first
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +2 -0
- README.md +1 -1
- app.py +207 -0
- checkpoints/AEs/AE_inpainting_2.safetensors +3 -0
- checkpoints/encoders/LabelEncoder/epoch=19-step=7820.ckpt +3 -0
- checkpoints/st-step=100000+la-step=100000-simp.ckpt +3 -0
- configs/demo.yaml +29 -0
- configs/test/textdesign_sd_2.yaml +137 -0
- demo/examples/CEFUL_1_0.jpeg +3 -0
- demo/examples/CLOTHES_0_0.png +3 -0
- demo/examples/COMPLICATED_0_1.jpeg +3 -0
- demo/examples/DELIGHT_0_1.jpeg +3 -0
- demo/examples/ECHOES_0_0.jpeg +3 -0
- demo/examples/ENGINE_0_0.png +3 -0
- demo/examples/FASCINATING_0_1.jpeg +3 -0
- demo/examples/FAVOURITE_0_0.jpeg +3 -0
- demo/examples/FINNAL_0_1.jpeg +3 -0
- demo/examples/FRONTIER_0_0.png +3 -0
- demo/examples/Innovate_0_0.jpeg +3 -0
- demo/examples/PRESERVE_0_0.jpeg +3 -0
- demo/examples/Peaceful_0_0.jpeg +3 -0
- demo/examples/Scamps_0_0.png +3 -0
- demo/examples/TREE_0_0.png +3 -0
- demo/examples/better_0_0.jpg +3 -0
- demo/examples/tested_0_0.png +3 -0
- demo/teaser.png +3 -0
- requirements.txt +24 -0
- sgm/__init__.py +2 -0
- sgm/lr_scheduler.py +135 -0
- sgm/models/__init__.py +2 -0
- sgm/models/autoencoder.py +335 -0
- sgm/models/diffusion.py +328 -0
- sgm/modules/__init__.py +6 -0
- sgm/modules/attention.py +976 -0
- sgm/modules/autoencoding/__init__.py +0 -0
- sgm/modules/autoencoding/losses/__init__.py +246 -0
- sgm/modules/autoencoding/regularizers/__init__.py +53 -0
- sgm/modules/diffusionmodules/__init__.py +7 -0
- sgm/modules/diffusionmodules/denoiser.py +63 -0
- sgm/modules/diffusionmodules/denoiser_scaling.py +31 -0
- sgm/modules/diffusionmodules/denoiser_weighting.py +24 -0
- sgm/modules/diffusionmodules/discretizer.py +68 -0
- sgm/modules/diffusionmodules/guiders.py +81 -0
- sgm/modules/diffusionmodules/loss.py +275 -0
- sgm/modules/diffusionmodules/model.py +743 -0
- sgm/modules/diffusionmodules/openaimodel.py +2070 -0
- sgm/modules/diffusionmodules/sampling.py +784 -0
- sgm/modules/diffusionmodules/sampling_utils.py +51 -0
- sgm/modules/diffusionmodules/sigma_sampling.py +31 -0
- sgm/modules/diffusionmodules/util.py +308 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
**/__pycache__
|
2 |
+
process.ipynb
|
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
title: UDiffText
|
3 |
-
emoji:
|
4 |
colorFrom: purple
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
|
|
1 |
---
|
2 |
title: UDiffText
|
3 |
+
emoji: 😋
|
4 |
colorFrom: purple
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
app.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import torch
|
3 |
+
import os, glob
|
4 |
+
import numpy as np
|
5 |
+
import gradio as gr
|
6 |
+
from PIL import Image
|
7 |
+
from omegaconf import OmegaConf
|
8 |
+
from contextlib import nullcontext
|
9 |
+
from pytorch_lightning import seed_everything
|
10 |
+
from os.path import join as ospj
|
11 |
+
|
12 |
+
from util import *
|
13 |
+
|
14 |
+
|
15 |
+
def predict(cfgs, model, sampler, batch):
|
16 |
+
|
17 |
+
context = nullcontext if cfgs.aae_enabled else torch.no_grad
|
18 |
+
|
19 |
+
with context():
|
20 |
+
|
21 |
+
batch, batch_uc_1, batch_uc_2 = prepare_batch(cfgs, batch)
|
22 |
+
|
23 |
+
if cfgs.dual_conditioner:
|
24 |
+
c, uc_1, uc_2 = model.conditioner.get_unconditional_conditioning(
|
25 |
+
batch,
|
26 |
+
batch_uc_1=batch_uc_1,
|
27 |
+
batch_uc_2=batch_uc_2,
|
28 |
+
force_uc_zero_embeddings=cfgs.force_uc_zero_embeddings,
|
29 |
+
)
|
30 |
+
else:
|
31 |
+
c, uc_1 = model.conditioner.get_unconditional_conditioning(
|
32 |
+
batch,
|
33 |
+
batch_uc=batch_uc_1,
|
34 |
+
force_uc_zero_embeddings=cfgs.force_uc_zero_embeddings,
|
35 |
+
)
|
36 |
+
|
37 |
+
if cfgs.dual_conditioner:
|
38 |
+
x = sampler.get_init_noise(cfgs, model, cond=c, batch=batch, uc_1=uc_1, uc_2=uc_2)
|
39 |
+
samples_z = sampler(model, x, cond=c, batch=batch, uc_1=uc_1, uc_2=uc_2, init_step=0,
|
40 |
+
aae_enabled = cfgs.aae_enabled, detailed = cfgs.detailed)
|
41 |
+
else:
|
42 |
+
x = sampler.get_init_noise(cfgs, model, cond=c, batch=batch, uc=uc_1)
|
43 |
+
samples_z = sampler(model, x, cond=c, batch=batch, uc=uc_1, init_step=0,
|
44 |
+
aae_enabled = cfgs.aae_enabled, detailed = cfgs.detailed)
|
45 |
+
|
46 |
+
samples_x = model.decode_first_stage(samples_z)
|
47 |
+
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
|
48 |
+
|
49 |
+
return samples, samples_z
|
50 |
+
|
51 |
+
|
52 |
+
def demo_predict(input_blk, text, num_samples, steps, scale, seed, show_detail):
|
53 |
+
|
54 |
+
global cfgs, global_index
|
55 |
+
|
56 |
+
global_index += 1
|
57 |
+
|
58 |
+
if num_samples > 1: cfgs.noise_iters = 0
|
59 |
+
|
60 |
+
cfgs.batch_size = num_samples
|
61 |
+
cfgs.steps = steps
|
62 |
+
cfgs.scale[0] = scale
|
63 |
+
cfgs.detailed = show_detail
|
64 |
+
seed_everything(seed)
|
65 |
+
|
66 |
+
sampler = init_sampling(cfgs)
|
67 |
+
|
68 |
+
image = input_blk["image"]
|
69 |
+
mask = input_blk["mask"]
|
70 |
+
image = cv2.resize(image, (cfgs.W, cfgs.H))
|
71 |
+
mask = cv2.resize(mask, (cfgs.W, cfgs.H))
|
72 |
+
|
73 |
+
mask = (mask == 0).astype(np.int32)
|
74 |
+
|
75 |
+
image = torch.from_numpy(image.transpose(2,0,1)).to(dtype=torch.float32) / 127.5 - 1.0
|
76 |
+
mask = torch.from_numpy(mask.transpose(2,0,1)).to(dtype=torch.float32).mean(dim=0, keepdim=True)
|
77 |
+
masked = image * mask
|
78 |
+
mask = 1 - mask
|
79 |
+
|
80 |
+
seg_mask = torch.cat((torch.ones(len(text)), torch.zeros(cfgs.seq_len-len(text))))
|
81 |
+
|
82 |
+
# additional cond
|
83 |
+
txt = f"\"{text}\""
|
84 |
+
original_size_as_tuple = torch.tensor((cfgs.H, cfgs.W))
|
85 |
+
crop_coords_top_left = torch.tensor((0, 0))
|
86 |
+
target_size_as_tuple = torch.tensor((cfgs.H, cfgs.W))
|
87 |
+
|
88 |
+
image = torch.tile(image[None], (num_samples, 1, 1, 1))
|
89 |
+
mask = torch.tile(mask[None], (num_samples, 1, 1, 1))
|
90 |
+
masked = torch.tile(masked[None], (num_samples, 1, 1, 1))
|
91 |
+
seg_mask = torch.tile(seg_mask[None], (num_samples, 1))
|
92 |
+
original_size_as_tuple = torch.tile(original_size_as_tuple[None], (num_samples, 1))
|
93 |
+
crop_coords_top_left = torch.tile(crop_coords_top_left[None], (num_samples, 1))
|
94 |
+
target_size_as_tuple = torch.tile(target_size_as_tuple[None], (num_samples, 1))
|
95 |
+
|
96 |
+
text = [text for i in range(num_samples)]
|
97 |
+
txt = [txt for i in range(num_samples)]
|
98 |
+
name = [str(global_index) for i in range(num_samples)]
|
99 |
+
|
100 |
+
batch = {
|
101 |
+
"image": image,
|
102 |
+
"mask": mask,
|
103 |
+
"masked": masked,
|
104 |
+
"seg_mask": seg_mask,
|
105 |
+
"label": text,
|
106 |
+
"txt": txt,
|
107 |
+
"original_size_as_tuple": original_size_as_tuple,
|
108 |
+
"crop_coords_top_left": crop_coords_top_left,
|
109 |
+
"target_size_as_tuple": target_size_as_tuple,
|
110 |
+
"name": name
|
111 |
+
}
|
112 |
+
|
113 |
+
samples, samples_z = predict(cfgs, model, sampler, batch)
|
114 |
+
samples = samples.cpu().numpy().transpose(0, 2, 3, 1) * 255
|
115 |
+
results = [Image.fromarray(sample.astype(np.uint8)) for sample in samples]
|
116 |
+
|
117 |
+
if cfgs.detailed:
|
118 |
+
sections = []
|
119 |
+
attn_map = Image.open(f"./temp/attn_map/attn_map_{global_index}.png")
|
120 |
+
seg_maps = np.load(f"./temp/seg_map/seg_{global_index}.npy")
|
121 |
+
for i, seg_map in enumerate(seg_maps):
|
122 |
+
seg_map = cv2.resize(seg_map, (cfgs.W, cfgs.H))
|
123 |
+
sections.append((seg_map, text[0][i]))
|
124 |
+
seg = (results[0], sections)
|
125 |
+
else:
|
126 |
+
attn_map = None
|
127 |
+
seg = None
|
128 |
+
|
129 |
+
return results, attn_map, seg
|
130 |
+
|
131 |
+
|
132 |
+
if __name__ == "__main__":
|
133 |
+
|
134 |
+
cfgs = OmegaConf.load("./configs/demo.yaml")
|
135 |
+
|
136 |
+
model = init_model(cfgs)
|
137 |
+
global_index = 0
|
138 |
+
|
139 |
+
block = gr.Blocks().queue()
|
140 |
+
with block:
|
141 |
+
|
142 |
+
with gr.Row():
|
143 |
+
|
144 |
+
gr.HTML(
|
145 |
+
"""
|
146 |
+
<div style="text-align: center; max-width: 1200px; margin: 20px auto;">
|
147 |
+
<h1 style="font-weight: 600; font-size: 2rem; margin: 0rem">
|
148 |
+
UDiffText: A Unified Framework for High-quality Text Synthesis in Arbitrary Images via Character-aware Diffusion Models
|
149 |
+
</h1>
|
150 |
+
<h3 style="font-weight: 450; font-size: 1rem; margin: 0rem">
|
151 |
+
[<a href="" style="color:blue;">arXiv</a>]
|
152 |
+
[<a href="" style="color:blue;">Code</a>]
|
153 |
+
[<a href="" style="color:blue;">ProjectPage</a>]
|
154 |
+
</h3>
|
155 |
+
<h2 style="text-align: left; font-weight: 450; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
|
156 |
+
Our proposed UDiffText is capable of synthesizing accurate and harmonious text in either synthetic or real-word images, thus can be applied to tasks like scene text editing (a), arbitrary text generation (b) and accurate T2I generation (c)
|
157 |
+
</h2>
|
158 |
+
<div align=center><img src="file/demo/teaser.png" alt="UDiffText" width="80%"></div>
|
159 |
+
</div>
|
160 |
+
"""
|
161 |
+
)
|
162 |
+
|
163 |
+
with gr.Row():
|
164 |
+
|
165 |
+
with gr.Column():
|
166 |
+
|
167 |
+
input_blk = gr.Image(source='upload', tool='sketch', type="numpy", label="Input", height=512)
|
168 |
+
text = gr.Textbox(label="Text to render:", info="the text you want to render at the masked region")
|
169 |
+
run_button = gr.Button(variant="primary")
|
170 |
+
|
171 |
+
with gr.Accordion("Advanced options", open=False):
|
172 |
+
|
173 |
+
num_samples = gr.Slider(label="Images", info="number of generated images, locked as 1", minimum=1, maximum=1, value=1, step=1)
|
174 |
+
steps = gr.Slider(label="Steps", info ="denoising sampling steps", minimum=1, maximum=200, value=50, step=1)
|
175 |
+
scale = gr.Slider(label="Guidance Scale", info="the scale of classifier-free guidance (CFG)", minimum=0.0, maximum=10.0, value=4.0, step=0.1)
|
176 |
+
seed = gr.Slider(label="Seed", info="random seed for noise initialization", minimum=0, maximum=2147483647, step=1, randomize=True)
|
177 |
+
show_detail = gr.Checkbox(label="Show Detail", info="show the additional visualization results", value=True)
|
178 |
+
|
179 |
+
with gr.Column():
|
180 |
+
|
181 |
+
gallery = gr.Gallery(label="Output", height=512, preview=True)
|
182 |
+
|
183 |
+
with gr.Accordion("Visualization results", open=True):
|
184 |
+
|
185 |
+
with gr.Tab(label="Attention Maps"):
|
186 |
+
gr.Markdown("### Attention maps for each character (extracted from middle blocks at intermediate sampling step):")
|
187 |
+
attn_map = gr.Image(show_label=False, show_download_button=False)
|
188 |
+
with gr.Tab(label="Segmentation Maps"):
|
189 |
+
gr.Markdown("### Character-level segmentation maps (using upscaled attention maps):")
|
190 |
+
seg_map = gr.AnnotatedImage(height=384, show_label=False, show_download_button=False)
|
191 |
+
|
192 |
+
# examples
|
193 |
+
examples = []
|
194 |
+
example_paths = sorted(glob.glob(ospj("./demo/examples", "*")))
|
195 |
+
for example_path in example_paths:
|
196 |
+
label = example_path.split(os.sep)[-1].split(".")[0].split("_")[0]
|
197 |
+
examples.append([example_path, label])
|
198 |
+
|
199 |
+
gr.Markdown("## Examples:")
|
200 |
+
gr.Examples(
|
201 |
+
examples=examples,
|
202 |
+
inputs=[input_blk, text]
|
203 |
+
)
|
204 |
+
|
205 |
+
run_button.click(fn=demo_predict, inputs=[input_blk, text, num_samples, steps, scale, seed, show_detail], outputs=[gallery, attn_map, seg_map])
|
206 |
+
|
207 |
+
block.launch()
|
checkpoints/AEs/AE_inpainting_2.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:547baac83984f8bf8b433882236b87e77eb4d2f5c71e3d7a04b8dec2fe02b81f
|
3 |
+
size 334640988
|
checkpoints/encoders/LabelEncoder/epoch=19-step=7820.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4076c90467a907dcb8cde15776bfda4473010fe845739490341db74e82cd2267
|
3 |
+
size 4059026213
|
checkpoints/st-step=100000+la-step=100000-simp.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:968397df8910f3324d94ce3df7e9d70f1bf2415a46d22edef1a510885ee0648e
|
3 |
+
size 2558065830
|
configs/demo.yaml
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
type: "demo"
|
2 |
+
|
3 |
+
# path
|
4 |
+
load_ckpt_path: "./checkpoints/st-step=100000+la-step=100000-simp.ckpt"
|
5 |
+
model_cfg_path: "./configs/test/textdesign_sd_2.yaml"
|
6 |
+
|
7 |
+
# param
|
8 |
+
H: 512
|
9 |
+
W: 512
|
10 |
+
seq_len: 12
|
11 |
+
batch_size: 1
|
12 |
+
|
13 |
+
channel: 4 # AE latent channel
|
14 |
+
factor: 8 # AE downsample factor
|
15 |
+
scale: [4.0, 0.0] # content scale, style scale
|
16 |
+
noise_iters: 10
|
17 |
+
force_uc_zero_embeddings: ["ref", "label"]
|
18 |
+
aae_enabled: False
|
19 |
+
detailed: True
|
20 |
+
dual_conditioner: False
|
21 |
+
|
22 |
+
|
23 |
+
# runtime
|
24 |
+
steps: 50
|
25 |
+
init_step: 0
|
26 |
+
num_workers: 0
|
27 |
+
gpu: 0
|
28 |
+
max_iter: 100
|
29 |
+
|
configs/test/textdesign_sd_2.yaml
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
target: sgm.models.diffusion.DiffusionEngine
|
3 |
+
params:
|
4 |
+
input_key: image
|
5 |
+
scale_factor: 0.18215
|
6 |
+
disable_first_stage_autocast: True
|
7 |
+
|
8 |
+
denoiser_config:
|
9 |
+
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
|
10 |
+
params:
|
11 |
+
num_idx: 1000
|
12 |
+
|
13 |
+
weighting_config:
|
14 |
+
target: sgm.modules.diffusionmodules.denoiser_weighting.EpsWeighting
|
15 |
+
scaling_config:
|
16 |
+
target: sgm.modules.diffusionmodules.denoiser_scaling.EpsScaling
|
17 |
+
discretization_config:
|
18 |
+
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
19 |
+
|
20 |
+
network_config:
|
21 |
+
target: sgm.modules.diffusionmodules.openaimodel.UNetAddModel
|
22 |
+
params:
|
23 |
+
use_checkpoint: False
|
24 |
+
in_channels: 9
|
25 |
+
out_channels: 4
|
26 |
+
ctrl_channels: 0
|
27 |
+
model_channels: 320
|
28 |
+
attention_resolutions: [4, 2, 1]
|
29 |
+
attn_type: add_attn
|
30 |
+
attn_layers:
|
31 |
+
- output_blocks.6.1
|
32 |
+
num_res_blocks: 2
|
33 |
+
channel_mult: [1, 2, 4, 4]
|
34 |
+
num_head_channels: 64
|
35 |
+
use_spatial_transformer: True
|
36 |
+
use_linear_in_transformer: True
|
37 |
+
transformer_depth: 1
|
38 |
+
context_dim: 0
|
39 |
+
add_context_dim: 2048
|
40 |
+
legacy: False
|
41 |
+
|
42 |
+
conditioner_config:
|
43 |
+
target: sgm.modules.GeneralConditioner
|
44 |
+
params:
|
45 |
+
emb_models:
|
46 |
+
# crossattn cond
|
47 |
+
# - is_trainable: False
|
48 |
+
# input_key: txt
|
49 |
+
# target: sgm.modules.encoders.modules.FrozenOpenCLIPEmbedder
|
50 |
+
# params:
|
51 |
+
# arch: ViT-H-14
|
52 |
+
# version: ./checkpoints/encoders/OpenCLIP/ViT-H-14/open_clip_pytorch_model.bin
|
53 |
+
# layer: penultimate
|
54 |
+
# add crossattn cond
|
55 |
+
- is_trainable: False
|
56 |
+
input_key: label
|
57 |
+
target: sgm.modules.encoders.modules.LabelEncoder
|
58 |
+
params:
|
59 |
+
is_add_embedder: True
|
60 |
+
max_len: 12
|
61 |
+
emb_dim: 2048
|
62 |
+
n_heads: 8
|
63 |
+
n_trans_layers: 12
|
64 |
+
ckpt_path: ./checkpoints/encoders/LabelEncoder/epoch=19-step=7820.ckpt # ./checkpoints/encoders/LabelEncoder/epoch=19-step=7820.ckpt
|
65 |
+
# concat cond
|
66 |
+
- is_trainable: False
|
67 |
+
input_key: mask
|
68 |
+
target: sgm.modules.encoders.modules.IdentityEncoder
|
69 |
+
- is_trainable: False
|
70 |
+
input_key: masked
|
71 |
+
target: sgm.modules.encoders.modules.LatentEncoder
|
72 |
+
params:
|
73 |
+
scale_factor: 0.18215
|
74 |
+
config:
|
75 |
+
target: sgm.models.autoencoder.AutoencoderKLInferenceWrapper
|
76 |
+
params:
|
77 |
+
ckpt_path: ./checkpoints/AEs/AE_inpainting_2.safetensors
|
78 |
+
embed_dim: 4
|
79 |
+
monitor: val/rec_loss
|
80 |
+
ddconfig:
|
81 |
+
attn_type: vanilla-xformers
|
82 |
+
double_z: true
|
83 |
+
z_channels: 4
|
84 |
+
resolution: 256
|
85 |
+
in_channels: 3
|
86 |
+
out_ch: 3
|
87 |
+
ch: 128
|
88 |
+
ch_mult: [1, 2, 4, 4]
|
89 |
+
num_res_blocks: 2
|
90 |
+
attn_resolutions: []
|
91 |
+
dropout: 0.0
|
92 |
+
lossconfig:
|
93 |
+
target: torch.nn.Identity
|
94 |
+
|
95 |
+
first_stage_config:
|
96 |
+
target: sgm.models.autoencoder.AutoencoderKLInferenceWrapper
|
97 |
+
params:
|
98 |
+
embed_dim: 4
|
99 |
+
monitor: val/rec_loss
|
100 |
+
ddconfig:
|
101 |
+
attn_type: vanilla-xformers
|
102 |
+
double_z: true
|
103 |
+
z_channels: 4
|
104 |
+
resolution: 256
|
105 |
+
in_channels: 3
|
106 |
+
out_ch: 3
|
107 |
+
ch: 128
|
108 |
+
ch_mult: [1, 2, 4, 4]
|
109 |
+
num_res_blocks: 2
|
110 |
+
attn_resolutions: []
|
111 |
+
dropout: 0.0
|
112 |
+
lossconfig:
|
113 |
+
target: torch.nn.Identity
|
114 |
+
|
115 |
+
loss_fn_config:
|
116 |
+
target: sgm.modules.diffusionmodules.loss.FullLoss # StandardDiffusionLoss
|
117 |
+
params:
|
118 |
+
seq_len: 12
|
119 |
+
kernel_size: 3
|
120 |
+
gaussian_sigma: 0.5
|
121 |
+
min_attn_size: 16
|
122 |
+
lambda_local_loss: 0.02
|
123 |
+
lambda_ocr_loss: 0.001
|
124 |
+
ocr_enabled: False
|
125 |
+
|
126 |
+
predictor_config:
|
127 |
+
target: sgm.modules.predictors.model.ParseqPredictor
|
128 |
+
params:
|
129 |
+
ckpt_path: "./checkpoints/predictors/parseq-bb5792a6.pt"
|
130 |
+
|
131 |
+
sigma_sampler_config:
|
132 |
+
target: sgm.modules.diffusionmodules.sigma_sampling.DiscreteSampling
|
133 |
+
params:
|
134 |
+
num_idx: 1000
|
135 |
+
|
136 |
+
discretization_config:
|
137 |
+
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
|
demo/examples/CEFUL_1_0.jpeg
ADDED
Git LFS Details
|
demo/examples/CLOTHES_0_0.png
ADDED
Git LFS Details
|
demo/examples/COMPLICATED_0_1.jpeg
ADDED
Git LFS Details
|
demo/examples/DELIGHT_0_1.jpeg
ADDED
Git LFS Details
|
demo/examples/ECHOES_0_0.jpeg
ADDED
Git LFS Details
|
demo/examples/ENGINE_0_0.png
ADDED
Git LFS Details
|
demo/examples/FASCINATING_0_1.jpeg
ADDED
Git LFS Details
|
demo/examples/FAVOURITE_0_0.jpeg
ADDED
Git LFS Details
|
demo/examples/FINNAL_0_1.jpeg
ADDED
Git LFS Details
|
demo/examples/FRONTIER_0_0.png
ADDED
Git LFS Details
|
demo/examples/Innovate_0_0.jpeg
ADDED
Git LFS Details
|
demo/examples/PRESERVE_0_0.jpeg
ADDED
Git LFS Details
|
demo/examples/Peaceful_0_0.jpeg
ADDED
Git LFS Details
|
demo/examples/Scamps_0_0.png
ADDED
Git LFS Details
|
demo/examples/TREE_0_0.png
ADDED
Git LFS Details
|
demo/examples/better_0_0.jpg
ADDED
Git LFS Details
|
demo/examples/tested_0_0.png
ADDED
Git LFS Details
|
demo/teaser.png
ADDED
Git LFS Details
|
requirements.txt
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
colorlover==0.3.0
|
2 |
+
gradio==3.41.0
|
3 |
+
imageio==2.31.2
|
4 |
+
img2dataset==1.42.0
|
5 |
+
lpips==0.1.4
|
6 |
+
matplotlib==3.7.2
|
7 |
+
numpy==1.25.1
|
8 |
+
omegaconf==2.3.0
|
9 |
+
open-clip-torch==2.20.0
|
10 |
+
opencv-python==4.6.0.66
|
11 |
+
Pillow==9.5.0
|
12 |
+
pytorch-fid==0.3.0
|
13 |
+
pytorch-lightning==2.0.1
|
14 |
+
safetensors==0.3.1
|
15 |
+
scikit-learn==1.3.0
|
16 |
+
scipy==1.11.1
|
17 |
+
seaborn==0.12.2
|
18 |
+
tensorboard==2.14.0
|
19 |
+
tokenizers==0.13.3
|
20 |
+
torch==2.1.0
|
21 |
+
torchvision==0.16.0
|
22 |
+
tqdm==4.65.0
|
23 |
+
transformers==4.30.2
|
24 |
+
|
sgm/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .models import AutoencodingEngine, DiffusionEngine
|
2 |
+
from .util import instantiate_from_config
|
sgm/lr_scheduler.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
|
4 |
+
class LambdaWarmUpCosineScheduler:
|
5 |
+
"""
|
6 |
+
note: use with a base_lr of 1.0
|
7 |
+
"""
|
8 |
+
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
warm_up_steps,
|
12 |
+
lr_min,
|
13 |
+
lr_max,
|
14 |
+
lr_start,
|
15 |
+
max_decay_steps,
|
16 |
+
verbosity_interval=0,
|
17 |
+
):
|
18 |
+
self.lr_warm_up_steps = warm_up_steps
|
19 |
+
self.lr_start = lr_start
|
20 |
+
self.lr_min = lr_min
|
21 |
+
self.lr_max = lr_max
|
22 |
+
self.lr_max_decay_steps = max_decay_steps
|
23 |
+
self.last_lr = 0.0
|
24 |
+
self.verbosity_interval = verbosity_interval
|
25 |
+
|
26 |
+
def schedule(self, n, **kwargs):
|
27 |
+
if self.verbosity_interval > 0:
|
28 |
+
if n % self.verbosity_interval == 0:
|
29 |
+
print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
|
30 |
+
if n < self.lr_warm_up_steps:
|
31 |
+
lr = (
|
32 |
+
self.lr_max - self.lr_start
|
33 |
+
) / self.lr_warm_up_steps * n + self.lr_start
|
34 |
+
self.last_lr = lr
|
35 |
+
return lr
|
36 |
+
else:
|
37 |
+
t = (n - self.lr_warm_up_steps) / (
|
38 |
+
self.lr_max_decay_steps - self.lr_warm_up_steps
|
39 |
+
)
|
40 |
+
t = min(t, 1.0)
|
41 |
+
lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
|
42 |
+
1 + np.cos(t * np.pi)
|
43 |
+
)
|
44 |
+
self.last_lr = lr
|
45 |
+
return lr
|
46 |
+
|
47 |
+
def __call__(self, n, **kwargs):
|
48 |
+
return self.schedule(n, **kwargs)
|
49 |
+
|
50 |
+
|
51 |
+
class LambdaWarmUpCosineScheduler2:
|
52 |
+
"""
|
53 |
+
supports repeated iterations, configurable via lists
|
54 |
+
note: use with a base_lr of 1.0.
