File size: 10,785 Bytes
903c049
 
 
 
 
 
 
 
 
 
183c72e
903c049
 
 
 
 
183c72e
903c049
 
183c72e
903c049
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
183c72e
903c049
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
183c72e
903c049
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
183c72e
903c049
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
183c72e
 
 
903c049
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e581a8
 
 
 
 
 
 
903c049
 
2e581a8
 
 
 
903c049
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e581a8
903c049
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
import os
import random

import gradio as gr
import numpy as np
import PIL.Image
import spaces
import torch
from diffusers import (AutoencoderKL, DDIMInverseScheduler, DDIMScheduler,
                       StableDiffusionXLPipeline)
from torchvision.transforms import ToTensor

# pyright: reportPrivateImportUsage=false


DESCRIPTION = f"""
    # 🎨 Inversion-InstantStyle 🎨  
    This is an interactive demo of noisy DDIM inversion capabilities on top of Instant-Style styling method 
    
    This method is proposed by *Eyal Benaroche, Clément Chadebec, Onur Tasar, and Benjamin Aubin* from Jasper Research in the context of Eyal's internship with Ecole Polytechnique.

    A style benchmark : [style-bench](https://gojasper.github.io/style-bench) was also provided to facilitate evaluation of diffusion models for styling purposes.
    """

OPEN_SOURCE_PROMO = f"""
    If you enjoy the space, please also promote *open-source* by giving a ⭐ to our repo [![GitHub Stars](https://img.shields.io/github/stars/gojasper/style-bench?style=social)](https://github.com/gojasper/style-bench)
    """

DISCLAIMER = f"""
    This demo is only for research purpose. Users are solely responsible for any content they create, and it is their obligation to ensure that it adheres to appropriate and ethical standards. """

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

if gr.NO_RELOAD:
    if torch.cuda.is_available():
        vae = AutoencoderKL.from_pretrained(
            "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
        )
        pipe = StableDiffusionXLPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0",
            vae=vae,
            torch_dtype=torch.float16,
            use_safetensors=True,
            variant="fp16",
        )
        pipe.load_ip_adapter(
            "h94/IP-Adapter",
            subfolder="sdxl_models",
            weight_name="ip-adapter_sdxl.safetensors",
        )
        pipe.to(device)

        forward_scheduler = DDIMScheduler.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler"
        )
        invert_scheduler = DDIMInverseScheduler(**forward_scheduler.config)

css = """
    h1 {
        text-align: center;
        display:block;
    }
    p {
        text-align: justify;
        display:block;
    }
"""


def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed


def img_to_latents(x: torch.Tensor, vae: AutoencoderKL):
    x = 2.0 * x - 1.0
    posterior = vae.encode(x).latent_dist
    latents = posterior.mean * 0.18215
    return latents


def invert_image(model, image: np.ndarray, n_steps: int, width: int, height: int):

    model.scheduler = invert_scheduler

    image = PIL.Image.fromarray(image).resize((width, height))
    image_tensor = ToTensor()(image).to(model.device, dtype=torch.float16)
    image_tensor = image_tensor.unsqueeze(0)
    latent = img_to_latents(image_tensor, model.vae)

    model.set_ip_adapter_scale(0)

    inv_latents = model(
        prompt="",
        negative_prompt="",
        ip_adapter_image=image,
        guidance_scale=1.0,
        output_type="latent",
        return_dict=False,
        num_inference_steps=n_steps,
        latents=latent,
    )[0]

    return inv_latents


@spaces.GPU
def generate(
    prompt: str,
    negative_prompt: str = "",
    prompt_2: str = "",
    negative_prompt_2: str = "",
    use_negative_prompt: bool = False,
    use_prompt_2: bool = False,
    use_negative_prompt_2: bool = False,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale_base: float = 5.0,
    num_inference_steps_base: int = 25,
    style_image_value=None,
    noise_scale: float = 1.5,
) -> PIL.Image.Image:
    torch.manual_seed(seed)

    if not use_negative_prompt:
        negative_prompt = None  # type: ignore
    if not use_prompt_2:
        prompt_2 = None  # type: ignore
    if not use_negative_prompt_2:
        negative_prompt_2 = None  # type: ignore

