Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,785 Bytes
903c049 183c72e 903c049 183c72e 903c049 183c72e 903c049 183c72e 903c049 183c72e 903c049 183c72e 903c049 183c72e 903c049 2e581a8 903c049 2e581a8 903c049 2e581a8 903c049 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
import os
import random
import gradio as gr
import numpy as np
import PIL.Image
import spaces
import torch
from diffusers import (AutoencoderKL, DDIMInverseScheduler, DDIMScheduler,
StableDiffusionXLPipeline)
from torchvision.transforms import ToTensor
# pyright: reportPrivateImportUsage=false
DESCRIPTION = f"""
# 🎨 Inversion-InstantStyle 🎨
This is an interactive demo of noisy DDIM inversion capabilities on top of Instant-Style styling method
This method is proposed by *Eyal Benaroche, Clément Chadebec, Onur Tasar, and Benjamin Aubin* from Jasper Research in the context of Eyal's internship with Ecole Polytechnique.
A style benchmark : [style-bench](https://gojasper.github.io/style-bench) was also provided to facilitate evaluation of diffusion models for styling purposes.
"""
OPEN_SOURCE_PROMO = f"""
If you enjoy the space, please also promote *open-source* by giving a ⭐ to our repo [![GitHub Stars](https://img.shields.io/github/stars/gojasper/style-bench?style=social)](https://github.com/gojasper/style-bench)
"""
DISCLAIMER = f"""
This demo is only for research purpose. Users are solely responsible for any content they create, and it is their obligation to ensure that it adheres to appropriate and ethical standards. """
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if gr.NO_RELOAD:
if torch.cuda.is_available():
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
)
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
vae=vae,
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16",
)
pipe.load_ip_adapter(
"h94/IP-Adapter",
subfolder="sdxl_models",
weight_name="ip-adapter_sdxl.safetensors",
)
pipe.to(device)
forward_scheduler = DDIMScheduler.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler"
)
invert_scheduler = DDIMInverseScheduler(**forward_scheduler.config)
css = """
h1 {
text-align: center;
display:block;
}
p {
text-align: justify;
display:block;
}
"""
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def img_to_latents(x: torch.Tensor, vae: AutoencoderKL):
x = 2.0 * x - 1.0
posterior = vae.encode(x).latent_dist
latents = posterior.mean * 0.18215
return latents
def invert_image(model, image: np.ndarray, n_steps: int, width: int, height: int):
model.scheduler = invert_scheduler
image = PIL.Image.fromarray(image).resize((width, height))
image_tensor = ToTensor()(image).to(model.device, dtype=torch.float16)
image_tensor = image_tensor.unsqueeze(0)
latent = img_to_latents(image_tensor, model.vae)
model.set_ip_adapter_scale(0)
inv_latents = model(
prompt="",
negative_prompt="",
ip_adapter_image=image,
guidance_scale=1.0,
output_type="latent",
return_dict=False,
num_inference_steps=n_steps,
latents=latent,
)[0]
return inv_latents
@spaces.GPU
def generate(
prompt: str,
negative_prompt: str = "",
prompt_2: str = "",
negative_prompt_2: str = "",
use_negative_prompt: bool = False,
use_prompt_2: bool = False,
use_negative_prompt_2: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale_base: float = 5.0,
num_inference_steps_base: int = 25,
style_image_value=None,
noise_scale: float = 1.5,
) -> PIL.Image.Image:
torch.manual_seed(seed)
if not use_negative_prompt:
negative_prompt = None # type: ignore
if not use_prompt_2:
prompt_2 = None # type: ignore
if not use_negative_prompt_2:
negative_prompt_2 = None # type: ignore
# Add scaled noise to the latent
noise = torch.randn(1, 4, width // 8, height // 8).to(device, dtype=torch.float16)
# Invert the image and get the latent
if style_image_value is not None:
latent = invert_image(pipe, style_image_value, 30, width, height)
latent = latent + noise_scale * noise
latent = latent / torch.sqrt(
torch.tensor(1 + noise_scale**2).to(device, dtype=torch.float16)
)
else:
latent = noise
scale = {
"up": {"block_0": [0.0, 1.0, 0.0]},
}
pipe.set_ip_adapter_scale(scale)
pipe.scheduler = forward_scheduler
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
ip_adapter_image=style_image_value,
latents=latent,
prompt_2=prompt_2,
negative_prompt_2=negative_prompt_2,
guidance_scale=guidance_scale_base,
num_inference_steps=num_inference_steps_base,
output_type="pil",
).images[0]
return image
examples_prompts = [
"Astronaut in a jungle, detailed, 8k",
"A Bird",
"A Tiger",
"A Cat",
"cactus",
"A Panda",
]
examples_images = [f"./images/{i}.png" for i in range(6)]
examples = [[prompt, image] for prompt, image in zip(examples_prompts, examples_images)]
with gr.Blocks(css=css) as demo:
gr.Markdown(DESCRIPTION)
gr.Markdown(OPEN_SOURCE_PROMO)
with gr.Row():
with gr.Blocks():
with gr.Column():
style_image = gr.Image()
noise_scale = gr.Slider(
label="Noise Scale",
minimum=0,
maximum=5,
step=0.1,
value=1.5,
)
with gr.Blocks():
with gr.Column():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced options", open=False):
with gr.Row():
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False)
use_negative_prompt_2 = gr.Checkbox(
label="Use negative prompt 2", value=False
)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
prompt_2 = gr.Text(
label="Prompt 2",
max_lines=1,
placeholder="Enter your prompt",
visible=False,
)
negative_prompt_2 = gr.Text(
label="Negative prompt 2",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale_base = gr.Slider(
label="Guidance scale for base",
minimum=1,
maximum=20,
step=0.1,
value=5.0,
)
num_inference_steps_base = gr.Slider(
label="Number of inference steps for base",
minimum=10,
maximum=100,
step=1,
value=25,
)
with gr.Row(visible=False) as refiner_params:
guidance_scale_refiner = gr.Slider(
label="Guidance scale for refiner",
minimum=1,
maximum=20,
step=0.1,
value=5.0,
)
num_inference_steps_refiner = gr.Slider(
label="Number of inference steps for refiner",
minimum=10,
maximum=100,
step=1,
value=25,
)
gr.Examples(
examples=examples,
inputs=[prompt, style_image],
outputs=result,
fn=generate,
)
gr.Markdown("## Disclaimer")
gr.Markdown(DISCLAIMER)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
queue=False,
api_name=False,
)
use_prompt_2.change(
fn=lambda x: gr.update(visible=x),
inputs=use_prompt_2,
outputs=prompt_2,
queue=False,
api_name=False,
)
use_negative_prompt_2.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt_2,
outputs=negative_prompt_2,
queue=False,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
prompt_2.submit,
negative_prompt_2.submit,
run_button.click,
],
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=[
prompt,
negative_prompt,
prompt_2,
negative_prompt_2,
use_negative_prompt,
use_prompt_2,
use_negative_prompt_2,
seed,
width,
height,
guidance_scale_base,
num_inference_steps_base,
style_image,
noise_scale,
],
outputs=result,
api_name="run",
)
if __name__ == "__main__":
demo.launch()
|