|
55 |
+
"""
|
56 |
+
|
57 |
+
def __init__(
|
58 |
+
self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0
|
59 |
+
):
|
60 |
+
assert (
|
61 |
+
len(warm_up_steps)
|
62 |
+
== len(f_min)
|
63 |
+
== len(f_max)
|
64 |
+
== len(f_start)
|
65 |
+
== len(cycle_lengths)
|
66 |
+
)
|
67 |
+
self.lr_warm_up_steps = warm_up_steps
|
68 |
+
self.f_start = f_start
|
69 |
+
self.f_min = f_min
|
70 |
+
self.f_max = f_max
|
71 |
+
self.cycle_lengths = cycle_lengths
|
72 |
+
self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
|
73 |
+
self.last_f = 0.0
|
74 |
+
self.verbosity_interval = verbosity_interval
|
75 |
+
|
76 |
+
def find_in_interval(self, n):
|
77 |
+
interval = 0
|
78 |
+
for cl in self.cum_cycles[1:]:
|
79 |
+
if n <= cl:
|
80 |
+
return interval
|
81 |
+
interval += 1
|
82 |
+
|
83 |
+
def schedule(self, n, **kwargs):
|
84 |
+
cycle = self.find_in_interval(n)
|
85 |
+
n = n - self.cum_cycles[cycle]
|
86 |
+
if self.verbosity_interval > 0:
|
87 |
+
if n % self.verbosity_interval == 0:
|
88 |
+
print(
|
89 |
+
f"current step: {n}, recent lr-multiplier: {self.last_f}, "
|
90 |
+
f"current cycle {cycle}"
|
91 |
+
)
|
92 |
+
if n < self.lr_warm_up_steps[cycle]:
|
93 |
+
f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[
|
94 |
+
cycle
|
95 |
+
] * n + self.f_start[cycle]
|
96 |
+
self.last_f = f
|
97 |
+
return f
|
98 |
+
else:
|
99 |
+
t = (n - self.lr_warm_up_steps[cycle]) / (
|
100 |
+
self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle]
|
101 |
+
)
|
102 |
+
t = min(t, 1.0)
|
103 |
+
f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
|
104 |
+
1 + np.cos(t * np.pi)
|
105 |
+
)
|
106 |
+
self.last_f = f
|
107 |
+
return f
|
108 |
+
|
109 |
+
def __call__(self, n, **kwargs):
|
110 |
+
return self.schedule(n, **kwargs)
|
111 |
+
|
112 |
+
|
113 |
+
class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):
|
114 |
+
def schedule(self, n, **kwargs):
|
115 |
+
cycle = self.find_in_interval(n)
|
116 |
+
n = n - self.cum_cycles[cycle]
|
117 |
+
if self.verbosity_interval > 0:
|
118 |
+
if n % self.verbosity_interval == 0:
|
119 |
+
print(
|
120 |
+
f"current step: {n}, recent lr-multiplier: {self.last_f}, "
|
121 |
+
f"current cycle {cycle}"
|
122 |
+
)
|
123 |
+
|
124 |
+
if n < self.lr_warm_up_steps[cycle]:
|
125 |
+
f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[
|
126 |
+
cycle
|
127 |
+
] * n + self.f_start[cycle]
|
128 |
+
self.last_f = f
|
129 |
+
return f
|
130 |
+
else:
|
131 |
+
f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (
|
132 |
+
self.cycle_lengths[cycle] - n
|
133 |
+
) / (self.cycle_lengths[cycle])
|
134 |
+
self.last_f = f
|
135 |
+
return f
|
sgm/models/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .autoencoder import AutoencodingEngine
|
2 |
+
from .diffusion import DiffusionEngine
|
sgm/models/autoencoder.py
ADDED
@@ -0,0 +1,335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from abc import abstractmethod
|
3 |
+
from contextlib import contextmanager
|
4 |
+
from typing import Any, Dict, Tuple, Union
|
5 |
+
|
6 |
+
import pytorch_lightning as pl
|
7 |
+
import torch
|
8 |
+
from omegaconf import ListConfig
|
9 |
+
from packaging import version
|
10 |
+
from safetensors.torch import load_file as load_safetensors
|
11 |
+
|
12 |
+
from ..modules.diffusionmodules.model import Decoder, Encoder
|
13 |
+
from ..modules.distributions.distributions import DiagonalGaussianDistribution
|
14 |
+
from ..modules.ema import LitEma
|
15 |
+
from ..util import default, get_obj_from_str, instantiate_from_config
|
16 |
+
|
17 |
+
|
18 |
+
class AbstractAutoencoder(pl.LightningModule):
|
19 |
+
"""
|
20 |
+
This is the base class for all autoencoders, including image autoencoders, image autoencoders with discriminators,
|
21 |
+
unCLIP models, etc. Hence, it is fairly general, and specific features
|
22 |
+
(e.g. discriminator training, encoding, decoding) must be implemented in subclasses.
|
23 |
+
"""
|
24 |
+
|
25 |
+
def __init__(
|
26 |
+
self,
|
27 |
+
ema_decay: Union[None, float] = None,
|
28 |
+
monitor: Union[None, str] = None,
|
29 |
+
input_key: str = "jpg",
|
30 |
+
ckpt_path: Union[None, str] = None,
|
31 |
+
ignore_keys: Union[Tuple, list, ListConfig] = (),
|
32 |
+
):
|
33 |
+
super().__init__()
|
34 |
+
self.input_key = input_key
|
35 |
+
self.use_ema = ema_decay is not None
|
36 |
+
if monitor is not None:
|
37 |
+
self.monitor = monitor
|
38 |
+
|
39 |
+
if self.use_ema:
|
40 |
+
self.model_ema = LitEma(self, decay=ema_decay)
|
41 |
+
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
42 |
+
|
43 |
+
if ckpt_path is not None:
|
44 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
45 |
+
|
46 |
+
if version.parse(torch.__version__) >= version.parse("2.0.0"):
|
47 |
+
self.automatic_optimization = False
|
48 |
+
|
49 |
+
def init_from_ckpt(
|
50 |
+
self, path: str, ignore_keys: Union[Tuple, list, ListConfig] = tuple()
|
51 |
+
) -> None:
|
52 |
+
if path.endswith("ckpt"):
|
53 |
+
sd = torch.load(path, map_location="cpu")["state_dict"]
|
54 |
+
elif path.endswith("safetensors"):
|
55 |
+
sd = load_safetensors(path)
|
56 |
+
else:
|
57 |
+
raise NotImplementedError
|
58 |
+
|
59 |
+
keys = list(sd.keys())
|
60 |
+
for k in keys:
|
61 |
+
for ik in ignore_keys:
|
62 |
+
if re.match(ik, k):
|
63 |
+
print("Deleting key {} from state_dict.".format(k))
|
64 |
+
del sd[k]
|
65 |
+
missing, unexpected = self.load_state_dict(sd, strict=False)
|
66 |
+
print(
|
67 |
+
f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys"
|
68 |
+
)
|
69 |
+
if len(missing) > 0:
|
70 |
+
print(f"Missing Keys: {missing}")
|
71 |
+
if len(unexpected) > 0:
|
72 |
+
print(f"Unexpected Keys: {unexpected}")
|
73 |
+
|
74 |
+
@abstractmethod
|
75 |
+
def get_input(self, batch) -> Any:
|
76 |
+
raise NotImplementedError()
|
77 |
+
|
78 |
+
def on_train_batch_end(self, *args, **kwargs):
|
79 |
+
# for EMA computation
|
80 |
+
if self.use_ema:
|
81 |
+
self.model_ema(self)
|
82 |
+
|
83 |
+
@contextmanager
|
84 |
+
def ema_scope(self, context=None):
|
85 |
+
if self.use_ema:
|
86 |
+
self.model_ema.store(self.parameters())
|
87 |
+
self.model_ema.copy_to(self)
|
88 |
+
if context is not None:
|
89 |
+
print(f"{context}: Switched to EMA weights")
|
90 |
+
try:
|
91 |
+
yield None
|
92 |
+
finally:
|
93 |
+
if self.use_ema:
|
94 |
+
self.model_ema.restore(self.parameters())
|
95 |
+
if context is not None:
|
96 |
+
print(f"{context}: Restored training weights")
|
97 |
+
|
98 |
+
@abstractmethod
|
99 |
+
def encode(self, *args, **kwargs) -> torch.Tensor:
|
100 |
+
raise NotImplementedError("encode()-method of abstract base class called")
|
101 |
+
|
102 |
+
@abstractmethod
|
103 |
+
def decode(self, *args, **kwargs) -> torch.Tensor:
|
104 |
+
raise NotImplementedError("decode()-method of abstract base class called")
|
105 |
+
|
106 |
+
def instantiate_optimizer_from_config(self, params, lr, cfg):
|
107 |
+
print(f"loading >>> {cfg['target']} <<< optimizer from config")
|
108 |
+
return get_obj_from_str(cfg["target"])(
|
109 |
+
params, lr=lr, **cfg.get("params", dict())
|
110 |
+
)
|
111 |
+
|
112 |
+
def configure_optimizers(self) -> Any:
|
113 |
+
raise NotImplementedError()
|
114 |
+
|
115 |
+
|
116 |
+
class AutoencodingEngine(AbstractAutoencoder):
|
117 |
+
"""
|
118 |
+
Base class for all image autoencoders that we train, like VQGAN or AutoencoderKL
|
119 |
+
(we also restore them explicitly as special cases for legacy reasons).
|
120 |
+
Regularizations such as KL or VQ are moved to the regularizer class.
|
121 |
+
"""
|
122 |
+
|
123 |
+
def __init__(
|
124 |
+
self,
|
125 |
+
*args,
|
126 |
+
encoder_config: Dict,
|
127 |
+
decoder_config: Dict,
|
128 |
+
loss_config: Dict,
|
129 |
+
regularizer_config: Dict,
|
130 |
+
optimizer_config: Union[Dict, None] = None,
|
131 |
+
lr_g_factor: float = 1.0,
|
132 |
+
**kwargs,
|
133 |
+
):
|
134 |
+
super().__init__(*args, **kwargs)
|
135 |
+
# todo: add options to freeze encoder/decoder
|
136 |
+
self.encoder = instantiate_from_config(encoder_config)
|
137 |
+
self.decoder = instantiate_from_config(decoder_config)
|
138 |
+
self.loss = instantiate_from_config(loss_config)
|
139 |
+
self.regularization = instantiate_from_config(regularizer_config)
|
140 |
+
self.optimizer_config = default(
|
141 |
+
optimizer_config, {"target": "torch.optim.Adam"}
|
142 |
+
)
|
143 |
+
self.lr_g_factor = lr_g_factor
|
144 |
+
|
145 |
+
def get_input(self, batch: Dict) -> torch.Tensor:
|
146 |
+
# assuming unified data format, dataloader returns a dict.
|
147 |
+
# image tensors should be scaled to -1 ... 1 and in channels-first format (e.g., bchw instead if bhwc)
|
148 |
+
return batch[self.input_key]
|
149 |
+
|
150 |
+
def get_autoencoder_params(self) -> list:
|
151 |
+
params = (
|
152 |
+
list(self.encoder.parameters())
|
153 |
+
+ list(self.decoder.parameters())
|
154 |
+
+ list(self.regularization.get_trainable_parameters())
|
155 |
+
+ list(self.loss.get_trainable_autoencoder_parameters())
|
156 |
+
)
|
157 |
+
return params
|
158 |
+
|
159 |
+
def get_discriminator_params(self) -> list:
|
160 |
+
params = list(self.loss.get_trainable_parameters()) # e.g., discriminator
|
161 |
+
return params
|
162 |
+
|
163 |
+
def get_last_layer(self):
|
164 |
+
return self.decoder.get_last_layer()
|
165 |
+
|
166 |
+
def encode(self, x: Any, return_reg_log: bool = False) -> Any:
|
167 |
+
z = self.encoder(x)
|
168 |
+
z, reg_log = self.regularization(z)
|
169 |
+
if return_reg_log:
|
170 |
+
return z, reg_log
|
171 |
+
return z
|
172 |
+
|
173 |
+
def decode(self, z: Any) -> torch.Tensor:
|
174 |
+
x = self.decoder(z)
|
175 |
+
return x
|
176 |
+
|
177 |
+
def forward(self, x: Any) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
178 |
+
z, reg_log = self.encode(x, return_reg_log=True)
|
179 |
+
dec = self.decode(z)
|
180 |
+
return z, dec, reg_log
|
181 |
+
|
182 |
+
def training_step(self, batch, batch_idx, optimizer_idx) -> Any:
|
183 |
+
x = self.get_input(batch)
|
184 |
+
z, xrec, regularization_log = self(x)
|
185 |
+
|
186 |
+
if optimizer_idx == 0:
|
187 |
+
# autoencode
|
188 |
+
aeloss, log_dict_ae = self.loss(
|
189 |
+
regularization_log,
|
190 |
+
x,
|
191 |
+
xrec,
|
192 |
+
optimizer_idx,
|
193 |
+
self.global_step,
|
194 |
+
last_layer=self.get_last_layer(),
|
195 |
+
split="train",
|
196 |
+
)
|
197 |
+
|
198 |
+
self.log_dict(
|
199 |
+
log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True
|
200 |
+
)
|
201 |
+
return aeloss
|
202 |
+
|
203 |
+
if optimizer_idx == 1:
|
204 |
+
# discriminator
|
205 |
+
discloss, log_dict_disc = self.loss(
|
206 |
+
regularization_log,
|
207 |
+
x,
|
208 |
+
xrec,
|
209 |
+
optimizer_idx,
|
210 |
+
self.global_step,
|
211 |
+
last_layer=self.get_last_layer(),
|
212 |
+
split="train",
|
213 |
+
)
|
214 |
+
self.log_dict(
|
215 |
+
log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True
|
216 |
+
)
|
217 |
+
return discloss
|
218 |
+
|
219 |
+
def validation_step(self, batch, batch_idx) -> Dict:
|
220 |
+
log_dict = self._validation_step(batch, batch_idx)
|
221 |
+
with self.ema_scope():
|
222 |
+
log_dict_ema = self._validation_step(batch, batch_idx, postfix="_ema")
|
223 |
+
log_dict.update(log_dict_ema)
|
224 |
+
return log_dict
|
225 |
+
|
226 |
+
def _validation_step(self, batch, batch_idx, postfix="") -> Dict:
|
227 |
+
x = self.get_input(batch)
|
228 |
+
|
229 |
+
z, xrec, regularization_log = self(x)
|
230 |
+
aeloss, log_dict_ae = self.loss(
|
231 |
+
regularization_log,
|
232 |
+
x,
|
233 |
+
xrec,
|
234 |
+
0,
|
235 |
+
self.global_step,
|
236 |
+
last_layer=self.get_last_layer(),
|
237 |
+
split="val" + postfix,
|
238 |
+
)
|
239 |
+
|
240 |
+
discloss, log_dict_disc = self.loss(
|
241 |
+
regularization_log,
|
242 |
+
x,
|
243 |
+
xrec,
|
244 |
+
1,
|
245 |
+
self.global_step,
|
246 |
+
last_layer=self.get_last_layer(),
|
247 |
+
split="val" + postfix,
|
248 |
+
)
|
249 |
+
self.log(f"val{postfix}/rec_loss", log_dict_ae[f"val{postfix}/rec_loss"])
|
250 |
+
log_dict_ae.update(log_dict_disc)
|
251 |
+
self.log_dict(log_dict_ae)
|
252 |
+
return log_dict_ae
|
253 |
+
|
254 |
+
def configure_optimizers(self) -> Any:
|
255 |
+
ae_params = self.get_autoencoder_params()
|
256 |
+
disc_params = self.get_discriminator_params()
|
257 |
+
|
258 |
+
opt_ae = self.instantiate_optimizer_from_config(
|
259 |
+
ae_params,
|
260 |
+
default(self.lr_g_factor, 1.0) * self.learning_rate,
|
261 |
+
self.optimizer_config,
|
262 |
+
)
|
263 |
+
opt_disc = self.instantiate_optimizer_from_config(
|
264 |
+
disc_params, self.learning_rate, self.optimizer_config
|
265 |
+
)
|
266 |
+
|
267 |
+
return [opt_ae, opt_disc], []
|
268 |
+
|
269 |
+
@torch.no_grad()
|
270 |
+
def log_images(self, batch: Dict, **kwargs) -> Dict:
|
271 |
+
log = dict()
|
272 |
+
x = self.get_input(batch)
|
273 |
+
_, xrec, _ = self(x)
|
274 |
+
log["inputs"] = x
|
275 |
+
log["reconstructions"] = xrec
|
276 |
+
with self.ema_scope():
|
277 |
+
_, xrec_ema, _ = self(x)
|
278 |
+
log["reconstructions_ema"] = xrec_ema
|
279 |
+
return log
|
280 |
+
|
281 |
+
|
282 |
+
class AutoencoderKL(AutoencodingEngine):
|
283 |
+
def __init__(self, embed_dim: int, **kwargs):
|
284 |
+
ddconfig = kwargs.pop("ddconfig")
|
285 |
+
ckpt_path = kwargs.pop("ckpt_path", None)
|
286 |
+
ignore_keys = kwargs.pop("ignore_keys", ())
|
287 |
+
super().__init__(
|
288 |
+
encoder_config={"target": "torch.nn.Identity"},
|
289 |
+
decoder_config={"target": "torch.nn.Identity"},
|
290 |
+
regularizer_config={"target": "torch.nn.Identity"},
|
291 |
+
loss_config=kwargs.pop("lossconfig"),
|
292 |
+
**kwargs,
|
293 |
+
)
|
294 |
+
assert ddconfig["double_z"]
|
295 |
+
self.encoder = Encoder(**ddconfig)
|
296 |
+
self.decoder = Decoder(**ddconfig)
|
297 |
+
self.quant_conv = torch.nn.Conv2d(2 * ddconfig["z_channels"], 2 * embed_dim, 1)
|
298 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
299 |
+
self.embed_dim = embed_dim
|
300 |
+
|
301 |
+
if ckpt_path is not None:
|
302 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
303 |
+
|
304 |
+
def encode(self, x):
|
305 |
+
assert (
|
306 |
+
not self.training
|
307 |
+
), f"{self.__class__.__name__} only supports inference currently"
|
308 |
+
h = self.encoder(x)
|
309 |
+
moments = self.quant_conv(h)
|
310 |
+
posterior = DiagonalGaussianDistribution(moments)
|
311 |
+
return posterior
|
312 |
+
|
313 |
+
def decode(self, z, **decoder_kwargs):
|
314 |
+
z = self.post_quant_conv(z)
|
315 |
+
dec = self.decoder(z, **decoder_kwargs)
|
316 |
+
return dec
|
317 |
+
|
318 |
+
|
319 |
+
class AutoencoderKLInferenceWrapper(AutoencoderKL):
|
320 |
+
def encode(self, x):
|
321 |
+
return super().encode(x).sample()
|
322 |
+
|
323 |
+
|
324 |
+
class IdentityFirstStage(AbstractAutoencoder):
|
325 |
+
def __init__(self, *args, **kwargs):
|
326 |
+
super().__init__(*args, **kwargs)
|
327 |
+
|
328 |
+
def get_input(self, x: Any) -> Any:
|
329 |
+
return x
|
330 |
+
|
331 |
+
def encode(self, x: Any, *args, **kwargs) -> Any:
|
332 |
+
return x
|
333 |
+
|
334 |
+
def decode(self, x: Any, *args, **kwargs) -> Any:
|
335 |
+
return x
|
sgm/models/diffusion.py
ADDED
@@ -0,0 +1,328 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from contextlib import contextmanager
|
2 |
+
from typing import Any, Dict, List, Tuple, Union
|
3 |
+
|
4 |
+
import pytorch_lightning as pl
|
5 |
+
import torch
|
6 |
+
from omegaconf import ListConfig, OmegaConf
|
7 |
+
from safetensors.torch import load_file as load_safetensors
|
8 |
+
from torch.optim.lr_scheduler import LambdaLR
|
9 |
+
|
10 |
+
from ..modules import UNCONDITIONAL_CONFIG
|
11 |
+
from ..modules.diffusionmodules.wrappers import OPENAIUNETWRAPPER
|
12 |
+
from ..modules.ema import LitEma
|
13 |
+
from ..util import (
|
14 |
+
default,
|
15 |
+
disabled_train,
|
16 |
+
get_obj_from_str,
|
17 |
+
instantiate_from_config,
|
18 |
+
log_txt_as_img,
|
19 |
+
)
|
20 |
+
|
21 |
+
|
22 |
+
class DiffusionEngine(pl.LightningModule):
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
network_config,
|
26 |
+
denoiser_config,
|
27 |
+
first_stage_config,
|
28 |
+
conditioner_config: Union[None, Dict, ListConfig, OmegaConf] = None,
|
29 |
+
sampler_config: Union[None, Dict, ListConfig, OmegaConf] = None,
|
30 |
+
optimizer_config: Union[None, Dict, ListConfig, OmegaConf] = None,
|
31 |
+
scheduler_config: Union[None, Dict, ListConfig, OmegaConf] = None,
|
32 |
+
loss_fn_config: Union[None, Dict, ListConfig, OmegaConf] = None,
|
33 |
+
network_wrapper: Union[None, str] = None,
|
34 |
+
ckpt_path: Union[None, str] = None,
|
35 |
+
use_ema: bool = False,
|
36 |
+
ema_decay_rate: float = 0.9999,
|
37 |
+
scale_factor: float = 1.0,
|
38 |
+
disable_first_stage_autocast=False,
|
39 |
+
input_key: str = "jpg",
|
40 |
+
log_keys: Union[List, None] = None,
|
41 |
+
no_cond_log: bool = False,
|
42 |
+
compile_model: bool = False,
|
43 |
+
opt_keys: Union[List, None] = None
|
44 |
+
):
|
45 |
+
super().__init__()
|
46 |
+
self.opt_keys = opt_keys
|
47 |
+
self.log_keys = log_keys
|
48 |
+
self.input_key = input_key
|
49 |
+
self.optimizer_config = default(
|
50 |
+
optimizer_config, {"target": "torch.optim.AdamW"}
|
51 |
+
)
|
52 |
+
model = instantiate_from_config(network_config)
|
53 |
+
self.model = get_obj_from_str(default(network_wrapper, OPENAIUNETWRAPPER))(
|
54 |
+
model, compile_model=compile_model
|
55 |
+
)
|
56 |
+
|
57 |
+
self.denoiser = instantiate_from_config(denoiser_config)
|
58 |
+
self.sampler = (
|
59 |
+
instantiate_from_config(sampler_config)
|
60 |
+
if sampler_config is not None
|
61 |
+
else None
|
62 |
+
)
|
63 |
+
self.conditioner = instantiate_from_config(
|
64 |
+
default(conditioner_config, UNCONDITIONAL_CONFIG)
|
65 |
+
)
|
66 |
+
self.scheduler_config = scheduler_config
|
67 |
+
self._init_first_stage(first_stage_config)
|
68 |
+
|
69 |
+
self.loss_fn = (
|
70 |
+
instantiate_from_config(loss_fn_config)
|
71 |
+
if loss_fn_config is not None
|
72 |
+
else None
|
73 |
+
)
|
74 |
+
|
75 |
+
self.use_ema = use_ema
|
76 |
+
if self.use_ema:
|
77 |
+
self.model_ema = LitEma(self.model, decay=ema_decay_rate)
|
78 |
+
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
79 |
+
|
80 |
+
self.scale_factor = scale_factor
|
81 |
+
self.disable_first_stage_autocast = disable_first_stage_autocast
|
82 |
+
self.no_cond_log = no_cond_log
|
83 |
+
|
84 |
+
if ckpt_path is not None:
|
85 |
+
self.init_from_ckpt(ckpt_path)
|
86 |
+
|
87 |
+
def init_from_ckpt(
|
88 |
+
self,
|
89 |
+
path: str,
|
90 |
+
) -> None:
|
91 |
+
if path.endswith("ckpt"):
|
92 |
+
sd = torch.load(path, map_location="cpu")["state_dict"]
|
93 |
+
elif path.endswith("safetensors"):
|
94 |
+
sd = load_safetensors(path)
|
95 |
+
else:
|
96 |
+
raise NotImplementedError
|
97 |
+
|
98 |
+
missing, unexpected = self.load_state_dict(sd, strict=False)
|
99 |
+
print(
|
100 |
+
f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys"
|
101 |
+
)
|
102 |
+
if len(missing) > 0:
|
103 |
+
print(f"Missing Keys: {missing}")
|
104 |
+
if len(unexpected) > 0:
|
105 |
+
print(f"Unexpected Keys: {unexpected}")
|
106 |
+
|
107 |
+
def freeze(self):
|
108 |
+
|
109 |
+
for param in self.parameters():
|
110 |
+
param.requires_grad_(False)
|
111 |
+
|
112 |
+
def _init_first_stage(self, config):
|
113 |
+
model = instantiate_from_config(config).eval()
|
114 |
+
model.train = disabled_train
|
115 |
+
for param in model.parameters():
|
116 |
+
param.requires_grad = False
|
117 |
+
self.first_stage_model = model
|
118 |
+
|
119 |
+
def get_input(self, batch):