    # Add scaled noise to the latent
    noise = torch.randn(1, 4, width // 8, height // 8).to(device, dtype=torch.float16)

    # Invert the image and get the latent
    if style_image_value is not None:
        latent = invert_image(pipe, style_image_value, 30, width, height)

        latent = latent + noise_scale * noise
        latent = latent / torch.sqrt(
            torch.tensor(1 + noise_scale**2).to(device, dtype=torch.float16)
        )

    else:
        latent = noise

    scale = {
        "up": {"block_0": [0.0, 1.0, 0.0]},
    }
    pipe.set_ip_adapter_scale(scale)

    pipe.scheduler = forward_scheduler
    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        ip_adapter_image=style_image_value,
        latents=latent,
        prompt_2=prompt_2,
        negative_prompt_2=negative_prompt_2,
        guidance_scale=guidance_scale_base,
        num_inference_steps=num_inference_steps_base,
        output_type="pil",
    ).images[0]

    return image


examples_prompts = [
    "Astronaut in a jungle, detailed, 8k",
    "A Bird",
    "A Tiger",
    "A Cat",
    "cactus",
    "A Panda",
]

examples_images = [f"./images/{i}.png" for i in range(6)]

examples = [[prompt, image] for prompt, image in zip(examples_prompts, examples_images)]

with gr.Blocks(css=css) as demo:
    gr.Markdown(DESCRIPTION)

    gr.Markdown(OPEN_SOURCE_PROMO)

    with gr.Row():

        with gr.Blocks():

            with gr.Column():

                style_image = gr.Image()

                noise_scale = gr.Slider(
                    label="Noise Scale",
                    minimum=0,
                    maximum=5,
                    step=0.1,
                    value=1.5,
                )

        with gr.Blocks():

            with gr.Column():
                with gr.Row():
                    prompt = gr.Text(
                        label="Prompt",
                        show_label=False,
                        max_lines=1,
                        placeholder="Enter your prompt",
                        container=False,
                    )
                    run_button = gr.Button("Run", scale=0)

                result = gr.Image(label="Result", show_label=False)

    with gr.Accordion("Advanced options", open=False):
        with gr.Row():
            use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
            use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False)
            use_negative_prompt_2 = gr.Checkbox(
                label="Use negative prompt 2", value=False
            )
        negative_prompt = gr.Text(
            label="Negative prompt",
            max_lines=1,
            placeholder="Enter a negative prompt",
            visible=False,
        )
        prompt_2 = gr.Text(
            label="Prompt 2",
            max_lines=1,
            placeholder="Enter your prompt",
            visible=False,
        )
        negative_prompt_2 = gr.Text(
            label="Negative prompt 2",
            max_lines=1,
            placeholder="Enter a negative prompt",
            visible=False,
        )

        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row():
            width = gr.Slider(
                label="Width",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=1024,
            )

        with gr.Row():
            guidance_scale_base = gr.Slider(
                label="Guidance scale for base",
                minimum=1,
                maximum=20,
                step=0.1,
                value=5.0,
            )
            num_inference_steps_base = gr.Slider(
                label="Number of inference steps for base",
                minimum=10,
                maximum=100,
                step=1,
                value=25,
            )
        with gr.Row(visible=False) as refiner_params:
            guidance_scale_refiner = gr.Slider(
                label="Guidance scale for refiner",
                minimum=1,
                maximum=20,
                step=0.1,
                value=5.0,
            )
            num_inference_steps_refiner = gr.Slider(
                label="Number of inference steps for refiner",
                minimum=10,
                maximum=100,
                step=1,
                value=25,
            )

    gr.Examples(
        examples=examples,
        inputs=[prompt, style_image],
        outputs=result,
        fn=generate,
    )

    gr.Markdown("## Disclaimer")
    gr.Markdown(DISCLAIMER)

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        queue=False,
        api_name=False,
    )
    use_prompt_2.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_prompt_2,
        outputs=prompt_2,
        queue=False,
        api_name=False,
    )
    use_negative_prompt_2.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt_2,
        outputs=negative_prompt_2,
        queue=False,
        api_name=False,
    )

    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,
            prompt_2.submit,
            negative_prompt_2.submit,
            run_button.click,
        ],
        fn=randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            prompt_2,
            negative_prompt_2,
            use_negative_prompt,
            use_prompt_2,
            use_negative_prompt_2,
            seed,
            width,
            height,
            guidance_scale_base,
            num_inference_steps_base,
            style_image,
            noise_scale,
        ],
        outputs=result,
        api_name="run",
    )

if __name__ == "__main__":
    demo.launch()