File size: 3,685 Bytes
6497501 660f2af 6497501 660f2af 6497501 660f2af 6497501 660f2af 6497501 660f2af 6497501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import torch
from omegaconf import OmegaConf
from sgm.util import instantiate_from_config
from sgm.modules.diffusionmodules.sampling import *
SD_XL_BASE_RATIOS = {
"0.5": (704, 1408),
"0.52": (704, 1344),
"0.57": (768, 1344),
"0.6": (768, 1280),
"0.68": (832, 1216),
"0.72": (832, 1152),
"0.78": (896, 1152),
"0.82": (896, 1088),
"0.88": (960, 1088),
"0.94": (960, 1024),
"1.0": (1024, 1024),
"1.07": (1024, 960),
"1.13": (1088, 960),
"1.21": (1088, 896),
"1.29": (1152, 896),
"1.38": (1152, 832),
"1.46": (1216, 832),
"1.67": (1280, 768),
"1.75": (1344, 768),
"1.91": (1344, 704),
"2.0": (1408, 704),
"2.09": (1472, 704),
"2.4": (1536, 640),
"2.5": (1600, 640),
"2.89": (1664, 576),
"3.0": (1728, 576),
}
def init_model(cfgs):
model_cfg = OmegaConf.load(cfgs.model_cfg_path)
ckpt = cfgs.load_ckpt_path
model = instantiate_from_config(model_cfg.model)
model.init_from_ckpt(ckpt)
if cfgs.type == "train":
model.train()
else:
if cfgs.use_gpu:
model.to(torch.device("cuda", index=cfgs.gpu))
model.eval()
model.freeze()
return model
def init_sampling(cfgs):
discretization_config = {
"target": "sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization",
}
if cfgs.dual_conditioner:
guider_config = {
"target": "sgm.modules.diffusionmodules.guiders.DualCFG",
"params": {"scale": cfgs.scale},
}
sampler = EulerEDMDualSampler(
num_steps=cfgs.steps,
discretization_config=discretization_config,
guider_config=guider_config,
s_churn=0.0,
s_tmin=0.0,
s_tmax=999.0,
s_noise=1.0,
verbose=True,
device=torch.device("cuda", index=cfgs.gpu)
)
else:
guider_config = {
"target": "sgm.modules.diffusionmodules.guiders.VanillaCFG",
"params": {"scale": cfgs.scale[0]},
}
sampler = EulerEDMSampler(
num_steps=cfgs.steps,
discretization_config=discretization_config,
guider_config=guider_config,
s_churn=0.0,
s_tmin=0.0,
s_tmax=999.0,
s_noise=1.0,
verbose=True,
device=torch.device("cuda", index=cfgs.gpu)
)
return sampler
def deep_copy(batch):
c_batch = {}
for key in batch:
if isinstance(batch[key], torch.Tensor):
c_batch[key] = torch.clone(batch[key])
elif isinstance(batch[key], (tuple, list)):
c_batch[key] = batch[key].copy()
else:
c_batch[key] = batch[key]
return c_batch
def prepare_batch(cfgs, batch):
for key in batch:
if isinstance(batch[key], torch.Tensor) and cfgs.use_gpu:
batch[key] = batch[key].to(torch.device("cuda", index=cfgs.gpu))
if not cfgs.dual_conditioner:
batch_uc = deep_copy(batch)
if "ntxt" in batch:
batch_uc["txt"] = batch["ntxt"]
else:
batch_uc["txt"] = ["" for _ in range(len(batch["txt"]))]
if "label" in batch:
batch_uc["label"] = ["" for _ in range(len(batch["label"]))]
return batch, batch_uc, None
else:
batch_uc_1 = deep_copy(batch)
batch_uc_2 = deep_copy(batch)
batch_uc_1["ref"] = torch.zeros_like(batch["ref"])
batch_uc_2["ref"] = torch.zeros_like(batch["ref"])
batch_uc_1["label"] = ["" for _ in range(len(batch["label"]))]
return batch, batch_uc_1, batch_uc_2 |