|
120 |
+
# assuming unified data format, dataloader returns a dict.
|
121 |
+
# image tensors should be scaled to -1 ... 1 and in bchw format
|
122 |
+
return batch[self.input_key]
|
123 |
+
|
124 |
+
@torch.no_grad()
|
125 |
+
def decode_first_stage(self, z):
|
126 |
+
z = 1.0 / self.scale_factor * z
|
127 |
+
with torch.autocast("cuda", enabled=not self.disable_first_stage_autocast):
|
128 |
+
out = self.first_stage_model.decode(z)
|
129 |
+
return out
|
130 |
+
|
131 |
+
@torch.no_grad()
|
132 |
+
def encode_first_stage(self, x):
|
133 |
+
with torch.autocast("cuda", enabled=not self.disable_first_stage_autocast):
|
134 |
+
z = self.first_stage_model.encode(x)
|
135 |
+
z = self.scale_factor * z
|
136 |
+
return z
|
137 |
+
|
138 |
+
def forward(self, x, batch):
|
139 |
+
|
140 |
+
loss, loss_dict = self.loss_fn(self.model, self.denoiser, self.conditioner, x, batch, self.first_stage_model, self.scale_factor)
|
141 |
+
|
142 |
+
return loss, loss_dict
|
143 |
+
|
144 |
+
def shared_step(self, batch: Dict) -> Any:
|
145 |
+
x = self.get_input(batch)
|
146 |
+
x = self.encode_first_stage(x)
|
147 |
+
batch["global_step"] = self.global_step
|
148 |
+
loss, loss_dict = self(x, batch)
|
149 |
+
return loss, loss_dict
|
150 |
+
|
151 |
+
def training_step(self, batch, batch_idx):
|
152 |
+
loss, loss_dict = self.shared_step(batch)
|
153 |
+
|
154 |
+
self.log_dict(
|
155 |
+
loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=False
|
156 |
+
)
|
157 |
+
|
158 |
+
self.log(
|
159 |
+
"global_step",
|
160 |
+
float(self.global_step),
|
161 |
+
prog_bar=True,
|
162 |
+
logger=True,
|
163 |
+
on_step=True,
|
164 |
+
on_epoch=False,
|
165 |
+
)
|
166 |
+
|
167 |
+
lr = self.optimizers().param_groups[0]["lr"]
|
168 |
+
self.log(
|
169 |
+
"lr_abs", lr, prog_bar=True, logger=True, on_step=True, on_epoch=False
|
170 |
+
)
|
171 |
+
|
172 |
+
return loss
|
173 |
+
|
174 |
+
def on_train_start(self, *args, **kwargs):
|
175 |
+
if self.sampler is None or self.loss_fn is None:
|
176 |
+
raise ValueError("Sampler and loss function need to be set for training.")
|
177 |
+
|
178 |
+
def on_train_batch_end(self, *args, **kwargs):
|
179 |
+
if self.use_ema:
|
180 |
+
self.model_ema(self.model)
|
181 |
+
|
182 |
+
@contextmanager
|
183 |
+
def ema_scope(self, context=None):
|
184 |
+
if self.use_ema:
|
185 |
+
self.model_ema.store(self.model.parameters())
|
186 |
+
self.model_ema.copy_to(self.model)
|
187 |
+
if context is not None:
|
188 |
+
print(f"{context}: Switched to EMA weights")
|
189 |
+
try:
|
190 |
+
yield None
|
191 |
+
finally:
|
192 |
+
if self.use_ema:
|
193 |
+
self.model_ema.restore(self.model.parameters())
|
194 |
+
if context is not None:
|
195 |
+
print(f"{context}: Restored training weights")
|
196 |
+
|
197 |
+
def instantiate_optimizer_from_config(self, params, lr, cfg):
|
198 |
+
return get_obj_from_str(cfg["target"])(
|
199 |
+
params, lr=lr, **cfg.get("params", dict())
|
200 |
+
)
|
201 |
+
|
202 |
+
def configure_optimizers(self):
|
203 |
+
lr = self.learning_rate
|
204 |
+
params = []
|
205 |
+
print("Trainable parameter list: ")
|
206 |
+
print("-"*20)
|
207 |
+
for name, param in self.model.named_parameters():
|
208 |
+
if any([key in name for key in self.opt_keys]):
|
209 |
+
params.append(param)
|
210 |
+
print(name)
|
211 |
+
else:
|
212 |
+
param.requires_grad_(False)
|
213 |
+
for embedder in self.conditioner.embedders:
|
214 |
+
if embedder.is_trainable:
|
215 |
+
for name, param in embedder.named_parameters():
|
216 |
+
params.append(param)
|
217 |
+
print(name)
|
218 |
+
print("-"*20)
|
219 |
+
opt = self.instantiate_optimizer_from_config(params, lr, self.optimizer_config)
|
220 |
+
scheduler = torch.optim.lr_scheduler.LambdaLR(opt, lr_lambda=lambda epoch: 0.95**epoch)
|
221 |
+
|
222 |
+
return [opt], scheduler
|
223 |
+
|
224 |
+
@torch.no_grad()
|
225 |
+
def sample(
|
226 |
+
self,
|
227 |
+
cond: Dict,
|
228 |
+
uc: Union[Dict, None] = None,
|
229 |
+
batch_size: int = 16,
|
230 |
+
shape: Union[None, Tuple, List] = None,
|
231 |
+
**kwargs,
|
232 |
+
):
|
233 |
+
randn = torch.randn(batch_size, *shape).to(self.device)
|
234 |
+
|
235 |
+
denoiser = lambda input, sigma, c: self.denoiser(
|
236 |
+
self.model, input, sigma, c, **kwargs
|
237 |
+
)
|
238 |
+
samples = self.sampler(denoiser, randn, cond, uc=uc)
|
239 |
+
return samples
|
240 |
+
|
241 |
+
@torch.no_grad()
|
242 |
+
def log_conditionings(self, batch: Dict, n: int) -> Dict:
|
243 |
+
"""
|
244 |
+
Defines heuristics to log different conditionings.
|
245 |
+
These can be lists of strings (text-to-image), tensors, ints, ...
|
246 |
+
"""
|
247 |
+
image_h, image_w = batch[self.input_key].shape[2:]
|
248 |
+
log = dict()
|
249 |
+
|
250 |
+
for embedder in self.conditioner.embedders:
|
251 |
+
if (
|
252 |
+
(self.log_keys is None) or (embedder.input_key in self.log_keys)
|
253 |
+
) and not self.no_cond_log:
|
254 |
+
x = batch[embedder.input_key][:n]
|
255 |
+
if isinstance(x, torch.Tensor):
|
256 |
+
if x.dim() == 1:
|
257 |
+
# class-conditional, convert integer to string
|
258 |
+
x = [str(x[i].item()) for i in range(x.shape[0])]
|
259 |
+
xc = log_txt_as_img((image_h, image_w), x, size=image_h // 4)
|
260 |
+
elif x.dim() == 2:
|
261 |
+
# size and crop cond and the like
|
262 |
+
x = [
|
263 |
+
"x".join([str(xx) for xx in x[i].tolist()])
|
264 |
+
for i in range(x.shape[0])
|
265 |
+
]
|
266 |
+
xc = log_txt_as_img((image_h, image_w), x, size=image_h // 20)
|
267 |
+
else:
|
268 |
+
raise NotImplementedError()
|
269 |
+
elif isinstance(x, (List, ListConfig)):
|
270 |
+
if isinstance(x[0], str):
|
271 |
+
# strings
|
272 |
+
xc = log_txt_as_img((image_h, image_w), x, size=image_h // 20)
|
273 |
+
else:
|
274 |
+
raise NotImplementedError()
|
275 |
+
else:
|
276 |
+
raise NotImplementedError()
|
277 |
+
log[embedder.input_key] = xc
|
278 |
+
return log
|
279 |
+
|
280 |
+
@torch.no_grad()
|
281 |
+
def log_images(
|
282 |
+
self,
|
283 |
+
batch: Dict,
|
284 |
+
N: int = 8,
|
285 |
+
sample: bool = True,
|
286 |
+
ucg_keys: List[str] = None,
|
287 |
+
**kwargs,
|
288 |
+
) -> Dict:
|
289 |
+
conditioner_input_keys = [e.input_key for e in self.conditioner.embedders]
|
290 |
+
if ucg_keys:
|
291 |
+
assert all(map(lambda x: x in conditioner_input_keys, ucg_keys)), (
|
292 |
+
"Each defined ucg key for sampling must be in the provided conditioner input keys,"
|
293 |
+
f"but we have {ucg_keys} vs. {conditioner_input_keys}"
|
294 |
+
)
|
295 |
+
else:
|
296 |
+
ucg_keys = conditioner_input_keys
|
297 |
+
log = dict()
|
298 |
+
|
299 |
+
x = self.get_input(batch)
|
300 |
+
|
301 |
+
c, uc = self.conditioner.get_unconditional_conditioning(
|
302 |
+
batch,
|
303 |
+
force_uc_zero_embeddings=ucg_keys
|
304 |
+
if len(self.conditioner.embedders) > 0
|
305 |
+
else [],
|
306 |
+
)
|
307 |
+
|
308 |
+
sampling_kwargs = {}
|
309 |
+
|
310 |
+
N = min(x.shape[0], N)
|
311 |
+
x = x.to(self.device)[:N]
|
312 |
+
log["inputs"] = x
|
313 |
+
z = self.encode_first_stage(x)
|
314 |
+
log["reconstructions"] = self.decode_first_stage(z)
|
315 |
+
log.update(self.log_conditionings(batch, N))
|
316 |
+
|
317 |
+
for k in c:
|
318 |
+
if isinstance(c[k], torch.Tensor):
|
319 |
+
c[k], uc[k] = map(lambda y: y[k][:N].to(self.device), (c, uc))
|
320 |
+
|
321 |
+
if sample:
|
322 |
+
with self.ema_scope("Plotting"):
|
323 |
+
samples = self.sample(
|
324 |
+
c, shape=z.shape[1:], uc=uc, batch_size=N, **sampling_kwargs
|
325 |
+
)
|
326 |
+
samples = self.decode_first_stage(samples)
|
327 |
+
log["samples"] = samples
|
328 |
+
return log
|
sgm/modules/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .encoders.modules import GeneralConditioner, DualConditioner
|
2 |
+
|
3 |
+
UNCONDITIONAL_CONFIG = {
|
4 |
+
"target": "sgm.modules.GeneralConditioner",
|
5 |
+
"params": {"emb_models": []},
|
6 |
+
}
|
sgm/modules/attention.py
ADDED
@@ -0,0 +1,976 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from inspect import isfunction
|
3 |
+
from typing import Any, Optional
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from einops import rearrange, repeat
|
8 |
+
from packaging import version
|
9 |
+
from torch import nn, einsum
|
10 |
+
|
11 |
+
|
12 |
+
if version.parse(torch.__version__) >= version.parse("2.0.0"):
|
13 |
+
SDP_IS_AVAILABLE = True
|
14 |
+
from torch.backends.cuda import SDPBackend, sdp_kernel
|
15 |
+
|
16 |
+
BACKEND_MAP = {
|
17 |
+
SDPBackend.MATH: {
|
18 |
+
"enable_math": True,
|
19 |
+
"enable_flash": False,
|
20 |
+
"enable_mem_efficient": False,
|
21 |
+
},
|
22 |
+
SDPBackend.FLASH_ATTENTION: {
|
23 |
+
"enable_math": False,
|
24 |
+
"enable_flash": True,
|
25 |
+
"enable_mem_efficient": False,
|
26 |
+
},
|
27 |
+
SDPBackend.EFFICIENT_ATTENTION: {
|
28 |
+
"enable_math": False,
|
29 |
+
"enable_flash": False,
|
30 |
+
"enable_mem_efficient": True,
|
31 |
+
},
|
32 |
+
None: {"enable_math": True, "enable_flash": True, "enable_mem_efficient": True},
|
33 |
+
}
|
34 |
+
else:
|
35 |
+
from contextlib import nullcontext
|
36 |
+
|
37 |
+
SDP_IS_AVAILABLE = False
|
38 |
+
sdp_kernel = nullcontext
|
39 |
+
BACKEND_MAP = {}
|
40 |
+
print(
|
41 |
+
f"No SDP backend available, likely because you are running in pytorch versions < 2.0. In fact, "
|
42 |
+
f"you are using PyTorch {torch.__version__}. You might want to consider upgrading."
|
43 |
+
)
|
44 |
+
|
45 |
+
try:
|
46 |
+
import xformers
|
47 |
+
import xformers.ops
|
48 |
+
|
49 |
+
XFORMERS_IS_AVAILABLE = True
|
50 |
+
except:
|
51 |
+
XFORMERS_IS_AVAILABLE = False
|
52 |
+
print("no module 'xformers'. Processing without...")
|
53 |
+
|
54 |
+
from .diffusionmodules.util import checkpoint
|
55 |
+
|
56 |
+
|
57 |
+
def exists(val):
|
58 |
+
return val is not None
|
59 |
+
|
60 |
+
|
61 |
+
def uniq(arr):
|
62 |
+
return {el: True for el in arr}.keys()
|
63 |
+
|
64 |
+
|
65 |
+
def default(val, d):
|
66 |
+
if exists(val):
|
67 |
+
return val
|
68 |
+
return d() if isfunction(d) else d
|
69 |
+
|
70 |
+
|
71 |
+
def max_neg_value(t):
|
72 |
+
return -torch.finfo(t.dtype).max
|
73 |
+
|
74 |
+
|
75 |
+
def init_(tensor):
|
76 |
+
dim = tensor.shape[-1]
|
77 |
+
std = 1 / math.sqrt(dim)
|
78 |
+
tensor.uniform_(-std, std)
|
79 |
+
return tensor
|
80 |
+
|
81 |
+
# feedforward
|
82 |
+
class GEGLU(nn.Module):
|
83 |
+
def __init__(self, dim_in, dim_out):
|
84 |
+
super().__init__()
|
85 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
86 |
+
|
87 |
+
def forward(self, x):
|
88 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
89 |
+
return x * F.gelu(gate)
|
90 |
+
|
91 |
+
|
92 |
+
class FeedForward(nn.Module):
|
93 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
|
94 |
+
super().__init__()
|
95 |
+
inner_dim = int(dim * mult)
|
96 |
+
dim_out = default(dim_out, dim)
|
97 |
+
project_in = (
|
98 |
+
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
|
99 |
+
if not glu
|
100 |
+
else GEGLU(dim, inner_dim)
|
101 |
+
)
|
102 |
+
|
103 |
+
self.net = nn.Sequential(
|
104 |
+
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
|
105 |
+
)
|
106 |
+
|
107 |
+
def forward(self, x):
|
108 |
+
return self.net(x)
|
109 |
+
|
110 |
+
|
111 |
+
def zero_module(module):
|
112 |
+
"""
|
113 |
+
Zero out the parameters of a module and return it.
|
114 |
+
"""
|
115 |
+
for p in module.parameters():
|
116 |
+
p.detach().zero_()
|
117 |
+
return module
|
118 |
+
|
119 |
+
|
120 |
+
def Normalize(in_channels):
|
121 |
+
return torch.nn.GroupNorm(
|
122 |
+
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
|
123 |
+
)
|
124 |
+
|
125 |
+
|
126 |
+
class LinearAttention(nn.Module):
|
127 |
+
def __init__(self, dim, heads=4, dim_head=32):
|
128 |
+
super().__init__()
|
129 |
+
self.heads = heads
|
130 |
+
hidden_dim = dim_head * heads
|
131 |
+
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
|
132 |
+
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
|
133 |
+
|
134 |
+
def forward(self, x):
|
135 |
+
b, c, h, w = x.shape
|
136 |
+
qkv = self.to_qkv(x)
|
137 |
+
q, k, v = rearrange(
|
138 |
+
qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3
|
139 |
+
)
|
140 |
+
k = k.softmax(dim=-1)
|
141 |
+
context = torch.einsum("bhdn,bhen->bhde", k, v)
|
142 |
+
out = torch.einsum("bhde,bhdn->bhen", context, q)
|
143 |
+
out = rearrange(
|
144 |
+
out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w
|
145 |
+
)
|
146 |
+
return self.to_out(out)
|
147 |
+
|
148 |
+
|
149 |
+
class SpatialSelfAttention(nn.Module):
|
150 |
+
def __init__(self, in_channels):
|
151 |
+
super().__init__()
|
152 |
+
self.in_channels = in_channels
|
153 |
+
|
154 |
+
self.norm = Normalize(in_channels)
|
155 |
+
self.q = torch.nn.Conv2d(
|
156 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
157 |
+
)
|
158 |
+
self.k = torch.nn.Conv2d(
|
159 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
160 |
+
)
|
161 |
+
self.v = torch.nn.Conv2d(
|
162 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
163 |
+
)
|
164 |
+
self.proj_out = torch.nn.Conv2d(
|
165 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
166 |
+
)
|
167 |
+
|
168 |
+
def forward(self, x):
|
169 |
+
h_ = x
|
170 |
+
h_ = self.norm(h_)
|
171 |
+
q = self.q(h_)
|
172 |
+
k = self.k(h_)
|
173 |
+
v = self.v(h_)
|
174 |
+
|
175 |
+
# compute attention
|
176 |
+
b, c, h, w = q.shape
|
177 |
+
q = rearrange(q, "b c h w -> b (h w) c")
|
178 |
+
k = rearrange(k, "b c h w -> b c (h w)")
|
179 |
+
w_ = torch.einsum("bij,bjk->bik", q, k)
|
180 |
+
|
181 |
+
w_ = w_ * (int(c) ** (-0.5))
|
182 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
183 |
+
|
184 |
+
# attend to values
|
185 |
+
v = rearrange(v, "b c h w -> b c (h w)")
|
186 |
+
w_ = rearrange(w_, "b i j -> b j i")
|
187 |
+
h_ = torch.einsum("bij,bjk->bik", v, w_)
|
188 |
+
h_ = rearrange(h_, "b c (h w) -> b c h w", h=h)
|
189 |
+
h_ = self.proj_out(h_)
|
190 |
+
|
191 |
+
return x + h_
|
192 |
+
|
193 |
+
|
194 |
+
class CrossAttention(nn.Module):
|
195 |
+
def __init__(
|
196 |
+
self,
|
197 |
+
query_dim,
|
198 |
+
context_dim=None,
|
199 |
+
heads=8,
|
200 |
+
dim_head=64,
|
201 |
+
dropout=0.0,
|
202 |
+
backend=None,
|
203 |
+
):
|
204 |
+
super().__init__()
|
205 |
+
inner_dim = dim_head * heads
|
206 |
+
context_dim = default(context_dim, query_dim)
|
207 |
+
|
208 |
+
self.scale = dim_head**-0.5
|
209 |
+
self.heads = heads
|
210 |
+
|
211 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
212 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
213 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
214 |
+
|
215 |
+
self.to_out = zero_module(nn.Sequential(
|
216 |
+
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
217 |
+
))
|
218 |
+
self.backend = backend
|
219 |
+
|
220 |
+
self.attn_map_cache = None
|
221 |
+
|
222 |
+
def forward(
|
223 |
+
self,
|
224 |
+
x,
|
225 |
+
context=None,
|
226 |
+
mask=None,
|
227 |
+
additional_tokens=None,
|
228 |
+
n_times_crossframe_attn_in_self=0,
|
229 |
+
):
|
230 |
+
h = self.heads
|
231 |
+
|
232 |
+
if additional_tokens is not None:
|
233 |
+
# get the number of masked tokens at the beginning of the output sequence
|
234 |
+
n_tokens_to_mask = additional_tokens.shape[1]
|
235 |
+
# add additional token
|
236 |
+
x = torch.cat([additional_tokens, x], dim=1)
|
237 |
+
|
238 |
+
q = self.to_q(x)
|
239 |
+
context = default(context, x)
|
240 |
+
k = self.to_k(context)
|
241 |
+
v = self.to_v(context)
|
242 |
+
|
243 |
+
if n_times_crossframe_attn_in_self:
|
244 |
+
# reprogramming cross-frame attention as in https://arxiv.org/abs/2303.13439
|
245 |
+
assert x.shape[0] % n_times_crossframe_attn_in_self == 0
|
246 |
+
n_cp = x.shape[0] // n_times_crossframe_attn_in_self
|
247 |
+
k = repeat(
|
248 |
+
k[::n_times_crossframe_attn_in_self], "b ... -> (b n) ...", n=n_cp
|
249 |
+
)
|
250 |
+
v = repeat(
|
251 |
+
v[::n_times_crossframe_attn_in_self], "b ... -> (b n) ...", n=n_cp
|
252 |
+
)
|
253 |
+
|
254 |
+
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v))
|
255 |
+
|
256 |
+
## old
|
257 |
+
|
258 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
259 |
+
del q, k
|
260 |
+
|
261 |
+
if exists(mask):
|
262 |
+
mask = rearrange(mask, 'b ... -> b (...)')
|
263 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
264 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
265 |
+
sim.masked_fill_(~mask, max_neg_value)
|
266 |
+
|
267 |
+
# attention, what we cannot get enough of
|
268 |
+
sim = sim.softmax(dim=-1)
|
269 |
+
|
270 |
+
# save attn_map
|
271 |
+
if self.attn_map_cache is not None:
|
272 |
+
bh, n, l = sim.shape
|
273 |
+
size = int(n**0.5)
|
274 |
+
self.attn_map_cache["size"] = size
|
275 |
+
self.attn_map_cache["attn_map"] = sim
|
276 |
+
|
277 |
+
out = einsum('b i j, b j d -> b i d', sim, v)
|
278 |
+
out = rearrange(out, "(b h) n d -> b n (h d)", h=h)
|
279 |
+
|
280 |
+
## new
|
281 |
+
# with sdp_kernel(**BACKEND_MAP[self.backend]):
|
282 |
+
# # print("dispatching into backend", self.backend, "q/k/v shape: ", q.shape, k.shape, v.shape)
|
283 |
+
# out = F.scaled_dot_product_attention(
|
284 |
+
# q, k, v, attn_mask=mask
|
285 |
+
# ) # scale is dim_head ** -0.5 per default
|
286 |
+
|
287 |
+
# del q, k, v
|
288 |
+
# out = rearrange(out, "b h n d -> b n (h d)", h=h)
|
289 |
+
|
290 |
+
if additional_tokens is not None:
|
291 |
+
# remove additional token
|
292 |
+
out = out[:, n_tokens_to_mask:]
|
293 |
+
return self.to_out(out)
|
294 |
+
|
295 |
+
|
296 |
+
class MemoryEfficientCrossAttention(nn.Module):
|
297 |
+
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
298 |
+
def __init__(
|
299 |
+
self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, **kwargs
|
300 |
+
):
|
301 |
+
super().__init__()
|
302 |
+
# print(
|
303 |
+
# f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
|
304 |
+
# f"{heads} heads with a dimension of {dim_head}."
|
305 |
+
# )
|
306 |
+
inner_dim = dim_head * heads
|
307 |
+
context_dim = default(context_dim, query_dim)
|
308 |
+
|
309 |
+
self.heads = heads
|
310 |
+
self.dim_head = dim_head
|
311 |
+
|
312 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
313 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
314 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
315 |
+
|
316 |
+
self.to_out = nn.Sequential(
|
317 |
+
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
318 |
+
)
|
319 |
+
self.attention_op: Optional[Any] = None
|
320 |
+
|
321 |
+
def forward(
|
322 |
+
self,
|
323 |
+
x,
|
324 |
+
context=None,
|
325 |
+
mask=None,
|
326 |
+
additional_tokens=None,
|
327 |
+
n_times_crossframe_attn_in_self=0,
|
328 |
+
):
|
329 |
+
if additional_tokens is not None:
|
330 |
+
# get the number of masked tokens at the beginning of the output sequence
|
331 |
+
n_tokens_to_mask = additional_tokens.shape[1]
|
332 |
+
# add additional token
|
333 |
+
x = torch.cat([additional_tokens, x], dim=1)
|
334 |
+
q = self.to_q(x)
|
335 |
+
context = default(context, x)
|
336 |
+
k = self.to_k(context)
|
337 |
+
v = self.to_v(context)
|
338 |
+
|
339 |
+
if n_times_crossframe_attn_in_self:
|
340 |
+
# reprogramming cross-frame attention as in https://arxiv.org/abs/2303.13439
|
341 |
+
assert x.shape[0] % n_times_crossframe_attn_in_self == 0
|
342 |
+
# n_cp = x.shape[0]//n_times_crossframe_attn_in_self
|
343 |
+
k = repeat(
|
344 |
+
k[::n_times_crossframe_attn_in_self],
|
345 |
+
"b ... -> (b n) ...",
|
346 |
+
n=n_times_crossframe_attn_in_self,
|
347 |
+
)
|
348 |
+
v = repeat(
|
349 |
+
v[::n_times_crossframe_attn_in_self],
|
350 |
+
"b ... -> (b n) ...",
|
351 |
+
n=n_times_crossframe_attn_in_self,
|
352 |
+
)
|
353 |
+
|
354 |
+
b, _, _ = q.shape
|
355 |
+
q, k, v = map(
|
356 |
+
lambda t: t.unsqueeze(3)
|
357 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
358 |
+
.permute(0, 2, 1, 3)
|
359 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
360 |
+
.contiguous(),
|
361 |
+
(q, k, v),
|
362 |
+
)
|
363 |
+
|
364 |
+
# actually compute the attention, what we cannot get enough of
|
365 |
+
out = xformers.ops.memory_efficient_attention(
|
366 |
+
q, k, v, attn_bias=None, op=self.attention_op
|
367 |
+
)
|
368 |
+
|
369 |
+
# TODO: Use this directly in the attention operation, as a bias
|
370 |
+
if exists(mask):
|
371 |
+
raise NotImplementedError
|
372 |
+
out = (
|
373 |
+
out.unsqueeze(0)
|
374 |
+
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
375 |
+
.permute(0, 2, 1, 3)
|
376 |
+
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
377 |
+
)
|
378 |
+
if additional_tokens is not None:
|
379 |
+
# remove additional token
|
380 |
+
out = out[:, n_tokens_to_mask:]
|
381 |
+
return self.to_out(out)
|
382 |
+
|
383 |
+
|
384 |
+
class BasicTransformerBlock(nn.Module):
|
385 |
+
ATTENTION_MODES = {
|
386 |
+
"softmax": CrossAttention, # vanilla attention
|
387 |
+
"softmax-xformers": MemoryEfficientCrossAttention, # ampere
|
388 |
+
}
|
389 |
+
|
390 |
+
def __init__(
|
391 |
+
self,
|
392 |
+
dim,
|
393 |
+
n_heads,
|
394 |
+
d_head,
|
395 |
+
dropout=0.0,
|
396 |
+
context_dim=None,
|
397 |
+
add_context_dim=None,
|
398 |
+
gated_ff=True,
|
399 |
+
checkpoint=True,
|
400 |
+
disable_self_attn=False,
|
401 |
+
attn_mode="softmax",
|
402 |
+
sdp_backend=None,
|
403 |
+
):
|
404 |
+
super().__init__()
|
405 |
+
assert attn_mode in self.ATTENTION_MODES
|
406 |
+
if attn_mode != "softmax" and not XFORMERS_IS_AVAILABLE:
|
407 |
+
print(
|
408 |
+
f"Attention mode '{attn_mode}' is not available. Falling back to native attention. "
|
409 |
+
f"This is not a problem in Pytorch >= 2.0. FYI, you are running with PyTorch version {torch.__version__}"
|
410 |
+
)
|
411 |
+
attn_mode = "softmax"
|
412 |
+
elif attn_mode == "softmax" and not SDP_IS_AVAILABLE:
|
413 |
+
print(
|
414 |
+
"We do not support vanilla attention anymore, as it is too expensive. Sorry."
