Benjamin Aubin* from Jasper Research in the context of Eyal's internship with Ecole Polytechnique. | |
A style benchmark : [style-bench](https://gojasper.github.io/style-bench) was also provided to facilitate evaluation of diffusion models for styling purposes. | |
""" | |
OPEN_SOURCE_PROMO = f""" | |
If you enjoy the space, please also promote *open-source* by giving a ⭐ to our repo [![GitHub Stars](https://img.shields.io/github/stars/gojasper/style-bench?style=social)](https://github.com/gojasper/style-bench) | |
""" | |
DISCLAIMER = f""" | |
This demo is only for research purpose. Users are solely responsible for any content they create, and it is their obligation to ensure that it adheres to appropriate and ethical standards. """ | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024")) | |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1" | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
if gr.NO_RELOAD: | |
if torch.cuda.is_available(): | |
vae = AutoencoderKL.from_pretrained( | |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 | |
) | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
vae=vae, | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
variant="fp16", | |
) | |
pipe.load_ip_adapter( | |
"h94/IP-Adapter", | |
subfolder="sdxl_models", | |
weight_name="ip-adapter_sdxl.safetensors", | |
) | |
pipe.to(device) | |
forward_scheduler = DDIMScheduler.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler" | |
) | |
invert_scheduler = DDIMInverseScheduler(**forward_scheduler.config) | |
css = """ | |
h1 { | |
text-align: center; | |
display:block; | |
} | |
p { | |
text-align: justify; | |
display:block; | |
} | |
""" | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def img_to_latents(x: torch.Tensor, vae: AutoencoderKL): | |
x = 2.0 * x - 1.0 | |
posterior = vae.encode(x).latent_dist | |
latents = posterior.mean * 0.18215 | |
return latents | |
def invert_image(model, image: np.ndarray, n_steps: int, width: int, height: int): | |
model.scheduler = invert_scheduler | |
image = PIL.Image.fromarray(image).resize((width, height)) | |
image_tensor = ToTensor()(image).to(model.device, dtype=torch.float16) | |
image_tensor = image_tensor.unsqueeze(0) | |
latent = img_to_latents(image_tensor, model.vae) | |
model.set_ip_adapter_scale(0) | |
inv_latents = model( | |
prompt="", | |
negative_prompt="", | |
ip_adapter_image=image, | |
guidance_scale=1.0, | |
output_type="latent", | |
return_dict=False, | |
num_inference_steps=n_steps, | |
latents=latent, | |
)[0] | |
return inv_latents | |
def generate( | |
prompt: str, | |
negative_prompt: str = "", | |
prompt_2: str = "", | |
negative_prompt_2: str = "", | |
use_negative_prompt: bool = False, | |
use_prompt_2: bool = False, | |
use_negative_prompt_2: bool = False, | |
seed: int = 0, | |
width: int = 1024, | |
height: int = 1024, | |
guidance_scale_base: float = 5.0, | |
num_inference_steps_base: int = 25, | |
style_image_value=None, | |
noise_scale: float = 1.5, | |
) -> PIL.Image.Image: | |
torch.manual_seed(seed) | |
if not use_negative_prompt: | |
negative_prompt = None # type: ignore | |
if not use_prompt_2: | |
prompt_2 = None # type: ignore | |
if not use_negative_prompt_2: | |
negative_prompt_2 = None # type: ignore | |
# Add scaled noise to the latent | |
noise = torch.randn(1, 4, width // 8, height // 8).to(device, dtype=torch.float16) | |
# Invert the image and get the latent | |
if style_image_value is not None: | |
latent = invert_image(pipe, style_image_value, 30, width, height) | |
latent = latent + noise_scale * noise | |
latent = latent / torch.sqrt( | |
torch.tensor(1 + noise_scale**2).to(device, dtype=torch.float16) | |
) | |
else: | |
latent = noise | |
scale = { | |
"up": {"block_0": [0.0, 1.0, 0.0]}, | |
} | |
pipe.set_ip_adapter_scale(scale) | |
pipe.scheduler = forward_scheduler | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
ip_adapter_image=style_image_value, | |
latents=latent, | |
prompt_2=prompt_2, | |
negative_prompt_2=negative_prompt_2, | |
guidance_scale=guidance_scale_base, | |
num_inference_steps=num_inference_steps_base, | |
output_type="pil", | |
).images[0] | |
return image | |
examples_prompts = [ | |
"Astronaut in a jungle, detailed, 8k", | |
"A Bird", | |
"A Tiger", | |
"A Cat", | |
"cactus", | |
"A Panda", | |
] | |
examples_images = [f"./images/{i}.png" for i in range(6)] | |
examples = [[prompt, image] for prompt, image in zip(examples_prompts, examples_images)] | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.Markdown(OPEN_SOURCE_PROMO) | |
with gr.Row(): | |
with gr.Blocks(): | |
with gr.Column(): | |
style_image = gr.Image() | |
noise_scale = gr.Slider( | |
label="Noise Scale", | |
minimum=0, | |
maximum=5, | |
step=0.1, | |
value=1.5, | |
) | |
with gr.Blocks(): | |
with gr.Column(): | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced options", open=False): | |
with gr.Row(): | |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False) | |
use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False) | |
use_negative_prompt_2 = gr.Checkbox( | |
label="Use negative prompt 2", value=False | |
) | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=False, | |
) | |
prompt_2 = gr.Text( | |
label="Prompt 2", | |
max_lines=1, | |
placeholder="Enter your prompt", | |
visible=False, | |
) | |
negative_prompt_2 = gr.Text( | |
label="Negative prompt 2", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=False, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale_base = gr.Slider( | |
label="Guidance scale for base", | |
minimum=1, | |
maximum=20, | |
step=0.1, | |
value=5.0, | |
) | |
num_inference_steps_base = gr.Slider( | |
label="Number of inference steps for base", | |
minimum=10, | |
maximum=100, | |
step=1, | |
value=25, | |
) | |
with gr.Row(visible=False) as refiner_params: | |
guidance_scale_refiner = gr.Slider( | |
label="Guidance scale for refiner", | |
minimum=1, | |
maximum=20, | |
step=0.1, | |
value=5.0, | |
) | |
num_inference_steps_refiner = gr.Slider( | |
label="Number of inference steps for refiner", | |
minimum=10, | |
maximum=100, | |
step=1, | |
value=25, | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=[prompt, style_image], | |
outputs=result, | |
fn=generate, | |
) | |
gr.Markdown("## Disclaimer") | |
gr.Markdown(DISCLAIMER) | |
use_negative_prompt.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_negative_prompt, | |
outputs=negative_prompt, | |
queue=False, | |
api_name=False, | |
) | |
use_prompt_2.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_prompt_2, | |
outputs=prompt_2, | |
queue=False, | |
api_name=False, | |
) | |
use_negative_prompt_2.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_negative_prompt_2, | |
outputs=negative_prompt_2, | |
queue=False, | |
api_name=False, | |
) | |
gr.on( | |
triggers=[ | |
prompt.submit, | |
negative_prompt.submit, | |
prompt_2.submit, | |
negative_prompt_2.submit, | |
run_button.click, | |
], | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=generate, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
prompt_2, | |
negative_prompt_2, | |
use_negative_prompt, | |
use_prompt_2, | |
use_negative_prompt_2, | |
seed, | |
width, | |
height, | |
guidance_scale_base, | |
num_inference_steps_base, | |
style_image, | |
noise_scale, | |
], | |
outputs=result, | |
api_name="run", | |
) | |
if __name__ == "__main__": | |
demo.launch() | |