|
415 |
+
)
|
416 |
+
if not XFORMERS_IS_AVAILABLE:
|
417 |
+
assert (
|
418 |
+
False
|
419 |
+
), "Please install xformers via e.g. 'pip install xformers==0.0.16'"
|
420 |
+
else:
|
421 |
+
print("Falling back to xformers efficient attention.")
|
422 |
+
attn_mode = "softmax-xformers"
|
423 |
+
attn_cls = self.ATTENTION_MODES[attn_mode]
|
424 |
+
if version.parse(torch.__version__) >= version.parse("2.0.0"):
|
425 |
+
assert sdp_backend is None or isinstance(sdp_backend, SDPBackend)
|
426 |
+
else:
|
427 |
+
assert sdp_backend is None
|
428 |
+
self.disable_self_attn = disable_self_attn
|
429 |
+
self.attn1 = attn_cls(
|
430 |
+
query_dim=dim,
|
431 |
+
heads=n_heads,
|
432 |
+
dim_head=d_head,
|
433 |
+
dropout=dropout,
|
434 |
+
context_dim=context_dim if self.disable_self_attn else None,
|
435 |
+
backend=sdp_backend,
|
436 |
+
) # is a self-attention if not self.disable_self_attn
|
437 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
438 |
+
if context_dim is not None and context_dim > 0:
|
439 |
+
self.attn2 = attn_cls(
|
440 |
+
query_dim=dim,
|
441 |
+
context_dim=context_dim,
|
442 |
+
heads=n_heads,
|
443 |
+
dim_head=d_head,
|
444 |
+
dropout=dropout,
|
445 |
+
backend=sdp_backend,
|
446 |
+
) # is self-attn if context is none
|
447 |
+
if add_context_dim is not None and add_context_dim > 0:
|
448 |
+
self.add_attn = attn_cls(
|
449 |
+
query_dim=dim,
|
450 |
+
context_dim=add_context_dim,
|
451 |
+
heads=n_heads,
|
452 |
+
dim_head=d_head,
|
453 |
+
dropout=dropout,
|
454 |
+
backend=sdp_backend,
|
455 |
+
) # is self-attn if context is none
|
456 |
+
self.add_norm = nn.LayerNorm(dim)
|
457 |
+
self.norm1 = nn.LayerNorm(dim)
|
458 |
+
self.norm2 = nn.LayerNorm(dim)
|
459 |
+
self.norm3 = nn.LayerNorm(dim)
|
460 |
+
self.checkpoint = checkpoint
|
461 |
+
|
462 |
+
def forward(
|
463 |
+
self, x, context=None, add_context=None, additional_tokens=None, n_times_crossframe_attn_in_self=0
|
464 |
+
):
|
465 |
+
kwargs = {"x": x}
|
466 |
+
|
467 |
+
if context is not None:
|
468 |
+
kwargs.update({"context": context})
|
469 |
+
|
470 |
+
if additional_tokens is not None:
|
471 |
+
kwargs.update({"additional_tokens": additional_tokens})
|
472 |
+
|
473 |
+
if n_times_crossframe_attn_in_self:
|
474 |
+
kwargs.update(
|
475 |
+
{"n_times_crossframe_attn_in_self": n_times_crossframe_attn_in_self}
|
476 |
+
)
|
477 |
+
|
478 |
+
return checkpoint(
|
479 |
+
self._forward, (x, context, add_context), self.parameters(), self.checkpoint
|
480 |
+
)
|
481 |
+
|
482 |
+
def _forward(
|
483 |
+
self, x, context=None, add_context=None, additional_tokens=None, n_times_crossframe_attn_in_self=0
|
484 |
+
):
|
485 |
+
x = (
|
486 |
+
self.attn1(
|
487 |
+
self.norm1(x),
|
488 |
+
context=context if self.disable_self_attn else None,
|
489 |
+
additional_tokens=additional_tokens,
|
490 |
+
n_times_crossframe_attn_in_self=n_times_crossframe_attn_in_self
|
491 |
+
if not self.disable_self_attn
|
492 |
+
else 0,
|
493 |
+
)
|
494 |
+
+ x
|
495 |
+
)
|
496 |
+
if hasattr(self, "attn2"):
|
497 |
+
x = (
|
498 |
+
self.attn2(
|
499 |
+
self.norm2(x), context=context, additional_tokens=additional_tokens
|
500 |
+
)
|
501 |
+
+ x
|
502 |
+
)
|
503 |
+
if hasattr(self, "add_attn"):
|
504 |
+
x = (
|
505 |
+
self.add_attn(
|
506 |
+
self.add_norm(x), context=add_context, additional_tokens=additional_tokens
|
507 |
+
)
|
508 |
+
+ x
|
509 |
+
)
|
510 |
+
x = self.ff(self.norm3(x)) + x
|
511 |
+
return x
|
512 |
+
|
513 |
+
|
514 |
+
class BasicTransformerSingleLayerBlock(nn.Module):
|
515 |
+
ATTENTION_MODES = {
|
516 |
+
"softmax": CrossAttention, # vanilla attention
|
517 |
+
"softmax-xformers": MemoryEfficientCrossAttention # on the A100s not quite as fast as the above version
|
518 |
+
# (todo might depend on head_dim, check, falls back to semi-optimized kernels for dim!=[16,32,64,128])
|
519 |
+
}
|
520 |
+
|
521 |
+
def __init__(
|
522 |
+
self,
|
523 |
+
dim,
|
524 |
+
n_heads,
|
525 |
+
d_head,
|
526 |
+
dropout=0.0,
|
527 |
+
context_dim=None,
|
528 |
+
gated_ff=True,
|
529 |
+
checkpoint=True,
|
530 |
+
attn_mode="softmax",
|
531 |
+
):
|
532 |
+
super().__init__()
|
533 |
+
assert attn_mode in self.ATTENTION_MODES
|
534 |
+
attn_cls = self.ATTENTION_MODES[attn_mode]
|
535 |
+
self.attn1 = attn_cls(
|
536 |
+
query_dim=dim,
|
537 |
+
heads=n_heads,
|
538 |
+
dim_head=d_head,
|
539 |
+
dropout=dropout,
|
540 |
+
context_dim=context_dim,
|
541 |
+
)
|
542 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
543 |
+
self.norm1 = nn.LayerNorm(dim)
|
544 |
+
self.norm2 = nn.LayerNorm(dim)
|
545 |
+
self.checkpoint = checkpoint
|
546 |
+
|
547 |
+
def forward(self, x, context=None):
|
548 |
+
return checkpoint(
|
549 |
+
self._forward, (x, context), self.parameters(), self.checkpoint
|
550 |
+
)
|
551 |
+
|
552 |
+
def _forward(self, x, context=None):
|
553 |
+
x = self.attn1(self.norm1(x), context=context) + x
|
554 |
+
x = self.ff(self.norm2(x)) + x
|
555 |
+
return x
|
556 |
+
|
557 |
+
|
558 |
+
class SpatialTransformer(nn.Module):
|
559 |
+
"""
|
560 |
+
Transformer block for image-like data.
|
561 |
+
First, project the input (aka embedding)
|
562 |
+
and reshape to b, t, d.
|
563 |
+
Then apply standard transformer action.
|
564 |
+
Finally, reshape to image
|
565 |
+
NEW: use_linear for more efficiency instead of the 1x1 convs
|
566 |
+
"""
|
567 |
+
|
568 |
+
def __init__(
|
569 |
+
self,
|
570 |
+
in_channels,
|
571 |
+
n_heads,
|
572 |
+
d_head,
|
573 |
+
depth=1,
|
574 |
+
dropout=0.0,
|
575 |
+
context_dim=None,
|
576 |
+
add_context_dim=None,
|
577 |
+
disable_self_attn=False,
|
578 |
+
use_linear=False,
|
579 |
+
attn_type="softmax",
|
580 |
+
use_checkpoint=True,
|
581 |
+
# sdp_backend=SDPBackend.FLASH_ATTENTION
|
582 |
+
sdp_backend=None,
|
583 |
+
):
|
584 |
+
super().__init__()
|
585 |
+
# print(
|
586 |
+
# f"constructing {self.__class__.__name__} of depth {depth} w/ {in_channels} channels and {n_heads} heads"
|
587 |
+
# )
|
588 |
+
from omegaconf import ListConfig
|
589 |
+
|
590 |
+
if exists(context_dim) and not isinstance(context_dim, (list, ListConfig)):
|
591 |
+
context_dim = [context_dim]
|
592 |
+
if exists(context_dim) and isinstance(context_dim, list):
|
593 |
+
if depth != len(context_dim):
|
594 |
+
# print(
|
595 |
+
# f"WARNING: {self.__class__.__name__}: Found context dims {context_dim} of depth {len(context_dim)}, "
|
596 |
+
# f"which does not match the specified 'depth' of {depth}. Setting context_dim to {depth * [context_dim[0]]} now."
|
597 |
+
# )
|
598 |
+
# depth does not match context dims.
|
599 |
+
assert all(
|
600 |
+
map(lambda x: x == context_dim[0], context_dim)
|
601 |
+
), "need homogenous context_dim to match depth automatically"
|
602 |
+
context_dim = depth * [context_dim[0]]
|
603 |
+
elif context_dim is None:
|
604 |
+
context_dim = [None] * depth
|
605 |
+
self.in_channels = in_channels
|
606 |
+
inner_dim = n_heads * d_head
|
607 |
+
self.norm = Normalize(in_channels)
|
608 |
+
if not use_linear:
|
609 |
+
self.proj_in = nn.Conv2d(
|
610 |
+
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
611 |
+
)
|
612 |
+
else:
|
613 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
614 |
+
|
615 |
+
self.transformer_blocks = nn.ModuleList(
|
616 |
+
[
|
617 |
+
BasicTransformerBlock(
|
618 |
+
inner_dim,
|
619 |
+
n_heads,
|
620 |
+
d_head,
|
621 |
+
dropout=dropout,
|
622 |
+
context_dim=context_dim[d],
|
623 |
+
add_context_dim=add_context_dim,
|
624 |
+
disable_self_attn=disable_self_attn,
|
625 |
+
attn_mode=attn_type,
|
626 |
+
checkpoint=use_checkpoint,
|
627 |
+
sdp_backend=sdp_backend,
|
628 |
+
)
|
629 |
+
for d in range(depth)
|
630 |
+
]
|
631 |
+
)
|
632 |
+
if not use_linear:
|
633 |
+
self.proj_out = zero_module(
|
634 |
+
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
635 |
+
)
|
636 |
+
else:
|
637 |
+
# self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
638 |
+
self.proj_out = zero_module(nn.Linear(inner_dim, in_channels))
|
639 |
+
self.use_linear = use_linear
|
640 |
+
|
641 |
+
def forward(self, x, context=None, add_context=None):
|
642 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
643 |
+
if not isinstance(context, list):
|
644 |
+
context = [context]
|
645 |
+
b, c, h, w = x.shape
|
646 |
+
x_in = x
|
647 |
+
x = self.norm(x)
|
648 |
+
if not self.use_linear:
|
649 |
+
x = self.proj_in(x)
|
650 |
+
x = rearrange(x, "b c h w -> b (h w) c").contiguous()
|
651 |
+
if self.use_linear:
|
652 |
+
x = self.proj_in(x)
|
653 |
+
for i, block in enumerate(self.transformer_blocks):
|
654 |
+
if i > 0 and len(context) == 1:
|
655 |
+
i = 0 # use same context for each block
|
656 |
+
x = block(x, context=context[i], add_context=add_context)
|
657 |
+
if self.use_linear:
|
658 |
+
x = self.proj_out(x)
|
659 |
+
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
|
660 |
+
if not self.use_linear:
|
661 |
+
x = self.proj_out(x)
|
662 |
+
return x + x_in
|
663 |
+
|
664 |
+
|
665 |
+
def benchmark_attn():
|
666 |
+
# Lets define a helpful benchmarking function:
|
667 |
+
# https://pytorch.org/tutorials/intermediate/scaled_dot_product_attention_tutorial.html
|
668 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
669 |
+
import torch.nn.functional as F
|
670 |
+
import torch.utils.benchmark as benchmark
|
671 |
+
|
672 |
+
def benchmark_torch_function_in_microseconds(f, *args, **kwargs):
|
673 |
+
t0 = benchmark.Timer(
|
674 |
+
stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f}
|
675 |
+
)
|
676 |
+
return t0.blocked_autorange().mean * 1e6
|
677 |
+
|
678 |
+
# Lets define the hyper-parameters of our input
|
679 |
+
batch_size = 32
|
680 |
+
max_sequence_len = 1024
|
681 |
+
num_heads = 32
|
682 |
+
embed_dimension = 32
|
683 |
+
|
684 |
+
dtype = torch.float16
|
685 |
+
|
686 |
+
query = torch.rand(
|
687 |
+
batch_size,
|
688 |
+
num_heads,
|
689 |
+
max_sequence_len,
|
690 |
+
embed_dimension,
|
691 |
+
device=device,
|
692 |
+
dtype=dtype,
|
693 |
+
)
|
694 |
+
key = torch.rand(
|
695 |
+
batch_size,
|
696 |
+
num_heads,
|
697 |
+
max_sequence_len,
|
698 |
+
embed_dimension,
|
699 |
+
device=device,
|
700 |
+
dtype=dtype,
|
701 |
+
)
|
702 |
+
value = torch.rand(
|
703 |
+
batch_size,
|
704 |
+
num_heads,
|
705 |
+
max_sequence_len,
|
706 |
+
embed_dimension,
|
707 |
+
device=device,
|
708 |
+
dtype=dtype,
|
709 |
+
)
|
710 |
+
|
711 |
+
print(f"q/k/v shape:", query.shape, key.shape, value.shape)
|
712 |
+
|
713 |
+
# Lets explore the speed of each of the 3 implementations
|
714 |
+
from torch.backends.cuda import SDPBackend, sdp_kernel
|
715 |
+
|
716 |
+
# Helpful arguments mapper
|
717 |
+
backend_map = {
|
718 |
+
SDPBackend.MATH: {
|
719 |
+
"enable_math": True,
|
720 |
+
"enable_flash": False,
|
721 |
+
"enable_mem_efficient": False,
|
722 |
+
},
|
723 |
+
SDPBackend.FLASH_ATTENTION: {
|
724 |
+
"enable_math": False,
|
725 |
+
"enable_flash": True,
|
726 |
+
"enable_mem_efficient": False,
|
727 |
+
},
|
728 |
+
SDPBackend.EFFICIENT_ATTENTION: {
|
729 |
+
"enable_math": False,
|
730 |
+
"enable_flash": False,
|
731 |
+
"enable_mem_efficient": True,
|
732 |
+
},
|
733 |
+
}
|
734 |
+
|
735 |
+
from torch.profiler import ProfilerActivity, profile, record_function
|
736 |
+
|
737 |
+
activities = [ProfilerActivity.CPU, ProfilerActivity.CUDA]
|
738 |
+
|
739 |
+
print(
|
740 |
+
f"The default implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds"
|
741 |
+
)
|
742 |
+
with profile(
|
743 |
+
activities=activities, record_shapes=False, profile_memory=True
|
744 |
+
) as prof:
|
745 |
+
with record_function("Default detailed stats"):
|
746 |
+
for _ in range(25):
|
747 |
+
o = F.scaled_dot_product_attention(query, key, value)
|
748 |
+
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
749 |
+
|
750 |
+
print(
|
751 |
+
f"The math implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds"
|
752 |
+
)
|
753 |
+
with sdp_kernel(**backend_map[SDPBackend.MATH]):
|
754 |
+
with profile(
|
755 |
+
activities=activities, record_shapes=False, profile_memory=True
|
756 |
+
) as prof:
|
757 |
+
with record_function("Math implmentation stats"):
|
758 |
+
for _ in range(25):
|
759 |
+
o = F.scaled_dot_product_attention(query, key, value)
|
760 |
+
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
761 |
+
|
762 |
+
with sdp_kernel(**backend_map[SDPBackend.FLASH_ATTENTION]):
|
763 |
+
try:
|
764 |
+
print(
|
765 |
+
f"The flash attention implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds"
|
766 |
+
)
|
767 |
+
except RuntimeError:
|
768 |
+
print("FlashAttention is not supported. See warnings for reasons.")
|
769 |
+
with profile(
|
770 |
+
activities=activities, record_shapes=False, profile_memory=True
|
771 |
+
) as prof:
|
772 |
+
with record_function("FlashAttention stats"):
|
773 |
+
for _ in range(25):
|
774 |
+
o = F.scaled_dot_product_attention(query, key, value)
|
775 |
+
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
776 |
+
|
777 |
+
with sdp_kernel(**backend_map[SDPBackend.EFFICIENT_ATTENTION]):
|
778 |
+
try:
|
779 |
+
print(
|
780 |
+
f"The memory efficient implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds"
|
781 |
+
)
|
782 |
+
except RuntimeError:
|
783 |
+
print("EfficientAttention is not supported. See warnings for reasons.")
|
784 |
+
with profile(
|
785 |
+
activities=activities, record_shapes=False, profile_memory=True
|
786 |
+
) as prof:
|
787 |
+
with record_function("EfficientAttention stats"):
|
788 |
+
for _ in range(25):
|
789 |
+
o = F.scaled_dot_product_attention(query, key, value)
|
790 |
+
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
791 |
+
|
792 |
+
|
793 |
+
def run_model(model, x, context):
|
794 |
+
return model(x, context)
|
795 |
+
|
796 |
+
|
797 |
+
def benchmark_transformer_blocks():
|
798 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
799 |
+
import torch.utils.benchmark as benchmark
|
800 |
+
|
801 |
+
def benchmark_torch_function_in_microseconds(f, *args, **kwargs):
|
802 |
+
t0 = benchmark.Timer(
|
803 |
+
stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f}
|
804 |
+
)
|
805 |
+
return t0.blocked_autorange().mean * 1e6
|
806 |
+
|
807 |
+
checkpoint = True
|
808 |
+
compile = False
|
809 |
+
|
810 |
+
batch_size = 32
|
811 |
+
h, w = 64, 64
|
812 |
+
context_len = 77
|
813 |
+
embed_dimension = 1024
|
814 |
+
context_dim = 1024
|
815 |
+
d_head = 64
|
816 |
+
|
817 |
+
transformer_depth = 4
|
818 |
+
|
819 |
+
n_heads = embed_dimension // d_head
|
820 |
+
|
821 |
+
dtype = torch.float16
|
822 |
+
|
823 |
+
model_native = SpatialTransformer(
|
824 |
+
embed_dimension,
|
825 |
+
n_heads,
|
826 |
+
d_head,
|
827 |
+
context_dim=context_dim,
|
828 |
+
use_linear=True,
|
829 |
+
use_checkpoint=checkpoint,
|
830 |
+
attn_type="softmax",
|
831 |
+
depth=transformer_depth,
|
832 |
+
sdp_backend=SDPBackend.FLASH_ATTENTION,
|
833 |
+
).to(device)
|
834 |
+
model_efficient_attn = SpatialTransformer(
|
835 |
+
embed_dimension,
|
836 |
+
n_heads,
|
837 |
+
d_head,
|
838 |
+
context_dim=context_dim,
|
839 |
+
use_linear=True,
|
840 |
+
depth=transformer_depth,
|
841 |
+
use_checkpoint=checkpoint,
|
842 |
+
attn_type="softmax-xformers",
|
843 |
+
).to(device)
|
844 |
+
if not checkpoint and compile:
|
845 |
+
print("compiling models")
|
846 |
+
model_native = torch.compile(model_native)
|
847 |
+
model_efficient_attn = torch.compile(model_efficient_attn)
|
848 |
+
|
849 |
+
x = torch.rand(batch_size, embed_dimension, h, w, device=device, dtype=dtype)
|
850 |
+
c = torch.rand(batch_size, context_len, context_dim, device=device, dtype=dtype)
|
851 |
+
|
852 |
+
from torch.profiler import ProfilerActivity, profile, record_function
|
853 |
+
|
854 |
+
activities = [ProfilerActivity.CPU, ProfilerActivity.CUDA]
|
855 |
+
|
856 |
+
with torch.autocast("cuda"):
|
857 |
+
print(
|
858 |
+
f"The native model runs in {benchmark_torch_function_in_microseconds(model_native.forward, x, c):.3f} microseconds"
|
859 |
+
)
|
860 |
+
print(
|
861 |
+
f"The efficientattn model runs in {benchmark_torch_function_in_microseconds(model_efficient_attn.forward, x, c):.3f} microseconds"
|
862 |
+
)
|
863 |
+
|
864 |
+
print(75 * "+")
|
865 |
+
print("NATIVE")
|
866 |
+
print(75 * "+")
|
867 |
+
torch.cuda.reset_peak_memory_stats()
|
868 |
+
with profile(
|
869 |
+
activities=activities, record_shapes=False, profile_memory=True
|
870 |
+
) as prof:
|
871 |
+
with record_function("NativeAttention stats"):
|
872 |
+
for _ in range(25):
|
873 |
+
model_native(x, c)
|
874 |
+
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
875 |
+
print(torch.cuda.max_memory_allocated() * 1e-9, "GB used by native block")
|
876 |
+
|
877 |
+
print(75 * "+")
|
878 |
+
print("Xformers")
|
879 |
+
print(75 * "+")
|
880 |
+
torch.cuda.reset_peak_memory_stats()
|
881 |
+
with profile(
|
882 |
+
activities=activities, record_shapes=False, profile_memory=True
|
883 |
+
) as prof:
|
884 |
+
with record_function("xformers stats"):
|
885 |
+
for _ in range(25):
|
886 |
+
model_efficient_attn(x, c)
|
887 |
+
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
888 |
+
print(torch.cuda.max_memory_allocated() * 1e-9, "GB used by xformers block")
|
889 |
+
|
890 |
+
|
891 |
+
def test01():
|
892 |
+
# conv1x1 vs linear
|
893 |
+
from ..util import count_params
|
894 |
+
|
895 |
+
conv = nn.Conv2d(3, 32, kernel_size=1).cuda()
|
896 |
+
print(count_params(conv))
|
897 |
+
linear = torch.nn.Linear(3, 32).cuda()
|
898 |
+
print(count_params(linear))
|
899 |
+
|
900 |
+
print(conv.weight.shape)
|
901 |
+
|
902 |
+
# use same initialization
|
903 |
+
linear.weight = torch.nn.Parameter(conv.weight.squeeze(-1).squeeze(-1))
|
904 |
+
linear.bias = torch.nn.Parameter(conv.bias)
|
905 |
+
|
906 |
+
print(linear.weight.shape)
|
907 |
+
|
908 |
+
x = torch.randn(11, 3, 64, 64).cuda()
|
909 |
+
|
910 |
+
xr = rearrange(x, "b c h w -> b (h w) c").contiguous()
|
911 |
+
print(xr.shape)
|
912 |
+
out_linear = linear(xr)
|
913 |
+
print(out_linear.mean(), out_linear.shape)
|
914 |
+
|
915 |
+
out_conv = conv(x)
|
916 |
+
print(out_conv.mean(), out_conv.shape)
|
917 |
+
print("done with test01.\n")
|
918 |
+
|
919 |
+
|
920 |
+
def test02():
|
921 |
+
# try cosine flash attention
|
922 |
+
import time
|
923 |
+
|
924 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
925 |
+
torch.backends.cudnn.allow_tf32 = True
|
926 |
+
torch.backends.cudnn.benchmark = True
|
927 |
+
print("testing cosine flash attention...")
|
928 |
+
DIM = 1024
|
929 |
+
SEQLEN = 4096
|
930 |
+
BS = 16
|
931 |
+
|
932 |
+
print(" softmax (vanilla) first...")
|
933 |
+
model = BasicTransformerBlock(
|
934 |
+
dim=DIM,
|
935 |
+
n_heads=16,
|
936 |
+
d_head=64,
|
937 |
+
dropout=0.0,
|
938 |
+
context_dim=None,
|
939 |
+
attn_mode="softmax",
|
940 |
+
).cuda()
|
941 |
+
try:
|
942 |
+
x = torch.randn(BS, SEQLEN, DIM).cuda()
|
943 |
+
tic = time.time()
|
944 |
+
y = model(x)
|
945 |
+
toc = time.time()
|
946 |
+
print(y.shape, toc - tic)
|
947 |
+
except RuntimeError as e:
|
948 |
+
# likely oom
|
949 |
+
print(str(e))
|
950 |
+
|
951 |
+
print("\n now flash-cosine...")
|
952 |
+
model = BasicTransformerBlock(
|
953 |
+
dim=DIM,
|
954 |
+
n_heads=16,
|
955 |
+
d_head=64,
|
956 |
+
dropout=0.0,
|
957 |
+
context_dim=None,
|
958 |
+
attn_mode="flash-cosine",
|
959 |
+
).cuda()
|
960 |
+
x = torch.randn(BS, SEQLEN, DIM).cuda()
|
961 |
+
tic = time.time()
|
962 |
+
y = model(x)
|
963 |
+
toc = time.time()
|
964 |
+
print(y.shape, toc - tic)
|
965 |
+
print("done with test02.\n")
|
966 |
+
|
967 |
+
|
968 |
+
if __name__ == "__main__":
|
969 |
+
# test01()
|
970 |
+
# test02()
|
971 |
+
# test03()
|
972 |
+
|
973 |
+
# benchmark_attn()
|
974 |
+
benchmark_transformer_blocks()
|
975 |
+
|
976 |
+
print("done.")
|
sgm/modules/autoencoding/__init__.py
ADDED
File without changes
|
sgm/modules/autoencoding/losses/__init__.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from einops import rearrange
|
6 |
+
from taming.modules.discriminator.model import NLayerDiscriminator, weights_init
|
7 |
+
from taming.modules.losses.lpips import LPIPS
|
8 |
+
from taming.modules.losses.vqperceptual import hinge_d_loss, vanilla_d_loss
|
9 |
+
|
10 |
+
from ....util import default, instantiate_from_config
|
11 |
+
|
12 |
+
|
13 |
+
def adopt_weight(weight, global_step, threshold=0, value=0.0):
|
14 |
+
if global_step < threshold:
|
15 |
+
weight = value
|
16 |
+
return weight
|
17 |
+
|
18 |
+
|
19 |
+
class LatentLPIPS(nn.Module):
|
20 |
+
def __init__(
|
21 |
+
self,
|
22 |
+
decoder_config,
|
23 |
+
perceptual_weight=1.0,
|
24 |
+
latent_weight=1.0,
|
25 |
+
scale_input_to_tgt_size=False,
|
26 |
+
scale_tgt_to_input_size=False,
|
27 |
+
perceptual_weight_on_inputs=0.0,
|
28 |
+
):
|
29 |
+
super().__init__()
|
30 |
+
self.scale_input_to_tgt_size = scale_input_to_tgt_size
|
31 |
+
self.scale_tgt_to_input_size = scale_tgt_to_input_size
|
32 |
+
self.init_decoder(decoder_config)
|
33 |
+
self.perceptual_loss = LPIPS().eval()
|
34 |
+
self.perceptual_weight = perceptual_weight
|
35 |
+
self.latent_weight = latent_weight
|
36 |
+
self.perceptual_weight_on_inputs = perceptual_weight_on_inputs
|
37 |
+
|
38 |
+
def init_decoder(self, config):
|
39 |
+
self.decoder = instantiate_from_config(config)
|
40 |
+
if hasattr(self.decoder, "encoder"):
|
41 |
+
del self.decoder.encoder
|
42 |
+
|
43 |
+
def forward(self, latent_inputs, latent_predictions, image_inputs, split="train"):
|
44 |
+
log = dict()
|
45 |
+
loss = (latent_inputs - latent_predictions) ** 2
|
46 |
+
log[f"{split}/latent_l2_loss"] = loss.mean().detach()
|
47 |
+
image_reconstructions = None
|
48 |
+
if self.perceptual_weight > 0.0:
|
49 |
+
image_reconstructions = self.decoder.decode(latent_predictions)
|
50 |
+
image_targets = self.decoder.decode(latent_inputs)
|
51 |
+
perceptual_loss = self.perceptual_loss(
|
52 |
+
image_targets.contiguous(), image_reconstructions.contiguous()
|
53 |
+
)
|
54 |
+
loss = (
|
55 |
+
self.latent_weight * loss.mean()
|
56 |
+
+ self.perceptual_weight * perceptual_loss.mean()
|
57 |
+
)
|
58 |
+
log[f"{split}/perceptual_loss"] = perceptual_loss.mean().detach()
|
59 |
+
|
60 |
+
if self.perceptual_weight_on_inputs > 0.0:
|
61 |
+
image_reconstructions = default(
|
62 |
+
image_reconstructions, self.decoder.decode(latent_predictions)
|
63 |
+
)
|
64 |
+
if self.scale_input_to_tgt_size:
|
65 |
+
image_inputs = torch.nn.functional.interpolate(
|
66 |
+
image_inputs,
|
67 |
+
image_reconstructions.shape[2:],
|
68 |
+
mode="bicubic",
|
69 |
+
antialias=True,
|
70 |
+
)
|
71 |
+
elif self.scale_tgt_to_input_size:
|
72 |
+
image_reconstructions = torch.nn.functional.interpolate(
|
73 |
+
image_reconstructions,
|
74 |
+
image_inputs.shape[2:],
|
75 |
+
mode="bicubic",
|
76 |
+
antialias=True,
|
77 |
+
)
|
78 |
+
|
79 |
+
perceptual_loss2 = self.perceptual_loss(
|
80 |
+
image_inputs.contiguous(), image_reconstructions.contiguous()
|
81 |
+
)
|
82 |
+
loss = loss + self.perceptual_weight_on_inputs * perceptual_loss2.mean()
|
83 |
+
log[f"{split}/perceptual_loss_on_inputs"] = perceptual_loss2.mean().detach()
|
84 |
+
return loss, log
|
85 |
+
|
86 |
+
|
87 |
+
class GeneralLPIPSWithDiscriminator(nn.Module):
|
88 |
+
def __init__(
|
89 |
+
self,
|
90 |
+
disc_start: int,
|
91 |
+
logvar_init: float = 0.0,
|
92 |
+
pixelloss_weight=1.0,
|
93 |
+
disc_num_layers: int = 3,
|
94 |
+
disc_in_channels: int = 3,
|
95 |
+
disc_factor: float = 1.0,
|
96 |
+
disc_weight: float = 1.0,
|
97 |
+
perceptual_weight: float = 1.0,
|
98 |
+
disc_loss: str = "hinge",
|
99 |
+
scale_input_to_tgt_size: bool = False,
|
100 |
+
dims: int = 2,
|
101 |
+
learn_logvar: bool = False,
|
102 |
+
regularization_weights: Union[None, dict] = None,
|
103 |
+
):
|
104 |
+
super().__init__()
|
105 |
+
self.dims = dims
|
106 |
+
if self.dims > 2:
|
107 |
+
print(
|
108 |
+
f"running with dims={dims}. This means that for perceptual loss calculation, "
|
109 |
+
f"the LPIPS loss will be applied to each frame independently. "
|
110 |
+
)
|
111 |
+
self.scale_input_to_tgt_size = scale_input_to_tgt_size
|
112 |
+
assert disc_loss in ["hinge", "vanilla"]
|
113 |
+
self.pixel_weight = pixelloss_weight
|
114 |
+
self.perceptual_loss = LPIPS().eval()
|
115 |
+
self.perceptual_weight = perceptual_weight
|
116 |
+
# output log variance
|
117 |
+
self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init)
|
118 |
+
self.learn_logvar = learn_logvar
|
119 |
+
|
120 |
+
self.discriminator = NLayerDiscriminator(
|
121 |
+
input_nc=disc_in_channels, n_layers=disc_num_layers, use_actnorm=False
|
122 |
+
).apply(weights_init)
|
123 |
+
self.discriminator_iter_start = disc_start
|
124 |
+
self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss
|
125 |
+
self.disc_factor = disc_factor
|
126 |
+
self.discriminator_weight = disc_weight
|
127 |
+
self.regularization_weights = default(regularization_weights, {})
|
128 |
+
|
129 |
+
def get_trainable_parameters(self) -> Any:
|
130 |
+
return self.discriminator.parameters()
|
131 |
+
|
132 |
+
def get_trainable_autoencoder_parameters(self) -> Any:
|
133 |
+
if self.learn_logvar:
|
134 |
+
yield self.logvar
|
135 |
+
yield from ()
|
136 |
+
|
137 |
+
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
|
138 |
+
if last_layer is not None:
|
139 |
+
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
|
140 |
+
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
|
141 |
+
else:
|
142 |
+
nll_grads = torch.autograd.grad(
|
143 |
+
nll_loss, self.last_layer[0], retain_graph=True
|
144 |
+
)[0]
|
145 |
+
g_grads = torch.autograd.grad(
|
146 |
+
g_loss, self.last_layer[0], retain_graph=True
|
147 |
+
)[0]
|
148 |
+
|
149 |
+
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
|
150 |
+
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
|
151 |
+
d_weight = d_weight * self.discriminator_weight
|
152 |
+
return d_weight
|
153 |
+
|
154 |
+
def forward(
|
155 |
+
self,
|
156 |
+
regularization_log,
|
157 |
+
inputs,
|
158 |
+
reconstructions,
|
159 |
+
optimizer_idx,
|
160 |
+
global_step,
|
161 |
+
last_layer=None,
|
162 |
+
split="train",
|
163 |
+
weights=None,
|
164 |
+
):
|
165 |
+
if self.scale_input_to_tgt_size:
|
166 |
+
inputs = torch.nn.functional.interpolate(
|
167 |
+
inputs, reconstructions.shape[2:], mode="bicubic", antialias=True
|
168 |
+
)
|
169 |
+
|
170 |
+
if self.dims > 2:
|
171 |
+
inputs, reconstructions = map(
|
172 |
+
lambda x: rearrange(x, "b c t h w -> (b t) c h w"),
|
173 |
+
(inputs, reconstructions),
|
174 |
+
)
|
175 |
+
|
176 |
+
rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
|
177 |
+
if self.perceptual_weight > 0:
|
178 |
+
p_loss = self.perceptual_loss(
|
179 |
+
inputs.contiguous(), reconstructions.contiguous()
|
180 |
+
)
|
181 |
+
rec_loss = rec_loss + self.perceptual_weight * p_loss
|
182 |
+
|
183 |
+
nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar
|
184 |
+
weighted_nll_loss = nll_loss
|
185 |
+
if weights is not None:
|
186 |
+
weighted_nll_loss = weights * nll_loss
|
187 |
+
weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0]
|
188 |
+
nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
|
189 |
+
|
190 |
+
# now the GAN part
|
191 |
+
if optimizer_idx == 0:
|
192 |
+
# generator update
|
193 |
+
logits_fake = self.discriminator(reconstructions.contiguous())
|
194 |
+
g_loss = -torch.mean(logits_fake)
|
195 |
+
|
196 |
+
if self.disc_factor > 0.0:
|
197 |
+
try:
|
198 |
+
d_weight = self.calculate_adaptive_weight(
|
199 |
+
nll_loss, g_loss, last_layer=last_layer
|
200 |
+
)
|
201 |
+
except RuntimeError:
|
202 |
+
assert not self.training
|
203 |
+
d_weight = torch.tensor(0.0)
|
204 |
+
else:
|
205 |
+
d_weight = torch.tensor(0.0)
|
206 |
+
|
207 |
+
disc_factor = adopt_weight(
|
208 |
+
self.disc_factor, global_step, threshold=self.discriminator_iter_start
|
209 |
+
)
|
210 |
+
loss = weighted_nll_loss + d_weight * disc_factor * g_loss
|
211 |
+
log = dict()
|
212 |
+
for k in regularization_log:
|
213 |
+
if k in self.regularization_weights:
|
214 |
+
loss = loss + self.regularization_weights[k] * regularization_log[k]
|
215 |
+
log[f"{split}/{k}"] = regularization_log[k].detach().mean()
|
216 |
+
|
217 |
+
log.update(
|
218 |
+
{
|
219 |
+
"{}/total_loss".format(split): loss.clone().detach().mean(),
|
220 |
+
"{}/logvar".format(split): self.logvar.detach(),
|
221 |
+
"{}/nll_loss".format(split): nll_loss.detach().mean(),
|
222 |
+
"{}/rec_loss".format(split): rec_loss.detach().mean(),
|
223 |
+
"{}/d_weight".format(split): d_weight.detach(),
|
224 |
+
"{}/disc_factor".format(split): torch.tensor(disc_factor),
|
225 |
+
"{}/g_loss".format(split): g_loss.detach().mean(),
|
226 |
+
}
|
227 |
+
)
|
228 |
+
|
229 |
+
return loss, log
|
230 |
+
|
231 |
+
if optimizer_idx == 1:
|
232 |
+
# second pass for discriminator update
|
233 |
+
logits_real = self.discriminator(inputs.contiguous().detach())
|
234 |
+
logits_fake = self.discriminator(reconstructions.contiguous().detach())
|
235 |
+
|
236 |
+
disc_factor = adopt_weight(
|
237 |
+
self.disc_factor, global_step, threshold=self.discriminator_iter_start
|
238 |
+
)
|
239 |
+
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
|
240 |
+
|
241 |
+
log = {
|
242 |
+
"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
|
243 |
+
"{}/logits_real".format(split): logits_real.detach().mean(),
|
244 |
+
"{}/logits_fake".format(split): logits_fake.detach().mean(),
|
245 |
+
}
|
246 |
+
return d_loss, log
|
sgm/modules/autoencoding/regularizers/__init__.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import abstractmethod
|
2 |
+
from typing import Any, Tuple
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
from ....modules.distributions.distributions import DiagonalGaussianDistribution
|
9 |
+
|
10 |
+
|
11 |
+
class AbstractRegularizer(nn.Module):
|
12 |
+
def __init__(self):
|
13 |
+
super().__init__()
|
14 |
+
|
15 |
+
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]:
|
16 |
+
raise NotImplementedError()
|
17 |
+
|
18 |
+
@abstractmethod
|
19 |
+
def get_trainable_parameters(self) -> Any:
|
20 |
+
raise NotImplementedError()
|
21 |
+
|
22 |
+
|
23 |
+
class DiagonalGaussianRegularizer(AbstractRegularizer):
|
24 |
+
def __init__(self, sample: bool = True):
|
25 |
+
super().__init__()
|
26 |
+
self.sample = sample
|
27 |
+
|
28 |
+
def get_trainable_parameters(self) -> Any:
|
29 |
+
yield from ()
|
30 |
+
|
31 |
+
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]:
|
32 |
+
log = dict()
|
33 |
+
posterior = DiagonalGaussianDistribution(z)
|
34 |
+
if self.sample:
|
35 |
+
z = posterior.sample()
|
36 |
+
else:
|
37 |
+
z = posterior.mode()
|
38 |
+
kl_loss = posterior.kl()
|
39 |
+
kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
|
40 |
+
log["kl_loss"] = kl_loss
|
41 |
+
return z, log
|
42 |
+
|
43 |
+
|
44 |
+
def measure_perplexity(predicted_indices, num_centroids):
|
45 |
+
# src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py
|
46 |
+
# eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally
|
47 |
+
encodings = (
|
48 |
+
F.one_hot(predicted_indices, num_centroids).float().reshape(-1, num_centroids)
|
49 |
+
)
|
50 |
+
avg_probs = encodings.mean(0)
|
51 |
+
perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp()
|
52 |
+
cluster_use = torch.sum(avg_probs > 0)
|
53 |
+
return perplexity, cluster_use
|
sgm/modules/diffusionmodules/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .denoiser import Denoiser
|
2 |
+
from .discretizer import Discretization
|
3 |
+
from .loss import StandardDiffusionLoss
|
4 |
+
from .model import Model, Encoder, Decoder
|
5 |
+
from .openaimodel import UNetModel
|
6 |
+
from .sampling import BaseDiffusionSampler
|
7 |
+
from .wrappers import OpenAIWrapper
|
sgm/modules/diffusionmodules/denoiser.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
|
3 |
+
from ...util import append_dims, instantiate_from_config
|
4 |
+
|
5 |
+
|
6 |
+
class Denoiser(nn.Module):
|
7 |
+
def __init__(self, weighting_config, scaling_config):
|
8 |
+
super().__init__()
|
9 |
+
|
10 |
+
self.weighting = instantiate_from_config(weighting_config)
|
11 |
+
self.scaling = instantiate_from_config(scaling_config)
|
12 |
+
|
13 |
+
def possibly_quantize_sigma(self, sigma):
|
14 |
+
return sigma
|
15 |
+
|
16 |
+
def possibly_quantize_c_noise(self, c_noise):
|
17 |
+
return c_noise
|
18 |
+
|
19 |
+
def w(self, sigma):
|
20 |
+
return self.weighting(sigma)
|
21 |
+
|
22 |
+
def __call__(self, network, input, sigma, cond):
|
23 |
+
sigma = self.possibly_quantize_sigma(sigma)
|
24 |
+
sigma_shape = sigma.shape
|
25 |
+
sigma = append_dims(sigma, input.ndim)
|
26 |
+
c_skip, c_out, c_in, c_noise = self.scaling(sigma)
|
27 |
+
c_noise = self.possibly_quantize_c_noise(c_noise.reshape(sigma_shape))
|
28 |
+
return network(input * c_in, c_noise, cond) * c_out + input * c_skip
|
29 |
+
|
30 |
+
|
31 |
+
class DiscreteDenoiser(Denoiser):
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
weighting_config,
|
35 |
+
scaling_config,
|
36 |
+
num_idx,
|
37 |
+
discretization_config,
|
38 |
+
do_append_zero=False,
|
39 |
+
quantize_c_noise=True,
|
40 |
+
flip=True,
|
41 |
+
):
|
42 |
+
super().__init__(weighting_config, scaling_config)
|
43 |
+
sigmas = instantiate_from_config(discretization_config)(
|
44 |
+
num_idx, do_append_zero=do_append_zero, flip=flip
|
45 |
+
)
|
46 |
+
self.register_buffer("sigmas", sigmas)
|
47 |
+
self.quantize_c_noise = quantize_c_noise
|
48 |
+
|
49 |
+
def sigma_to_idx(self, sigma):
|
50 |
+
dists = sigma - self.sigmas[:, None]
|
51 |
+
return dists.abs().argmin(dim=0).view(sigma.shape)
|
52 |
+
|
53 |
+
def idx_to_sigma(self, idx):
|
54 |
+
return self.sigmas[idx]
|
55 |
+
|
56 |
+
def possibly_quantize_sigma(self, sigma):
|
57 |
+
return self.idx_to_sigma(self.sigma_to_idx(sigma))
|
58 |
+
|
59 |
+
def possibly_quantize_c_noise(self, c_noise):
|
60 |
+
if self.quantize_c_noise:
|
61 |
+
return self.sigma_to_idx(c_noise)
|
62 |
+
else:
|
63 |
+
return c_noise
|
sgm/modules/diffusionmodules/denoiser_scaling.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
class EDMScaling:
|
5 |
+
def __init__(self, sigma_data=0.5):
|
6 |
+
self.sigma_data = sigma_data
|
7 |
+
|
8 |
+
def __call__(self, sigma):
|
9 |
+
c_skip = self.sigma_data**2 / (sigma**2 + self.sigma_data**2)
|
10 |
+
c_out = sigma * self.sigma_data / (sigma**2 + self.sigma_data**2) ** 0.5
|
11 |
+
c_in = 1 / (sigma**2 + self.sigma_data**2) ** 0.5
|
12 |
+
c_noise = 0.25 * sigma.log()
|
13 |
+
return c_skip, c_out, c_in, c_noise
|
14 |
+
|
15 |
+
|
16 |
+
class EpsScaling:
|
17 |
+
def __call__(self, sigma):
|
18 |
+
c_skip = torch.ones_like(sigma, device=sigma.device)
|
19 |
+
c_out = -sigma
|
20 |
+
c_in = 1 / (sigma**2 + 1.0) ** 0.5
|
21 |
+
c_noise = sigma.clone()
|
22 |
+
return c_skip, c_out, c_in, c_noise
|
23 |
+
|
24 |
+
|
25 |
+
class VScaling:
|
26 |
+
def __call__(self, sigma):
|
27 |
+
c_skip = 1.0 / (sigma**2 + 1.0)
|
28 |
+
c_out = -sigma / (sigma**2 + 1.0) ** 0.5
|
29 |
+
c_in = 1.0 / (sigma**2 + 1.0) ** 0.5
|
30 |
+
c_noise = sigma.clone()
|
31 |
+
return c_skip, c_out, c_in, c_noise
|
sgm/modules/diffusionmodules/denoiser_weighting.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
class UnitWeighting:
|
5 |
+
def __call__(self, sigma):
|
6 |
+
return torch.ones_like(sigma, device=sigma.device)
|
7 |
+
|
8 |
+
|
9 |
+
class EDMWeighting:
|
10 |
+
def __init__(self, sigma_data=0.5):
|
11 |
+
self.sigma_data = sigma_data
|
12 |
+
|
13 |
+
def __call__(self, sigma):
|
14 |
+
return (sigma**2 + self.sigma_data**2) / (sigma * self.sigma_data) ** 2
|
15 |
+
|
16 |
+
|
17 |
+
class VWeighting(EDMWeighting):
|
18 |
+
def __init__(self):
|
19 |
+
super().__init__(sigma_data=1.0)
|
20 |
+
|
21 |
+
|
22 |
+
class EpsWeighting:
|
23 |
+
def __call__(self, sigma):
|
24 |
+
return sigma**-2.0
|
sgm/modules/diffusionmodules/discretizer.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from functools import partial
|
4 |
+
from abc import abstractmethod
|
5 |
+
|
6 |
+
from ...util import append_zero
|
7 |
+
from ...modules.diffusionmodules.util import make_beta_schedule
|
8 |
+
|
9 |
+
|
10 |
+
def generate_roughly_equally_spaced_steps(
|
11 |
+
num_substeps: int, max_step: int
|
12 |
+
) -> np.ndarray:
|
13 |
+
return np.linspace(max_step - 1, 0, num_substeps, endpoint=False).astype(int)[::-1]
|
14 |
+
|
15 |
+
|
16 |
+
class Discretization:
|
17 |
+
def __call__(self, n, do_append_zero=True, device="cpu", flip=False):
|
18 |
+
sigmas = self.get_sigmas(n, device=device)
|
19 |
+
sigmas = append_zero(sigmas) if do_append_zero else sigmas
|
20 |
+
return sigmas if not flip else torch.flip(sigmas, (0,))
|
21 |
+
|
22 |
+
@abstractmethod
|
23 |
+
def get_sigmas(self, n, device):
|
24 |
+
pass
|
25 |
+
|
26 |
+
|
27 |
+
class EDMDiscretization(Discretization):
|
28 |
+
def __init__(self, sigma_min=0.02, sigma_max=80.0, rho=7.0):
|
29 |
+
self.sigma_min = sigma_min
|
30 |
+
self.sigma_max = sigma_max
|
31 |
+
self.rho = rho
|
32 |
+
|
33 |
+
def get_sigmas(self, n, device="cpu"):
|
34 |
+
ramp = torch.linspace(0, 1, n, device=device)
|
35 |
+
min_inv_rho = self.sigma_min ** (1 / self.rho)
|
36 |
+
max_inv_rho = self.sigma_max ** (1 / self.rho)
|
37 |
+
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** self.rho
|
38 |
+
return sigmas
|
39 |
+
|
40 |
+
|
41 |
+
class LegacyDDPMDiscretization(Discretization):
|
42 |
+
def __init__(
|
43 |
+
self,
|
44 |
+
linear_start=0.00085,
|
45 |
+
linear_end=0.0120,
|
46 |
+
num_timesteps=1000,
|
47 |
+
):
|
48 |
+
super().__init__()
|
49 |
+
self.num_timesteps = num_timesteps
|
50 |
+
betas = make_beta_schedule(
|
51 |
+
"linear", num_timesteps, linear_start=linear_start, linear_end=linear_end
|
52 |
+
)
|
53 |
+
alphas = 1.0 - betas
|
54 |
+
self.alphas_cumprod = np.cumprod(alphas, axis=0)
|
55 |
+
self.to_torch = partial(torch.tensor, dtype=torch.float32)
|
56 |
+
|
57 |
+
def get_sigmas(self, n, device="cpu"):
|
58 |
+
if n < self.num_timesteps:
|
59 |
+
timesteps = generate_roughly_equally_spaced_steps(n, self.num_timesteps)
|
60 |
+
alphas_cumprod = self.alphas_cumprod[timesteps]
|
61 |
+
elif n == self.num_timesteps:
|
62 |
+
alphas_cumprod = self.alphas_cumprod
|
63 |
+
else:
|
64 |
+
raise ValueError
|
65 |
+
|
66 |
+
to_torch = partial(torch.tensor, dtype=torch.float32, device=device)
|
67 |
+
sigmas = to_torch((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
|
68 |
+
return torch.flip(sigmas, (0,))
|
sgm/modules/diffusionmodules/guiders.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from ...util import default, instantiate_from_config
|
6 |
+
|
7 |
+
|
8 |
+
class VanillaCFG:
|
9 |
+
"""
|
10 |
+
implements parallelized CFG
|
11 |
+
"""
|
12 |
+
|
13 |
+
def __init__(self, scale, dyn_thresh_config=None):
|
14 |
+
scale_schedule = lambda scale, sigma: scale # independent of step
|
15 |
+
self.scale_schedule = partial(scale_schedule, scale)
|
16 |
+
self.dyn_thresh = instantiate_from_config(
|
17 |
+
default(
|
18 |
+
dyn_thresh_config,
|
19 |
+
{
|
20 |
+
"target": "sgm.modules.diffusionmodules.sampling_utils.NoDynamicThresholding"
|
21 |
+
},
|
22 |
+
)
|
23 |
+
)
|
24 |
+
|
25 |
+
def __call__(self, x, sigma):
|
26 |
+
x_u, x_c = x.chunk(2)
|
27 |
+
scale_value = self.scale_schedule(sigma)
|
28 |
+
x_pred = self.dyn_thresh(x_u, x_c, scale_value)
|
29 |
+
return x_pred
|
30 |
+
|
31 |
+
def prepare_inputs(self, x, s, c, uc):
|
32 |
+
c_out = dict()
|
33 |
+
|
34 |
+
for k in c:
|
35 |
+
if k in ["vector", "crossattn", "add_crossattn", "concat"]:
|
36 |
+
c_out[k] = torch.cat((uc[k], c[k]), 0)
|
37 |
+
else:
|
38 |
+
assert c[k] == uc[k]
|
39 |
+
c_out[k] = c[k]
|
40 |
+
return torch.cat([x] * 2), torch.cat([s] * 2), c_out
|
41 |
+
|
42 |
+
|
43 |
+
class DualCFG:
|
44 |
+
|
45 |
+
def __init__(self, scale):
|
46 |
+
self.scale = scale
|
47 |
+
self.dyn_thresh = instantiate_from_config(
|
48 |
+
{
|
49 |
+
"target": "sgm.modules.diffusionmodules.sampling_utils.DualThresholding"
|
50 |
+
},
|
51 |
+
)
|
52 |
+
|
53 |
+
def __call__(self, x, sigma):
|
54 |
+
x_u_1, x_u_2, x_c = x.chunk(3)
|
55 |
+
x_pred = self.dyn_thresh(x_u_1, x_u_2, x_c, self.scale)
|
56 |
+
return x_pred
|
57 |
+
|
58 |
+
def prepare_inputs(self, x, s, c, uc_1, uc_2):
|
59 |
+
c_out = dict()
|
60 |
+
|
61 |
+
for k in c:
|
62 |
+
if k in ["vector", "crossattn", "concat", "add_crossattn"]:
|
63 |
+
c_out[k] = torch.cat((uc_1[k], uc_2[k], c[k]), 0)
|
64 |
+
else:
|
65 |
+
assert c[k] == uc_1[k]
|
66 |
+
c_out[k] = c[k]
|
67 |
+
return torch.cat([x] * 3), torch.cat([s] * 3), c_out
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
class IdentityGuider:
|
72 |
+
def __call__(self, x, sigma):
|
73 |
+
return x
|
74 |
+
|
75 |
+
def prepare_inputs(self, x, s, c, uc):
|
76 |
+
c_out = dict()
|
77 |
+
|
78 |
+
for k in c:
|
79 |
+
c_out[k] = c[k]
|
80 |
+
|
81 |
+
return x, s, c_out
|
sgm/modules/diffusionmodules/loss.py
ADDED
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from omegaconf import ListConfig
|
7 |
+
from taming.modules.losses.lpips import LPIPS
|
8 |
+
from torchvision.utils import save_image
|
9 |
+
from ...util import append_dims, instantiate_from_config
|
10 |
+
|
11 |
+
|
12 |
+
class StandardDiffusionLoss(nn.Module):
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
sigma_sampler_config,
|
16 |
+
type="l2",
|
17 |
+
offset_noise_level=0.0,
|
18 |
+
batch2model_keys: Optional[Union[str, List[str], ListConfig]] = None,
|
19 |
+
):
|
20 |
+
super().__init__()
|
21 |
+
|
22 |
+
assert type in ["l2", "l1", "lpips"]
|
23 |
+
|
24 |
+
self.sigma_sampler = instantiate_from_config(sigma_sampler_config)
|
25 |
+
|
26 |
+
self.type = type
|
27 |
+
self.offset_noise_level = offset_noise_level
|
28 |
+
|
29 |
+
if type == "lpips":
|
30 |
+
self.lpips = LPIPS().eval()
|
31 |
+
|
32 |
+
if not batch2model_keys:
|
33 |
+
batch2model_keys = []
|
34 |
+
|
35 |
+
if isinstance(batch2model_keys, str):
|
36 |
+
batch2model_keys = [batch2model_keys]
|
37 |
+
|
38 |
+
self.batch2model_keys = set(batch2model_keys)
|
39 |
+
|
40 |
+
def __call__(self, network, denoiser, conditioner, input, batch, *args, **kwarg):
|
41 |
+
cond = conditioner(batch)
|
42 |
+
additional_model_inputs = {
|
43 |
+
key: batch[key] for key in self.batch2model_keys.intersection(batch)
|
44 |
+
}
|
45 |
+
|
46 |
+
sigmas = self.sigma_sampler(input.shape[0]).to(input.device)
|
47 |
+
noise = torch.randn_like(input)
|
48 |
+
if self.offset_noise_level > 0.0:
|
49 |
+
noise = noise + self.offset_noise_level * append_dims(
|
50 |
+
torch.randn(input.shape[0], device=input.device), input.ndim
|
51 |
+
)
|
52 |
+
noised_input = input + noise * append_dims(sigmas, input.ndim)
|
53 |
+
model_output = denoiser(
|
54 |
+
network, noised_input, sigmas, cond, **additional_model_inputs
|
55 |
+
)
|
56 |
+
w = append_dims(denoiser.w(sigmas), input.ndim)
|
57 |
+
|
58 |
+
loss = self.get_diff_loss(model_output, input, w)
|
59 |
+
loss = loss.mean()
|
60 |
+
loss_dict = {"loss": loss}
|
61 |
+
|
62 |
+
return loss, loss_dict
|
63 |
+
|
64 |
+
def get_diff_loss(self, model_output, target, w):
|
65 |
+
if self.type == "l2":
|
66 |
+
return torch.mean(
|
67 |
+
(w * (model_output - target) ** 2).reshape(target.shape[0], -1), 1
|
68 |
+
)
|
69 |
+
elif self.type == "l1":
|
70 |
+
return torch.mean(
|
71 |
+
(w * (model_output - target).abs()).reshape(target.shape[0], -1), 1
|
72 |
+
)
|
73 |
+
elif self.type == "lpips":
|
74 |
+
loss = self.lpips(model_output, target).reshape(-1)
|
75 |
+
return loss
|
76 |
+
|
77 |
+
|
78 |
+
class FullLoss(StandardDiffusionLoss):
|
79 |
+
|
80 |
+
def __init__(
|
81 |
+
self,
|
82 |
+
seq_len=12,
|
83 |
+
kernel_size=3,
|
84 |
+
gaussian_sigma=0.5,
|
85 |
+
min_attn_size=16,
|
86 |
+
lambda_local_loss=0.0,
|
87 |
+
lambda_ocr_loss=0.0,
|
88 |
+
ocr_enabled = False,
|
89 |
+
predictor_config = None,
|
90 |
+
*args, **kwarg
|
91 |
+
):
|
92 |
+
super().__init__(*args, **kwarg)
|
93 |
+
|
94 |
+
self.gaussian_kernel_size = kernel_size
|
95 |
+
gaussian_kernel = self.get_gaussian_kernel(kernel_size=self.gaussian_kernel_size, sigma=gaussian_sigma, out_channels=seq_len)
|
96 |
+
self.register_buffer("g_kernel", gaussian_kernel.requires_grad_(False))
|
97 |
+
|
98 |
+
self.min_attn_size = min_attn_size
|
99 |
+
self.lambda_local_loss = lambda_local_loss
|
100 |
+
self.lambda_ocr_loss = lambda_ocr_loss
|
101 |
+
|
102 |
+
self.ocr_enabled = ocr_enabled
|
103 |
+
if ocr_enabled:
|
104 |
+
self.predictor = instantiate_from_config(predictor_config)
|
105 |
+
|
106 |
+
def get_gaussian_kernel(self, kernel_size=3, sigma=1, out_channels=3):
|
107 |
+
# Create a x, y coordinate grid of shape (kernel_size, kernel_size, 2)
|
108 |
+
x_coord = torch.arange(kernel_size)
|
109 |
+
x_grid = x_coord.repeat(kernel_size).view(kernel_size, kernel_size)
|
110 |
+
y_grid = x_grid.t()
|
111 |
+
xy_grid = torch.stack([x_grid, y_grid], dim=-1).float()
|
112 |
+
|
113 |
+
mean = (kernel_size - 1)/2.
|
114 |
+
variance = sigma**2.
|
115 |
+
|
116 |
+
# Calculate the 2-dimensional gaussian kernel which is
|
117 |
+
# the product of two gaussian distributions for two different
|
118 |
+
# variables (in this case called x and y)
|
119 |
+
gaussian_kernel = (1./(2.*torch.pi*variance)) *\
|
120 |
+
torch.exp(
|
121 |
+
-torch.sum((xy_grid - mean)**2., dim=-1) /\
|
122 |
+
(2*variance)
|
123 |
+
)
|
124 |
+
|
125 |
+
# Make sure sum of values in gaussian kernel equals 1.
|
126 |
+
gaussian_kernel = gaussian_kernel / torch.sum(gaussian_kernel)
|
127 |
+
|
128 |
+
# Reshape to 2d depthwise convolutional weight
|
129 |
+
gaussian_kernel = gaussian_kernel.view(1, 1, kernel_size, kernel_size)
|
130 |
+
gaussian_kernel = gaussian_kernel.tile(out_channels, 1, 1, 1)
|
131 |
+
|
132 |
+
return gaussian_kernel
|
133 |
+
|
134 |
+
def __call__(self, network, denoiser, conditioner, input, batch, first_stage_model, scaler):
|
135 |
+
|
136 |
+
cond = conditioner(batch)
|
137 |
+
|
138 |
+
sigmas = self.sigma_sampler(input.shape[0]).to(input.device)
|
139 |
+
noise = torch.randn_like(input)
|
140 |
+
if self.offset_noise_level > 0.0:
|
141 |
+
noise = noise + self.offset_noise_level * append_dims(
|
142 |
+
torch.randn(input.shape[0], device=input.device), input.ndim
|
143 |
+
)
|
144 |
+
|
145 |
+
noised_input = input + noise * append_dims(sigmas, input.ndim)
|
146 |
+
model_output = denoiser(network, noised_input, sigmas, cond)
|
147 |
+
w = append_dims(denoiser.w(sigmas), input.ndim)
|
148 |
+
|
149 |
+
diff_loss = self.get_diff_loss(model_output, input, w)
|
150 |
+
local_loss = self.get_local_loss(network.diffusion_model.attn_map_cache, batch["seg"], batch["seg_mask"])
|
151 |
+
diff_loss = diff_loss.mean()
|
152 |
+
local_loss = local_loss.mean()
|
153 |
+
|
154 |
+
if self.ocr_enabled:
|
155 |
+
ocr_loss = self.get_ocr_loss(model_output, batch["r_bbox"], batch["label"], first_stage_model, scaler)
|
156 |
+
ocr_loss = ocr_loss.mean()
|
157 |
+
|
158 |
+
loss = diff_loss + self.lambda_local_loss * local_loss
|
159 |
+
if self.ocr_enabled:
|
160 |
+
loss += self.lambda_ocr_loss * ocr_loss
|
161 |
+
|
162 |
+
loss_dict = {
|
163 |
+
"loss/diff_loss": diff_loss,
|
164 |
+
"loss/local_loss": local_loss,
|
165 |
+
"loss/full_loss": loss
|
166 |
+
}
|
167 |
+
|
168 |
+
if self.ocr_enabled:
|
169 |
+
loss_dict["loss/ocr_loss"] = ocr_loss
|
170 |
+
|
171 |
+
return loss, loss_dict
|
172 |
+
|
173 |
+
def get_ocr_loss(self, model_output, r_bbox, label, first_stage_model, scaler):
|
174 |
+
|
175 |
+
model_output = 1 / scaler * model_output
|
176 |
+
model_output_decoded = first_stage_model.decode(model_output)
|
177 |
+
model_output_crops = []
|
178 |
+
|
179 |
+
for i, bbox in enumerate(r_bbox):
|
180 |
+
m_top, m_bottom, m_left, m_right = bbox
|
181 |
+
model_output_crops.append(model_output_decoded[i, :, m_top:m_bottom, m_left:m_right])
|
182 |
+
|
183 |
+
loss = self.predictor.calc_loss(model_output_crops, label)
|
184 |
+
|
185 |
+
return loss
|
186 |
+
|
187 |
+
def get_min_local_loss(self, attn_map_cache, mask, seg_mask):
|
188 |
+
|
189 |
+
loss = 0
|
190 |
+
count = 0
|
191 |
+
|
192 |
+
for item in attn_map_cache:
|
193 |
+
|
194 |
+
heads = item["heads"]
|
195 |
+
size = item["size"]
|
196 |
+
attn_map = item["attn_map"]
|
197 |
+
|
198 |
+
if size < self.min_attn_size: continue
|
199 |
+
|
200 |
+
seg_l = seg_mask.shape[1]
|
201 |
+
|
202 |
+
bh, n, l = attn_map.shape # bh: batch size * heads / n : pixel length(h*w) / l: token length
|
203 |
+
attn_map = attn_map.reshape((-1, heads, n, l)) # b, h, n, l
|
204 |
+
|
205 |
+
assert seg_l <= l
|
206 |
+
attn_map = attn_map[..., :seg_l]
|
207 |
+
attn_map = attn_map.permute(0, 1, 3, 2) # b, h, l, n
|
208 |
+
attn_map = attn_map.mean(dim = 1) # b, l, n
|
209 |
+
|
210 |
+
attn_map = attn_map.reshape((-1, seg_l, size, size)) # b, l, s, s
|
211 |
+
attn_map = F.conv2d(attn_map, self.g_kernel, padding = self.gaussian_kernel_size//2, groups=seg_l) # gaussian blur on each channel
|
212 |
+
attn_map = attn_map.reshape((-1, seg_l, n)) # b, l, n
|
213 |
+
|
214 |
+
mask_map = F.interpolate(mask, (size, size))
|
215 |
+
mask_map = mask_map.tile((1, seg_l, 1, 1))
|
216 |
+
mask_map = mask_map.reshape((-1, seg_l, n)) # b, l, n
|
217 |
+
|
218 |
+
p_loss = (mask_map * attn_map).max(dim = -1)[0] # b, l
|
219 |
+
p_loss = p_loss + (1 - seg_mask) # b, l
|
220 |
+
p_loss = p_loss.min(dim = -1)[0] # b,
|
221 |
+
|
222 |
+
loss += -p_loss
|
223 |
+
count += 1
|
224 |
+
|
225 |
+
loss = loss / count
|
226 |
+
|
227 |
+
return loss
|
228 |
+
|
229 |
+
def get_local_loss(self, attn_map_cache, seg, seg_mask):
|
230 |
+
|
231 |
+
loss = 0
|
232 |
+
count = 0
|
233 |
+
|
234 |
+
for item in attn_map_cache:
|
235 |
+
|
236 |
+
heads = item["heads"]
|
237 |
+
size = item["size"]
|
238 |
+
attn_map = item["attn_map"]
|
239 |
+
|
240 |
+
if size < self.min_attn_size: continue
|
241 |
+
|
242 |
+
seg_l = seg_mask.shape[1]
|
243 |
+
|
244 |
+
bh, n, l = attn_map.shape # bh: batch size * heads / n : pixel length(h*w) / l: token length
|
245 |
+
attn_map = attn_map.reshape((-1, heads, n, l)) # b, h, n, l
|
246 |
+
|
247 |
+
assert seg_l <= l
|
248 |
+
attn_map = attn_map[..., :seg_l]
|
249 |
+
attn_map = attn_map.permute(0, 1, 3, 2) # b, h, l, n
|
250 |
+
attn_map = attn_map.mean(dim = 1) # b, l, n
|
251 |
+
|
252 |
+
attn_map = attn_map.reshape((-1, seg_l, size, size)) # b, l, s, s
|
253 |
+
attn_map = F.conv2d(attn_map, self.g_kernel, padding = self.gaussian_kernel_size//2, groups=seg_l) # gaussian blur on each channel
|
254 |
+
attn_map = attn_map.reshape((-1, seg_l, n)) # b, l, n
|
255 |
+
|
256 |
+
seg_map = F.interpolate(seg, (size, size))
|
257 |
+
seg_map = seg_map.reshape((-1, seg_l, n)) # b, l, n
|
258 |
+
n_seg_map = 1 - seg_map
|
259 |
+
|
260 |
+
p_loss = (seg_map * attn_map).max(dim = -1)[0] # b, l
|
261 |
+
n_loss = (n_seg_map * attn_map).max(dim = -1)[0] # b, l
|
262 |
+
|
263 |
+
p_loss = p_loss * seg_mask # b, l
|
264 |
+
n_loss = n_loss * seg_mask # b, l
|
265 |
+
|
266 |
+
p_loss = p_loss.sum(dim = -1) / seg_mask.sum(dim = -1) # b,
|
267 |
+
n_loss = n_loss.sum(dim = -1) / seg_mask.sum(dim = -1) # b,
|
268 |
+
|
269 |
+
f_loss = n_loss - p_loss # b,
|
270 |
+
loss += f_loss
|
271 |
+
count += 1
|
272 |
+
|
273 |
+
loss = loss / count
|
274 |
+
|
275 |
+
return loss
|
sgm/modules/diffusionmodules/model.py
ADDED
@@ -0,0 +1,743 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pytorch_diffusion + derived encoder decoder
|
2 |
+
import math
|
3 |
+
from typing import Any, Callable, Optional
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from einops import rearrange
|
9 |
+
from packaging import version
|
10 |
+
|
11 |
+
try:
|
12 |
+
import xformers
|
13 |
+
import xformers.ops
|
14 |
+
|
15 |
+
XFORMERS_IS_AVAILABLE = True
|
16 |
+
except:
|
17 |
+
XFORMERS_IS_AVAILABLE = False
|
18 |
+
print("no module 'xformers'. Processing without...")
|
19 |
+
|
20 |
+
from ...modules.attention import LinearAttention, MemoryEfficientCrossAttention
|
21 |
+
|
22 |
+
|
23 |
+
def get_timestep_embedding(timesteps, embedding_dim):
|
24 |
+
"""
|
25 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
26 |
+
From Fairseq.
|
27 |
+
Build sinusoidal embeddings.
|
28 |
+
This matches the implementation in tensor2tensor, but differs slightly
|
29 |
+
from the description in Section 3.5 of "Attention Is All You Need".
|
30 |
+
"""
|
31 |
+
assert len(timesteps.shape) == 1
|
32 |
+
|
33 |
+
half_dim = embedding_dim // 2
|
34 |
+
emb = math.log(10000) / (half_dim - 1)
|
35 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
36 |
+
emb = emb.to(device=timesteps.device)
|
37 |
+
emb = timesteps.float()[:, None] * emb[None, :]
|
38 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
39 |
+
if embedding_dim % 2 == 1: # zero pad
|
40 |
+
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
|
41 |
+
return emb
|
42 |
+
|
43 |
+
|
44 |
+
def nonlinearity(x):
|
45 |
+
# swish
|
46 |
+
return x * torch.sigmoid(x)
|
47 |
+
|
48 |
+
|
49 |
+
def Normalize(in_channels, num_groups=32):
|
50 |
+
return torch.nn.GroupNorm(
|
51 |
+
num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True
|
52 |
+
)
|
53 |
+
|
54 |
+
|
55 |
+
class Upsample(nn.Module):
|
56 |
+
def __init__(self, in_channels, with_conv):
|
57 |
+
super().__init__()
|
58 |
+
self.with_conv = with_conv
|
59 |
+
if self.with_conv:
|
60 |
+
self.conv = torch.nn.Conv2d(
|
61 |
+
in_channels, in_channels, kernel_size=3, stride=1, padding=1
|
62 |
+
)
|
63 |
+
|
64 |
+
def forward(self, x):
|
65 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
66 |
+
if self.with_conv:
|
67 |
+
x = self.conv(x)
|
68 |
+
return x
|
69 |
+
|
70 |
+
|
71 |
+
class Downsample(nn.Module):
|
72 |
+
def __init__(self, in_channels, with_conv):
|
73 |
+
super().__init__()
|
74 |
+
self.with_conv = with_conv
|
75 |
+
if self.with_conv:
|
76 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
77 |
+
self.conv = torch.nn.Conv2d(
|
78 |
+
in_channels, in_channels, kernel_size=3, stride=2, padding=0
|
79 |
+
)
|
80 |
+
|
81 |
+
def forward(self, x):
|
82 |
+
if self.with_conv:
|
83 |
+
pad = (0, 1, 0, 1)
|
84 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
85 |
+
x = self.conv(x)
|
86 |
+
else:
|
87 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
88 |
+
return x
|
89 |
+
|
90 |
+
|
91 |
+
class ResnetBlock(nn.Module):
|
92 |
+
def __init__(
|
93 |
+
self,
|
94 |
+
*,
|
95 |
+
in_channels,
|
96 |
+
out_channels=None,
|
97 |
+
conv_shortcut=False,
|
98 |
+
dropout,
|
99 |
+
temb_channels=512,
|
100 |
+
):
|
101 |
+
super().__init__()
|
102 |
+
self.in_channels = in_channels
|
103 |
+
out_channels = in_channels if out_channels is None else out_channels
|
104 |
+
self.out_channels = out_channels
|
105 |
+
self.use_conv_shortcut = conv_shortcut
|
106 |
+
|
107 |
+
self.norm1 = Normalize(in_channels)
|
108 |
+
self.conv1 = torch.nn.Conv2d(
|
109 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
110 |
+
)
|
111 |
+
if temb_channels > 0:
|
112 |
+
self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
|
113 |
+
self.norm2 = Normalize(out_channels)
|
114 |
+
self.dropout = torch.nn.Dropout(dropout)
|
115 |
+
self.conv2 = torch.nn.Conv2d(
|
116 |
+
out_channels, out_channels, kernel_size=3, stride=1, padding=1
|
117 |
+
)
|
118 |
+
if self.in_channels != self.out_channels:
|
119 |
+
if self.use_conv_shortcut:
|
120 |
+
self.conv_shortcut = torch.nn.Conv2d(
|
121 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
122 |
+
)
|
123 |
+
else:
|
124 |
+
self.nin_shortcut = torch.nn.Conv2d(
|
125 |
+
in_channels, out_channels, kernel_size=1, stride=1, padding=0
|
126 |
+
)
|
127 |
+
|
128 |
+
def forward(self, x, temb):
|
129 |
+
h = x
|
130 |
+
h = self.norm1(h)
|
131 |
+
h = nonlinearity(h)
|
132 |
+
h = self.conv1(h)
|
133 |
+
|
134 |
+
if temb is not None:
|
135 |
+
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
|
136 |
+
|
137 |
+
h = self.norm2(h)
|
138 |
+
h = nonlinearity(h)
|
139 |
+
h = self.dropout(h)
|
140 |
+
h = self.conv2(h)
|
141 |
+
|
142 |
+
if self.in_channels != self.out_channels:
|
143 |
+
if self.use_conv_shortcut:
|
144 |
+
x = self.conv_shortcut(x)
|
145 |
+
else:
|
146 |
+
x = self.nin_shortcut(x)
|
147 |
+
|
148 |
+
return x + h
|
149 |
+
|
150 |
+
|
151 |
+
class LinAttnBlock(LinearAttention):
|
152 |
+
"""to match AttnBlock usage"""
|
153 |
+
|
154 |
+
def __init__(self, in_channels):
|
155 |
+
super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
|
156 |
+
|
157 |
+
|
158 |
+
class AttnBlock(nn.Module):
|
159 |
+
def __init__(self, in_channels):
|
160 |
+
super().__init__()
|
161 |
+
self.in_channels = in_channels
|
162 |
+
|
163 |
+
self.norm = Normalize(in_channels)
|
164 |
+
self.q = torch.nn.Conv2d(
|
165 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
166 |
+
)
|
167 |
+
self.k = torch.nn.Conv2d(
|
168 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
169 |
+
)
|
170 |
+
self.v = torch.nn.Conv2d(
|
171 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
172 |
+
)
|
173 |
+
self.proj_out = torch.nn.Conv2d(
|
174 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
175 |
+
)
|
176 |
+
|
177 |
+
def attention(self, h_: torch.Tensor) -> torch.Tensor:
|
178 |
+
h_ = self.norm(h_)
|
179 |
+
q = self.q(h_)
|
180 |
+
k = self.k(h_)
|
181 |
+
v = self.v(h_)
|
182 |
+
|
183 |
+
b, c, h, w = q.shape
|
184 |
+
q, k, v = map(
|
185 |
+
lambda x: rearrange(x, "b c h w -> b 1 (h w) c").contiguous(), (q, k, v)
|
186 |
+
)
|
187 |
+
h_ = torch.nn.functional.scaled_dot_product_attention(
|
188 |
+
q, k, v
|
189 |
+
) # scale is dim ** -0.5 per default
|
190 |
+
# compute attention
|
191 |
+
|
192 |
+
return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)
|
193 |
+
|
194 |
+
def forward(self, x, **kwargs):
|
195 |
+
h_ = x
|
196 |
+
h_ = self.attention(h_)
|
197 |
+
h_ = self.proj_out(h_)
|
198 |
+
return x + h_
|
199 |
+
|
200 |
+
|
201 |
+
class MemoryEfficientAttnBlock(nn.Module):
|
202 |
+
"""
|
203 |
+
Uses xformers efficient implementation,
|
204 |
+
see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
205 |
+
Note: this is a single-head self-attention operation
|
206 |
+
"""
|
207 |
+
|
208 |
+
#
|
209 |
+
def __init__(self, in_channels):
|
210 |
+
super().__init__()
|
211 |
+
self.in_channels = in_channels
|
212 |
+
|
213 |
+
self.norm = Normalize(in_channels)
|
214 |
+
self.q = torch.nn.Conv2d(
|
215 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
216 |
+
)
|
217 |
+
self.k = torch.nn.Conv2d(
|
218 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
219 |
+
)
|
220 |
+
self.v = torch.nn.Conv2d(
|
221 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
222 |
+
)
|
223 |
+
self.proj_out = torch.nn.Conv2d(
|
224 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
225 |
+
)
|
226 |
+
self.attention_op: Optional[Any] = None
|
227 |
+
|
228 |
+
def attention(self, h_: torch.Tensor) -> torch.Tensor:
|
229 |
+
h_ = self.norm(h_)
|
230 |
+
q = self.q(h_)
|
231 |
+
k = self.k(h_)
|
232 |
+
v = self.v(h_)
|
233 |
+
|
234 |
+
# compute attention
|
235 |
+
B, C, H, W = q.shape
|
236 |
+
q, k, v = map(lambda x: rearrange(x, "b c h w -> b (h w) c"), (q, k, v))
|
237 |
+
|
238 |
+
q, k, v = map(
|
239 |
+
lambda t: t.unsqueeze(3)
|
240 |
+
.reshape(B, t.shape[1], 1, C)
|
241 |
+
.permute(0, 2, 1, 3)
|
242 |
+
.reshape(B * 1, t.shape[1], C)
|
243 |
+
.contiguous(),
|
244 |
+
(q, k, v),
|
245 |
+
)
|
246 |
+
out = xformers.ops.memory_efficient_attention(
|
247 |
+
q, k, v, attn_bias=None, op=self.attention_op
|
248 |
+
)
|
249 |
+
|
250 |
+
out = (
|
251 |
+
out.unsqueeze(0)
|
252 |
+
.reshape(B, 1, out.shape[1], C)
|
253 |
+
.permute(0, 2, 1, 3)
|
254 |
+
.reshape(B, out.shape[1], C)
|
255 |
+
)
|
256 |
+
return rearrange(out, "b (h w) c -> b c h w", b=B, h=H, w=W, c=C)
|
257 |
+
|
258 |
+
def forward(self, x, **kwargs):
|
259 |
+
h_ = x
|
260 |
+
h_ = self.attention(h_)
|
261 |
+
h_ = self.proj_out(h_)
|
262 |
+
return x + h_
|
263 |
+
|
264 |
+
|
265 |
+
class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
|
266 |
+
def forward(self, x, context=None, mask=None, **unused_kwargs):
|
267 |
+
b, c, h, w = x.shape
|
268 |
+
x = rearrange(x, "b c h w -> b (h w) c")
|
269 |
+
out = super().forward(x, context=context, mask=mask)
|
270 |
+
out = rearrange(out, "b (h w) c -> b c h w", h=h, w=w, c=c)
|
271 |
+
return x + out
|
272 |
+
|
273 |
+
|
274 |
+
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
|
275 |
+
assert attn_type in [
|
276 |
+
"vanilla",
|
277 |
+
"vanilla-xformers",
|
278 |
+
"memory-efficient-cross-attn",
|
279 |
+
"linear",
|
280 |
+
"none",
|
281 |
+
], f"attn_type {attn_type} unknown"
|
282 |
+
if (
|
283 |
+
version.parse(torch.__version__) < version.parse("2.0.0")
|
284 |
+
and attn_type != "none"
|
285 |
+
):
|
286 |
+
assert XFORMERS_IS_AVAILABLE, (
|
287 |
+
f"We do not support vanilla attention in {torch.__version__} anymore, "
|
288 |
+
f"as it is too expensive. Please install xformers via e.g. 'pip install xformers==0.0.16'"
|
289 |
+
)
|
290 |
+
attn_type = "vanilla-xformers"
|
291 |
+
print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
|
292 |
+
if attn_type == "vanilla":
|
293 |
+
assert attn_kwargs is None
|
294 |
+
return AttnBlock(in_channels)
|
295 |
+
elif attn_type == "vanilla-xformers":
|
296 |
+
print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...")
|
297 |
+
return MemoryEfficientAttnBlock(in_channels)
|
298 |
+
elif type == "memory-efficient-cross-attn":
|
299 |
+
attn_kwargs["query_dim"] = in_channels
|
300 |
+
return MemoryEfficientCrossAttentionWrapper(**attn_kwargs)
|
301 |
+
elif attn_type == "none":
|
302 |
+
return nn.Identity(in_channels)
|
303 |
+
else:
|
304 |
+
return LinAttnBlock(in_channels)
|
305 |
+
|
306 |
+
|
307 |
+
class Model(nn.Module):
|
308 |
+
def __init__(
|
309 |
+
self,
|
310 |
+
*,
|
311 |
+
ch,
|
312 |
+
out_ch,
|
313 |
+
ch_mult=(1, 2, 4, 8),
|
314 |
+
num_res_blocks,
|
315 |
+
attn_resolutions,
|
316 |
+
dropout=0.0,
|
317 |
+
resamp_with_conv=True,
|
318 |
+
in_channels,
|
319 |
+
resolution,
|
320 |
+
use_timestep=True,
|
321 |
+
use_linear_attn=False,
|
322 |
+
attn_type="vanilla",
|
323 |
+
):
|
324 |
+
super().__init__()
|
325 |
+
if use_linear_attn:
|
326 |
+
attn_type = "linear"
|
327 |
+
self.ch = ch
|
328 |
+
self.temb_ch = self.ch * 4
|
329 |
+
self.num_resolutions = len(ch_mult)
|
330 |
+
self.num_res_blocks = num_res_blocks
|
331 |
+
self.resolution = resolution
|
332 |
+
self.in_channels = in_channels
|
333 |
+
|
334 |
+
self.use_timestep = use_timestep
|
335 |
+
if self.use_timestep:
|
336 |
+
# timestep embedding
|
337 |
+
self.temb = nn.Module()
|
338 |
+
self.temb.dense = nn.ModuleList(
|
339 |
+
[
|
340 |
+
torch.nn.Linear(self.ch, self.temb_ch),
|
341 |
+
torch.nn.Linear(self.temb_ch, self.temb_ch),
|
342 |
+
]
|
343 |
+
)
|
344 |
+
|
345 |
+
# downsampling
|
346 |
+
self.conv_in = torch.nn.Conv2d(
|
347 |
+
in_channels, self.ch, kernel_size=3, stride=1, padding=1
|
348 |
+
)
|
349 |
+
|
350 |
+
curr_res = resolution
|
351 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
352 |
+
self.down = nn.ModuleList()
|
353 |
+
for i_level in range(self.num_resolutions):
|
354 |
+
block = nn.ModuleList()
|
355 |
+
attn = nn.ModuleList()
|
356 |
+
block_in = ch * in_ch_mult[i_level]
|
357 |
+
block_out = ch * ch_mult[i_level]
|
358 |
+
for i_block in range(self.num_res_blocks):
|
359 |
+
block.append(
|
360 |
+
ResnetBlock(
|
361 |
+
in_channels=block_in,
|
362 |
+
out_channels=block_out,
|
363 |
+
temb_channels=self.temb_ch,
|
364 |
+
dropout=dropout,
|
365 |
+
)
|
366 |
+
)
|
367 |
+
block_in = block_out
|
368 |
+
if curr_res in attn_resolutions:
|
369 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
370 |
+
down = nn.Module()
|
371 |
+
down.block = block
|
372 |
+
down.attn = attn
|
373 |
+
if i_level != self.num_resolutions - 1:
|
374 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
375 |
+
curr_res = curr_res // 2
|
376 |
+
self.down.append(down)
|
377 |
+
|
378 |
+
# middle
|
379 |
+
self.mid = nn.Module()
|
380 |
+
self.mid.block_1 = ResnetBlock(
|
381 |
+
in_channels=block_in,
|
382 |
+
out_channels=block_in,
|
383 |
+
temb_channels=self.temb_ch,
|
384 |
+
dropout=dropout,
|
385 |
+
)
|
386 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
387 |
+
self.mid.block_2 = ResnetBlock(
|
388 |
+
in_channels=block_in,
|
389 |
+
out_channels=block_in,
|
390 |
+
temb_channels=self.temb_ch,
|
391 |
+
dropout=dropout,
|
392 |
+
)
|
393 |
+
|
394 |
+
# upsampling
|
395 |
+
self.up = nn.ModuleList()
|
396 |
+
for i_level in reversed(range(self.num_resolutions)):
|
397 |
+
block = nn.ModuleList()
|
398 |
+
attn = nn.ModuleList()
|
399 |
+
block_out = ch * ch_mult[i_level]
|
400 |
+
skip_in = ch * ch_mult[i_level]
|
401 |
+
for i_block in range(self.num_res_blocks + 1):
|
402 |
+
if i_block == self.num_res_blocks:
|
403 |
+
skip_in = ch * in_ch_mult[i_level]
|
404 |
+
block.append(
|
405 |
+
ResnetBlock(
|
406 |
+
in_channels=block_in + skip_in,
|
407 |
+
out_channels=block_out,
|
408 |
+
temb_channels=self.temb_ch,
|
409 |
+
dropout=dropout,
|
410 |
+
)
|
411 |
+
)
|
412 |
+
block_in = block_out
|
413 |
+
if curr_res in attn_resolutions:
|
414 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
415 |
+
up = nn.Module()
|
416 |
+
up.block = block
|
417 |
+
up.attn = attn
|
418 |
+
if i_level != 0:
|
419 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
420 |
+
curr_res = curr_res * 2
|
421 |
+
self.up.insert(0, up) # prepend to get consistent order
|
422 |
+
|
423 |
+
# end
|
424 |
+
self.norm_out = Normalize(block_in)
|
425 |
+
self.conv_out = torch.nn.Conv2d(
|
426 |
+
block_in, out_ch, kernel_size=3, stride=1, padding=1
|
427 |
+
)
|
428 |
+
|
429 |
+
def forward(self, x, t=None, context=None):
|
430 |
+
# assert x.shape[2] == x.shape[3] == self.resolution
|
431 |
+
if context is not None:
|
432 |
+
# assume aligned context, cat along channel axis
|
433 |
+
x = torch.cat((x, context), dim=1)
|
434 |
+
if self.use_timestep:
|
435 |
+
# timestep embedding
|
436 |
+
assert t is not None
|
437 |
+
temb = get_timestep_embedding(t, self.ch)
|
438 |
+
temb = self.temb.dense[0](temb)
|
439 |
+
temb = nonlinearity(temb)
|
440 |
+
temb = self.temb.dense[1](temb)
|
441 |
+
else:
|
442 |
+
temb = None
|
443 |
+
|
444 |
+
# downsampling
|
445 |
+
hs = [self.conv_in(x)]
|
446 |
+
for i_level in range(self.num_resolutions):
|
447 |
+
for i_block in range(self.num_res_blocks):
|
448 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
449 |
+
if len(self.down[i_level].attn) > 0:
|
450 |
+
h = self.down[i_level].attn[i_block](h)
|
451 |
+
hs.append(h)
|
452 |
+
if i_level != self.num_resolutions - 1:
|
453 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
454 |
+
|
455 |
+
# middle
|
456 |
+
h = hs[-1]
|
457 |
+
h = self.mid.block_1(h, temb)
|
458 |
+
h = self.mid.attn_1(h)
|
459 |
+
h = self.mid.block_2(h, temb)
|
460 |
+
|
461 |
+
# upsampling
|
462 |
+
for i_level in reversed(range(self.num_resolutions)):
|
463 |
+
for i_block in range(self.num_res_blocks + 1):
|
464 |
+
h = self.up[i_level].block[i_block](
|
465 |
+
torch.cat([h, hs.pop()], dim=1), temb
|
466 |
+
)
|
467 |
+
if len(self.up[i_level].attn) > 0:
|
468 |
+
h = self.up[i_level].attn[i_block](h)
|
469 |
+
if i_level != 0:
|
470 |
+
h = self.up[i_level].upsample(h)
|
471 |
+
|
472 |
+
# end
|
473 |
+
h = self.norm_out(h)
|
474 |
+
h = nonlinearity(h)
|
475 |
+
h = self.conv_out(h)
|
476 |
+
return h
|
477 |
+
|
478 |
+
def get_last_layer(self):
|
479 |
+
return self.conv_out.weight
|
480 |
+
|
481 |
+
|
482 |
+
class Encoder(nn.Module):
|
483 |
+
def __init__(
|
484 |
+
self,
|
485 |
+
*,
|
486 |
+
ch,
|
487 |
+
out_ch,
|
488 |
+
ch_mult=(1, 2, 4, 8),
|
489 |
+
num_res_blocks,
|
490 |
+
attn_resolutions,
|
491 |
+
dropout=0.0,
|
492 |
+
resamp_with_conv=True,
|
493 |
+
in_channels,
|
494 |
+
resolution,
|
495 |
+
z_channels,
|
496 |
+
double_z=True,
|
497 |
+
use_linear_attn=False,
|
498 |
+
attn_type="vanilla",
|
499 |
+
**ignore_kwargs,
|
500 |
+
):
|
501 |
+
super().__init__()
|
502 |
+
if use_linear_attn:
|
503 |
+
attn_type = "linear"
|
504 |
+
self.ch = ch
|
505 |
+
self.temb_ch = 0
|
506 |
+
self.num_resolutions = len(ch_mult)
|
507 |
+
self.num_res_blocks = num_res_blocks
|
508 |
+
self.resolution = resolution
|
509 |
+
self.in_channels = in_channels
|
510 |
+
|
511 |
+
# downsampling
|
512 |
+
self.conv_in = torch.nn.Conv2d(
|
513 |
+
in_channels, self.ch, kernel_size=3, stride=1, padding=1
|
514 |
+
)
|
515 |
+
|
516 |
+
curr_res = resolution
|
517 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
518 |
+
self.in_ch_mult = in_ch_mult
|
519 |
+
self.down = nn.ModuleList()
|
520 |
+
for i_level in range(self.num_resolutions):
|
521 |
+
block = nn.ModuleList()
|
522 |
+
attn = nn.ModuleList()
|
523 |
+
block_in = ch * in_ch_mult[i_level]
|
524 |
+
block_out = ch * ch_mult[i_level]
|
525 |
+
for i_block in range(self.num_res_blocks):
|
526 |
+
block.append(
|
527 |
+
ResnetBlock(
|
528 |
+
in_channels=block_in,
|
529 |
+
out_channels=block_out,
|
530 |
+
temb_channels=self.temb_ch,
|
531 |
+
dropout=dropout,
|
532 |
+
)
|
533 |
+
)
|
534 |
+
block_in = block_out
|
535 |
+
if curr_res in attn_resolutions:
|
536 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
537 |
+
down = nn.Module()
|
538 |
+
down.block = block
|
539 |
+
down.attn = attn
|
540 |
+
if i_level != self.num_resolutions - 1:
|
541 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
542 |
+
curr_res = curr_res // 2
|
543 |
+
self.down.append(down)
|
544 |
+
|
545 |
+
# middle
|
546 |
+
self.mid = nn.Module()
|
547 |
+
self.mid.block_1 = ResnetBlock(
|
548 |
+
in_channels=block_in,
|
549 |
+
out_channels=block_in,
|
550 |
+
temb_channels=self.temb_ch,
|
551 |
+
dropout=dropout,
|
552 |
+
)
|
553 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
554 |
+
self.mid.block_2 = ResnetBlock(
|
555 |
+
in_channels=block_in,
|
556 |
+
out_channels=block_in,
|
557 |
+
temb_channels=self.temb_ch,
|
558 |
+
dropout=dropout,
|
559 |
+
)
|
560 |
+
|
561 |
+
# end
|
562 |
+
self.norm_out = Normalize(block_in)
|
563 |
+
self.conv_out = torch.nn.Conv2d(
|
564 |
+
block_in,
|
565 |
+
2 * z_channels if double_z else z_channels,
|
566 |
+
kernel_size=3,
|
567 |
+
stride=1,
|
568 |
+
padding=1,
|
569 |
+
)
|
570 |
+
|
571 |
+
def forward(self, x):
|
572 |
+
# timestep embedding
|
573 |
+
temb = None
|
574 |
+
|
575 |
+
# downsampling
|
576 |
+
hs = [self.conv_in(x)]
|
577 |
+
for i_level in range(self.num_resolutions):
|
578 |
+
for i_block in range(self.num_res_blocks):
|
579 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
580 |
+
if len(self.down[i_level].attn) > 0:
|
581 |
+
h = self.down[i_level].attn[i_block](h)
|
582 |
+
hs.append(h)
|
583 |
+
if i_level != self.num_resolutions - 1:
|
584 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
585 |
+
|
586 |
+
# middle
|
587 |
+
h = hs[-1]
|
588 |
+
h = self.mid.block_1(h, temb)
|
589 |
+
h = self.mid.attn_1(h)
|
590 |
+
h = self.mid.block_2(h, temb)
|
591 |
+
|
592 |
+
# end
|
593 |
+
h = self.norm_out(h)
|
594 |
+
h = nonlinearity(h)
|
595 |
+
h = self.conv_out(h)
|
596 |
+
return h
|
597 |
+
|
598 |
+
|
599 |
+
class Decoder(nn.Module):
|
600 |
+
def __init__(
|
601 |
+
self,
|
602 |
+
*,
|
603 |
+
ch,
|
604 |
+
out_ch,
|
605 |
+
ch_mult=(1, 2, 4, 8),
|
606 |
+
num_res_blocks,
|
607 |
+
attn_resolutions,
|
608 |
+
dropout=0.0,
|
609 |
+
resamp_with_conv=True,
|
610 |
+
in_channels,
|
611 |
+
resolution,
|
612 |
+
z_channels,
|
613 |
+
give_pre_end=False,
|
614 |
+
tanh_out=False,
|
615 |
+
use_linear_attn=False,
|
616 |
+
attn_type="vanilla",
|
617 |
+
**ignorekwargs,
|
618 |
+
):
|
619 |
+
super().__init__()
|
620 |
+
if use_linear_attn:
|
621 |
+
attn_type = "linear"
|
622 |
+
self.ch = ch
|
623 |
+
self.temb_ch = 0
|
624 |
+
self.num_resolutions = len(ch_mult)
|
625 |
+
self.num_res_blocks = num_res_blocks
|
626 |
+
self.resolution = resolution
|
627 |
+
self.in_channels = in_channels
|
628 |
+
self.give_pre_end = give_pre_end
|
629 |
+
self.tanh_out = tanh_out
|
630 |
+
|
631 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
632 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
633 |
+
block_in = ch * ch_mult[self.num_resolutions - 1]
|
634 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
635 |
+
self.z_shape = (1, z_channels, curr_res, curr_res)
|
636 |
+
print(
|
637 |
+
"Working with z of shape {} = {} dimensions.".format(
|
638 |
+
self.z_shape, np.prod(self.z_shape)
|
639 |
+
)
|
640 |
+
)
|
641 |
+
|
642 |
+
make_attn_cls = self._make_attn()
|
643 |
+
make_resblock_cls = self._make_resblock()
|
644 |
+
make_conv_cls = self._make_conv()
|
645 |
+
# z to block_in
|
646 |
+
self.conv_in = torch.nn.Conv2d(
|
647 |
+
z_channels, block_in, kernel_size=3, stride=1, padding=1
|
648 |
+
)
|
649 |
+
|
650 |
+
# middle
|
651 |
+
self.mid = nn.Module()
|
652 |
+
self.mid.block_1 = make_resblock_cls(
|
653 |
+
in_channels=block_in,
|
654 |
+
out_channels=block_in,
|
655 |
+
temb_channels=self.temb_ch,
|
656 |
+
dropout=dropout,
|
657 |
+
)
|
658 |
+
self.mid.attn_1 = make_attn_cls(block_in, attn_type=attn_type)
|
659 |
+
self.mid.block_2 = make_resblock_cls(
|
660 |
+
in_channels=block_in,
|
661 |
+
out_channels=block_in,
|
662 |
+
temb_channels=self.temb_ch,
|
663 |
+
dropout=dropout,
|
664 |
+
)
|
665 |
+
|
666 |
+
# upsampling
|
667 |
+
self.up = nn.ModuleList()
|
668 |
+
for i_level in reversed(range(self.num_resolutions)):
|
669 |
+
block = nn.ModuleList()
|
670 |
+
attn = nn.ModuleList()
|
671 |
+
block_out = ch * ch_mult[i_level]
|
672 |
+
for i_block in range(self.num_res_blocks + 1):
|
673 |
+
block.append(
|
674 |
+
make_resblock_cls(
|
675 |
+
in_channels=block_in,
|
676 |
+
out_channels=block_out,
|
677 |
+
temb_channels=self.temb_ch,
|
678 |
+
dropout=dropout,
|
679 |
+
)
|
680 |
+
)
|
681 |
+
block_in = block_out
|
682 |
+
if curr_res in attn_resolutions:
|
683 |
+
attn.append(make_attn_cls(block_in, attn_type=attn_type))
|
684 |
+
up = nn.Module()
|
685 |
+
up.block = block
|
686 |
+
up.attn = attn
|
687 |
+
if i_level != 0:
|
688 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
689 |
+
curr_res = curr_res * 2
|
690 |
+
self.up.insert(0, up) # prepend to get consistent order
|
691 |
+
|
692 |
+
# end
|
693 |
+
self.norm_out = Normalize(block_in)
|
694 |
+
self.conv_out = make_conv_cls(
|
695 |
+
block_in, out_ch, kernel_size=3, stride=1, padding=1
|
696 |
+
)
|
697 |
+
|
698 |
+
def _make_attn(self) -> Callable:
|
699 |
+
return make_attn
|
700 |
+
|
701 |
+
def _make_resblock(self) -> Callable:
|
702 |
+
return ResnetBlock
|
703 |
+
|
704 |
+
def _make_conv(self) -> Callable:
|
705 |
+
return torch.nn.Conv2d
|
706 |
+
|
707 |
+
def get_last_layer(self, **kwargs):
|
708 |
+
return self.conv_out.weight
|
709 |
+
|
710 |
+
def forward(self, z, **kwargs):
|
711 |
+
# assert z.shape[1:] == self.z_shape[1:]
|
712 |
+
self.last_z_shape = z.shape
|
713 |
+
|
714 |
+
# timestep embedding
|
715 |
+
temb = None
|
716 |
+
|
717 |
+
# z to block_in
|
718 |
+
h = self.conv_in(z)
|
719 |
+
|
720 |
+
# middle
|
721 |
+
h = self.mid.block_1(h, temb, **kwargs)
|
722 |
+
h = self.mid.attn_1(h, **kwargs)
|
723 |
+
h = self.mid.block_2(h, temb, **kwargs)
|
724 |
+
|
725 |
+
# upsampling
|
726 |
+
for i_level in reversed(range(self.num_resolutions)):
|
727 |
+
for i_block in range(self.num_res_blocks + 1):
|
728 |
+
h = self.up[i_level].block[i_block](h, temb, **kwargs)
|
729 |
+
if len(self.up[i_level].attn) > 0:
|
730 |
+
h = self.up[i_level].attn[i_block](h, **kwargs)
|
731 |
+
if i_level != 0:
|
732 |
+
h = self.up[i_level].upsample(h)
|
733 |
+
|
734 |
+
# end
|
735 |
+
if self.give_pre_end:
|
736 |
+
return h
|
737 |
+
|
738 |
+
h = self.norm_out(h)
|
739 |
+
h = nonlinearity(h)
|
740 |
+
h = self.conv_out(h, **kwargs)
|
741 |
+
if self.tanh_out:
|
742 |
+
h = torch.tanh(h)
|
743 |
+
return h
|
sgm/modules/diffusionmodules/openaimodel.py
ADDED
@@ -0,0 +1,2070 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import math
|
3 |
+
from abc import abstractmethod
|
4 |
+
from functools import partial
|
5 |
+
from typing import Iterable
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch as th
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from einops import rearrange
|
12 |
+
|
13 |
+
from ...modules.attention import SpatialTransformer
|
14 |
+
from ...modules.diffusionmodules.util import (
|
15 |
+
avg_pool_nd,
|
16 |
+
checkpoint,
|
17 |
+
conv_nd,
|
18 |
+
linear,
|
19 |
+
normalization,
|
20 |
+
timestep_embedding,
|
21 |
+
zero_module,
|
22 |
+
)
|
23 |
+
from ...util import default, exists
|
24 |
+
|
25 |
+
|
26 |
+
# dummy replace
|
27 |
+
def convert_module_to_f16(x):
|
28 |
+
pass
|
29 |
+
|
30 |
+
|
31 |
+
def convert_module_to_f32(x):
|
32 |
+
pass
|
33 |
+
|
34 |
+
|
35 |
+
## go
|
36 |
+
class AttentionPool2d(nn.Module):
|
37 |
+
"""
|
38 |
+
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
spacial_dim: int,
|
44 |
+
embed_dim: int,
|
45 |
+
num_heads_channels: int,
|
46 |
+
output_dim: int = None,
|
47 |
+
):
|
48 |
+
super().__init__()
|
49 |
+
self.positional_embedding = nn.Parameter(
|
50 |
+
th.randn(embed_dim, spacial_dim**2 + 1) / embed_dim**0.5
|
51 |
+
)
|
52 |
+
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
53 |
+
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
54 |
+
self.num_heads = embed_dim // num_heads_channels
|
55 |
+
self.attention = QKVAttention(self.num_heads)
|
56 |
+
|
57 |
+
def forward(self, x):
|
58 |
+
b, c, *_spatial = x.shape
|
59 |
+
x = x.reshape(b, c, -1) # NC(HW)
|
60 |
+
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
|
61 |
+
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
|
62 |
+
x = self.qkv_proj(x)
|
63 |
+
x = self.attention(x)
|
64 |
+
x = self.c_proj(x)
|
65 |
+
return x[:, :, 0]
|
66 |
+
|
67 |
+
|
68 |
+
class TimestepBlock(nn.Module):
|
69 |
+
"""
|
70 |
+
Any module where forward() takes timestep embeddings as a second argument.
|
71 |
+
"""
|
72 |
+
|
73 |
+
@abstractmethod
|
74 |
+
def forward(self, x, emb):
|
75 |
+
"""
|
76 |
+
Apply the module to `x` given `emb` timestep embeddings.
|
77 |
+
"""
|
78 |
+
|
79 |
+
|
80 |
+
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
81 |
+
"""
|
82 |
+
A sequential module that passes timestep embeddings to the children that
|
83 |
+
support it as an extra input.
|
84 |
+
"""
|
85 |
+
|
86 |
+
def forward(
|
87 |
+
self,
|
88 |
+
x,
|
89 |
+
emb,
|
90 |
+
context=None,
|
91 |
+
add_context=None,
|
92 |
+
skip_time_mix=False,
|
93 |
+
time_context=None,
|
94 |
+
num_video_frames=None,
|
95 |
+
time_context_cat=None,
|
96 |
+
use_crossframe_attention_in_spatial_layers=False,
|
97 |
+
):
|
98 |
+
for layer in self:
|
99 |
+
if isinstance(layer, TimestepBlock):
|
100 |
+
x = layer(x, emb)
|
101 |
+
elif isinstance(layer, SpatialTransformer):
|
102 |
+
x = layer(x, context, add_context)
|
103 |
+
else:
|
104 |
+
x = layer(x)
|
105 |
+
return x
|
106 |
+
|
107 |
+
|
108 |
+
class Upsample(nn.Module):
|
109 |
+
"""
|
110 |
+
An upsampling layer with an optional convolution.
|
111 |
+
:param channels: channels in the inputs and outputs.
|
112 |
+
:param use_conv: a bool determining if a convolution is applied.
|
113 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
114 |
+
upsampling occurs in the inner-two dimensions.
|
115 |
+
"""
|
116 |
+
|
117 |
+
def __init__(
|
118 |
+
self, channels, use_conv, dims=2, out_channels=None, padding=1, third_up=False
|
119 |
+
):
|
120 |
+
super().__init__()
|
121 |
+
self.channels = channels
|
122 |
+
self.out_channels = out_channels or channels
|
123 |
+
self.use_conv = use_conv
|
124 |
+
self.dims = dims
|
125 |
+
self.third_up = third_up
|
126 |
+
if use_conv:
|
127 |
+
self.conv = conv_nd(
|
128 |
+
dims, self.channels, self.out_channels, 3, padding=padding
|
129 |
+
)
|
130 |
+
|
131 |
+
def forward(self, x):
|
132 |
+
assert x.shape[1] == self.channels
|
133 |
+
if self.dims == 3:
|
134 |
+
t_factor = 1 if not self.third_up else 2
|
135 |
+
x = F.interpolate(
|
136 |
+
x,
|
137 |
+
(t_factor * x.shape[2], x.shape[3] * 2, x.shape[4] * 2),
|
138 |
+
mode="nearest",
|
139 |
+
)
|
140 |
+
else:
|
141 |
+
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
142 |
+
if self.use_conv:
|
143 |
+
x = self.conv(x)
|
144 |
+
return x
|
145 |
+
|
146 |
+
|
147 |
+
class TransposedUpsample(nn.Module):
|
148 |
+
"Learned 2x upsampling without padding"
|
149 |
+
|
150 |
+
def __init__(self, channels, out_channels=None, ks=5):
|
151 |
+
super().__init__()
|
152 |
+
self.channels = channels
|
153 |
+
self.out_channels = out_channels or channels
|
154 |
+
|
155 |
+
self.up = nn.ConvTranspose2d(
|
156 |
+
self.channels, self.out_channels, kernel_size=ks, stride=2
|
157 |
+
)
|
158 |
+
|
159 |
+
def forward(self, x):
|
160 |
+
return self.up(x)
|
161 |
+
|
162 |
+
|
163 |
+
class Downsample(nn.Module):
|
164 |
+
"""
|
165 |
+
A downsampling layer with an optional convolution.
|
166 |
+
:param channels: channels in the inputs and outputs.
|
167 |
+
:param use_conv: a bool determining if a convolution is applied.
|
168 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
169 |
+
downsampling occurs in the inner-two dimensions.
|
170 |
+
"""
|
171 |
+
|
172 |
+
def __init__(
|
173 |
+
self, channels, use_conv, dims=2, out_channels=None, padding=1, third_down=False
|
174 |
+
):
|
175 |
+
super().__init__()
|
176 |
+
self.channels = channels
|
177 |
+
self.out_channels = out_channels or channels
|
178 |
+
self.use_conv = use_conv
|
179 |
+
self.dims = dims
|
180 |
+
stride = 2 if dims != 3 else ((1, 2, 2) if not third_down else (2, 2, 2))
|
181 |
+
if use_conv:
|
182 |
+
# print(f"Building a Downsample layer with {dims} dims.")
|
183 |
+
# print(
|
184 |
+
# f" --> settings are: \n in-chn: {self.channels}, out-chn: {self.out_channels}, "
|
185 |
+
# f"kernel-size: 3, stride: {stride}, padding: {padding}"
|
186 |
+
# )
|
187 |
+
if dims == 3:
|
188 |
+
pass
|
189 |
+
# print(f" --> Downsampling third axis (time): {third_down}")
|
190 |
+
self.op = conv_nd(
|
191 |
+
dims,
|
192 |
+
self.channels,
|
193 |
+
self.out_channels,
|
194 |
+
3,
|
195 |
+
stride=stride,
|
196 |
+
padding=padding,
|
197 |
+
)
|
198 |
+
else:
|
199 |
+
assert self.channels == self.out_channels
|
200 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
201 |
+
|
202 |
+
def forward(self, x):
|
203 |
+
assert x.shape[1] == self.channels
|
204 |
+
return self.op(x)
|
205 |
+
|
206 |
+
|
207 |
+
class ResBlock(TimestepBlock):
|
208 |
+
"""
|
209 |
+
A residual block that can optionally change the number of channels.
|
210 |
+
:param channels: the number of input channels.
|
211 |
+
:param emb_channels: the number of timestep embedding channels.
|
212 |
+
:param dropout: the rate of dropout.
|
213 |
+
:param out_channels: if specified, the number of out channels.
|
214 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
215 |
+
convolution instead of a smaller 1x1 convolution to change the
|
216 |
+
channels in the skip connection.
|
217 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
218 |
+
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
219 |
+
:param up: if True, use this block for upsampling.
|
220 |
+
:param down: if True, use this block for downsampling.
|
221 |
+
"""
|
222 |
+
|
223 |
+
def __init__(
|
224 |
+
self,
|
225 |
+
channels,
|
226 |
+
emb_channels,
|
227 |
+
dropout,
|
228 |
+
out_channels=None,
|
229 |
+
use_conv=False,
|
230 |
+
use_scale_shift_norm=False,
|
231 |
+
dims=2,
|
232 |
+
use_checkpoint=False,
|
233 |
+
up=False,
|
234 |
+
down=False,
|
235 |
+
kernel_size=3,
|
236 |
+
exchange_temb_dims=False,
|
237 |
+
skip_t_emb=False,
|
238 |
+
):
|
239 |
+
super().__init__()
|
240 |
+
self.channels = channels
|
241 |
+
self.emb_channels = emb_channels
|
242 |
+
self.dropout = dropout
|
243 |
+
self.out_channels = out_channels or channels
|
244 |
+
self.use_conv = use_conv
|
245 |
+
self.use_checkpoint = use_checkpoint
|
246 |
+
self.use_scale_shift_norm = use_scale_shift_norm
|
247 |
+
self.exchange_temb_dims = exchange_temb_dims
|
248 |
+
|
249 |
+
if isinstance(kernel_size, Iterable):
|
250 |
+
padding = [k // 2 for k in kernel_size]
|
251 |
+
else:
|
252 |
+
padding = kernel_size // 2
|
253 |
+
|
254 |
+
self.in_layers = nn.Sequential(
|
255 |
+
normalization(channels),
|
256 |
+
nn.SiLU(),
|
257 |
+
conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding),
|
258 |
+
)
|
259 |
+
|
260 |
+
self.updown = up or down
|
261 |
+
|
262 |
+
if up:
|
263 |
+
self.h_upd = Upsample(channels, False, dims)
|
264 |
+
self.x_upd = Upsample(channels, False, dims)
|
265 |
+
elif down:
|
266 |
+
self.h_upd = Downsample(channels, False, dims)
|
267 |
+
self.x_upd = Downsample(channels, False, dims)
|
268 |
+
else:
|
269 |
+
self.h_upd = self.x_upd = nn.Identity()
|
270 |
+
|
271 |
+
self.skip_t_emb = skip_t_emb
|
272 |
+
self.emb_out_channels = (
|
273 |
+
2 * self.out_channels if use_scale_shift_norm else self.out_channels
|
274 |
+
)
|
275 |
+
if self.skip_t_emb:
|
276 |
+
print(f"Skipping timestep embedding in {self.__class__.__name__}")
|
277 |
+
assert not self.use_scale_shift_norm
|
278 |
+
self.emb_layers = None
|
279 |
+
self.exchange_temb_dims = False
|
280 |
+
else:
|
281 |
+
self.emb_layers = nn.Sequential(
|
282 |
+
nn.SiLU(),
|
283 |
+
linear(
|
284 |
+
emb_channels,
|
285 |
+
self.emb_out_channels,
|
286 |
+
),
|
287 |
+
)
|
288 |
+
|
289 |
+
self.out_layers = nn.Sequential(
|
290 |
+
normalization(self.out_channels),
|
291 |
+
nn.SiLU(),
|
292 |
+
nn.Dropout(p=dropout),
|
293 |
+
zero_module(
|
294 |
+
conv_nd(
|
295 |
+
dims,
|
296 |
+
self.out_channels,
|
297 |
+
self.out_channels,
|
298 |
+
kernel_size,
|
299 |
+
padding=padding,
|
300 |
+
)
|
301 |
+
),
|
302 |
+
)
|
303 |
+
|
304 |
+
if self.out_channels == channels:
|
305 |
+
self.skip_connection = nn.Identity()
|
306 |
+
elif use_conv:
|
307 |
+
self.skip_connection = conv_nd(
|
308 |
+
dims, channels, self.out_channels, kernel_size, padding=padding
|
309 |
+
)
|
310 |
+
else:
|
311 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
312 |
+
|
313 |
+
def forward(self, x, emb):
|
314 |
+
"""
|
315 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
316 |
+
:param x: an [N x C x ...] Tensor of features.
|
317 |
+
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
318 |
+
:return: an [N x C x ...] Tensor of outputs.
|
319 |
+
"""
|
320 |
+
return checkpoint(
|
321 |
+
self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
322 |
+
)
|
323 |
+
|
324 |
+
def _forward(self, x, emb):
|
325 |
+
if self.updown:
|
326 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
327 |
+
h = in_rest(x)
|
328 |
+
h = self.h_upd(h)
|
329 |
+
x = self.x_upd(x)
|
330 |
+
h = in_conv(h)
|
331 |
+
else:
|
332 |
+
h = self.in_layers(x)
|
333 |
+
|
334 |
+
if self.skip_t_emb:
|
335 |
+
emb_out = th.zeros_like(h)
|
336 |
+
else:
|
337 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
338 |
+
while len(emb_out.shape) < len(h.shape):
|
339 |
+
emb_out = emb_out[..., None]
|
340 |
+
if self.use_scale_shift_norm:
|
341 |
+
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
342 |
+
scale, shift = th.chunk(emb_out, 2, dim=1)
|
343 |
+
h = out_norm(h) * (1 + scale) + shift
|
344 |
+
h = out_rest(h)
|
345 |
+
else:
|
346 |
+
if self.exchange_temb_dims:
|
347 |
+
emb_out = rearrange(emb_out, "b t c ... -> b c t ...")
|
348 |
+
h = h + emb_out
|
349 |
+
h = self.out_layers(h)
|
350 |
+
return self.skip_connection(x) + h
|
351 |
+
|
352 |
+
|
353 |
+
class AttentionBlock(nn.Module):
|
354 |
+
"""
|
355 |
+
An attention block that allows spatial positions to attend to each other.
|
356 |
+
Originally ported from here, but adapted to the N-d case.
|
357 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
358 |
+
"""
|
359 |
+
|
360 |
+
def __init__(
|
361 |
+
self,
|
362 |
+
channels,
|
363 |
+
num_heads=1,
|
364 |
+
num_head_channels=-1,
|
365 |
+
use_checkpoint=False,
|
366 |
+
use_new_attention_order=False,
|
367 |
+
):
|
368 |
+
super().__init__()
|
369 |
+
self.channels = channels
|
370 |
+
if num_head_channels == -1:
|
371 |
+
self.num_heads = num_heads
|
372 |
+
else:
|
373 |
+
assert (
|
374 |
+
channels % num_head_channels == 0
|
375 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
376 |
+
self.num_heads = channels // num_head_channels
|
377 |
+
self.use_checkpoint = use_checkpoint
|
378 |
+
self.norm = normalization(channels)
|
379 |
+
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
380 |
+
if use_new_attention_order:
|
381 |
+
# split qkv before split heads
|
382 |
+
self.attention = QKVAttention(self.num_heads)
|
383 |
+
else:
|
384 |
+
# split heads before split qkv
|
385 |
+
self.attention = QKVAttentionLegacy(self.num_heads)
|
386 |
+
|
387 |
+
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
388 |
+
|
389 |
+
def forward(self, x, **kwargs):
|
390 |
+
# TODO add crossframe attention and use mixed checkpoint
|
391 |
+
return checkpoint(
|
392 |
+
self._forward, (x,), self.parameters(), True
|
393 |
+
) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
394 |
+
# return pt_checkpoint(self._forward, x) # pytorch
|
395 |
+
|
396 |
+
def _forward(self, x):
|
397 |
+
b, c, *spatial = x.shape
|
398 |
+
x = x.reshape(b, c, -1)
|
399 |
+
qkv = self.qkv(self.norm(x))
|
400 |
+
h = self.attention(qkv)
|
401 |
+
h = self.proj_out(h)
|
402 |
+
return (x + h).reshape(b, c, *spatial)
|
403 |
+
|
404 |
+
|
405 |
+
def count_flops_attn(model, _x, y):
|
406 |
+
"""
|
407 |
+
A counter for the `thop` package to count the operations in an
|
408 |
+
attention operation.
|
409 |
+
Meant to be used like:
|
410 |
+
macs, params = thop.profile(
|
411 |
+
model,
|
412 |
+
inputs=(inputs, timestamps),
|
413 |
+
custom_ops={QKVAttention: QKVAttention.count_flops},
|
414 |
+
)
|
415 |
+
"""
|
416 |
+
b, c, *spatial = y[0].shape
|
417 |
+
num_spatial = int(np.prod(spatial))
|
418 |
+
# We perform two matmuls with the same number of ops.
|
419 |
+
# The first computes the weight matrix, the second computes
|
420 |
+
# the combination of the value vectors.
|
421 |
+
matmul_ops = 2 * b * (num_spatial**2) * c
|
422 |
+
model.total_ops += th.DoubleTensor([matmul_ops])
|
423 |
+
|
424 |
+
|
425 |
+
class QKVAttentionLegacy(nn.Module):
|
426 |
+
"""
|
427 |
+
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
428 |
+
"""
|
429 |
+
|
430 |
+
def __init__(self, n_heads):
|
431 |
+
super().__init__()
|
432 |
+
self.n_heads = n_heads
|
433 |
+
|
434 |
+
def forward(self, qkv):
|
435 |
+
"""
|
436 |
+
Apply QKV attention.
|
437 |
+
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
438 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
439 |
+
"""
|
440 |
+
bs, width, length = qkv.shape
|
441 |
+
assert width % (3 * self.n_heads) == 0
|
442 |
+
ch = width // (3 * self.n_heads)
|
443 |
+
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
444 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
445 |
+
weight = th.einsum(
|
446 |
+
"bct,bcs->bts", q * scale, k * scale
|
447 |
+
) # More stable with f16 than dividing afterwards
|
448 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
449 |
+
a = th.einsum("bts,bcs->bct", weight, v)
|
450 |
+
return a.reshape(bs, -1, length)
|
451 |
+
|
452 |
+
@staticmethod
|
453 |
+
def count_flops(model, _x, y):
|
454 |
+
return count_flops_attn(model, _x, y)
|
455 |
+
|
456 |
+
|
457 |
+
class QKVAttention(nn.Module):
|
458 |
+
"""
|
459 |
+
A module which performs QKV attention and splits in a different order.
|
460 |
+
"""
|
461 |
+
|
462 |
+
def __init__(self, n_heads):
|
463 |
+
super().__init__()
|
464 |
+
self.n_heads = n_heads
|
465 |
+
|
466 |
+
def forward(self, qkv):
|
467 |
+
"""
|
468 |
+
Apply QKV attention.
|
469 |
+
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
470 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
471 |
+
"""
|
472 |
+
bs, width, length = qkv.shape
|
473 |
+
assert width % (3 * self.n_heads) == 0
|
474 |
+
ch = width // (3 * self.n_heads)
|
475 |
+
q, k, v = qkv.chunk(3, dim=1)
|
476 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
477 |
+
weight = th.einsum(
|
478 |
+
"bct,bcs->bts",
|
479 |
+
(q * scale).view(bs * self.n_heads, ch, length),
|
480 |
+
(k * scale).view(bs * self.n_heads, ch, length),
|
481 |
+
) # More stable with f16 than dividing afterwards
|
482 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
483 |
+
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
|
484 |
+
return a.reshape(bs, -1, length)
|
485 |
+
|
486 |
+
@staticmethod
|
487 |
+
def count_flops(model, _x, y):
|
488 |
+
return count_flops_attn(model, _x, y)
|
489 |
+
|
490 |
+
|
491 |
+
class Timestep(nn.Module):
|
492 |
+
def __init__(self, dim):
|
493 |
+
super().__init__()
|
494 |
+
self.dim = dim
|
495 |
+
|
496 |
+
def forward(self, t):
|
497 |
+
return timestep_embedding(t, self.dim)
|
498 |
+
|
499 |
+
|
500 |
+
class UNetModel(nn.Module):
|
501 |
+
"""
|
502 |
+
The full UNet model with attention and timestep embedding.
|
503 |
+
:param in_channels: channels in the input Tensor.
|
504 |
+
:param model_channels: base channel count for the model.
|
505 |
+
:param out_channels: channels in the output Tensor.
|
506 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
507 |
+
:param attention_resolutions: a collection of downsample rates at which
|
508 |
+
attention will take place. May be a set, list, or tuple.
|
509 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
510 |
+
will be used.
|
511 |
+
:param dropout: the dropout probability.
|
512 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
513 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
514 |
+
downsampling.
|
515 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
516 |
+
:param num_classes: if specified (as an int), then this model will be
|
517 |
+
class-conditional with `num_classes` classes.
|
518 |
+
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
519 |
+
:param num_heads: the number of attention heads in each attention layer.
|
520 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
521 |
+
a fixed channel width per attention head.
|
522 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
523 |
+
of heads for upsampling. Deprecated.
|
524 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
525 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
526 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
527 |
+
increased efficiency.
|
528 |
+
"""
|
529 |
+
|
530 |
+
def __init__(
|
531 |
+
self,
|
532 |
+
in_channels,
|
533 |
+
model_channels,
|
534 |
+
out_channels,
|
535 |
+
num_res_blocks,
|
536 |
+
attention_resolutions,
|
537 |
+
dropout=0,
|
538 |
+
channel_mult=(1, 2, 4, 8),
|
539 |
+
conv_resample=True,
|
540 |
+
dims=2,
|
541 |
+
num_classes=None,
|
542 |
+
use_checkpoint=False,
|
543 |
+
use_fp16=False,
|
544 |
+
num_heads=-1,
|
545 |
+
num_head_channels=-1,
|
546 |
+
num_heads_upsample=-1,
|
547 |
+
use_scale_shift_norm=False,
|
548 |
+
resblock_updown=False,
|
549 |
+
use_new_attention_order=False,
|
550 |
+
use_spatial_transformer=False, # custom transformer support
|
551 |
+
transformer_depth=1, # custom transformer support
|
552 |
+
context_dim=None, # custom transformer support
|
553 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
554 |
+
legacy=True,
|
555 |
+
disable_self_attentions=None,
|
556 |
+
num_attention_blocks=None,
|
557 |
+
disable_middle_self_attn=False,
|
558 |
+
use_linear_in_transformer=False,
|
559 |
+
spatial_transformer_attn_type="softmax",
|
560 |
+
adm_in_channels=None,
|
561 |
+
use_fairscale_checkpoint=False,
|
562 |
+
offload_to_cpu=False,
|
563 |
+
transformer_depth_middle=None,
|
564 |
+
):
|
565 |
+
super().__init__()
|
566 |
+
from omegaconf.listconfig import ListConfig
|
567 |
+
|
568 |
+
if use_spatial_transformer:
|
569 |
+
assert (
|
570 |
+
context_dim is not None
|
571 |
+
), "Fool!! You forgot to include the dimension of your cross-attention conditioning..."
|
572 |
+
|
573 |
+
if context_dim is not None:
|
574 |
+
assert (
|
575 |
+
use_spatial_transformer
|
576 |
+
), "Fool!! You forgot to use the spatial transformer for your cross-attention conditioning..."
|
577 |
+
if type(context_dim) == ListConfig:
|
578 |
+
context_dim = list(context_dim)
|
579 |
+
|
580 |
+
if num_heads_upsample == -1:
|
581 |
+
num_heads_upsample = num_heads
|
582 |
+
|
583 |
+
if num_heads == -1:
|
584 |
+
assert (
|
585 |
+
num_head_channels != -1
|
586 |
+
), "Either num_heads or num_head_channels has to be set"
|
587 |
+
|
588 |
+
if num_head_channels == -1:
|
589 |
+
assert (
|
590 |
+
num_heads != -1
|
591 |
+
), "Either num_heads or num_head_channels has to be set"
|
592 |
+
|
593 |
+
self.in_channels = in_channels
|
594 |
+
self.model_channels = model_channels
|
595 |
+
self.out_channels = out_channels
|
596 |
+
if isinstance(transformer_depth, int):
|
597 |
+
transformer_depth = len(channel_mult) * [transformer_depth]
|
598 |
+
elif isinstance(transformer_depth, ListConfig):
|
599 |
+
transformer_depth = list(transformer_depth)
|
600 |
+
transformer_depth_middle = default(
|
601 |
+
transformer_depth_middle, transformer_depth[-1]
|
602 |
+
)
|
603 |
+
|
604 |
+
if isinstance(num_res_blocks, int):
|
605 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
606 |
+
else:
|
607 |
+
if len(num_res_blocks) != len(channel_mult):
|
608 |
+
raise ValueError(
|
609 |
+
"provide num_res_blocks either as an int (globally constant) or "
|
610 |
+
"as a list/tuple (per-level) with the same length as channel_mult"
|
611 |
+
)
|
612 |
+
self.num_res_blocks = num_res_blocks
|
613 |
+
# self.num_res_blocks = num_res_blocks
|
614 |
+
if disable_self_attentions is not None:
|
615 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
616 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
617 |
+
if num_attention_blocks is not None:
|
618 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
619 |
+
assert all(
|
620 |
+
map(
|
621 |
+
lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
|
622 |
+
range(len(num_attention_blocks)),
|
623 |
+
)
|
624 |
+
)
|
625 |
+
print(
|
626 |
+
f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
627 |
+
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
628 |
+
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
629 |
+
f"attention will still not be set."
|
630 |
+
) # todo: convert to warning
|
631 |
+
|
632 |
+
self.attention_resolutions = attention_resolutions
|
633 |
+
self.dropout = dropout
|
634 |
+
self.channel_mult = channel_mult
|
635 |
+
self.conv_resample = conv_resample
|
636 |
+
self.num_classes = num_classes
|
637 |
+
self.use_checkpoint = use_checkpoint
|
638 |
+
if use_fp16:
|
639 |
+
print("WARNING: use_fp16 was dropped and has no effect anymore.")
|
640 |
+
# self.dtype = th.float16 if use_fp16 else th.float32
|
641 |
+
self.num_heads = num_heads
|
642 |
+
self.num_head_channels = num_head_channels
|
643 |
+
self.num_heads_upsample = num_heads_upsample
|
644 |
+
self.predict_codebook_ids = n_embed is not None
|
645 |
+
|
646 |
+
assert use_fairscale_checkpoint != use_checkpoint or not (
|
647 |
+
use_checkpoint or use_fairscale_checkpoint
|
648 |
+
)
|
649 |
+
|
650 |
+
self.use_fairscale_checkpoint = False
|
651 |
+
checkpoint_wrapper_fn = (
|
652 |
+
partial(checkpoint_wrapper, offload_to_cpu=offload_to_cpu)
|
653 |
+
if self.use_fairscale_checkpoint
|
654 |
+
else lambda x: x
|
655 |
+
)
|
656 |
+
|
657 |
+
time_embed_dim = model_channels * 4
|
658 |
+
self.time_embed = checkpoint_wrapper_fn(
|
659 |
+
nn.Sequential(
|
660 |
+
linear(model_channels, time_embed_dim),
|
661 |
+
nn.SiLU(),
|
662 |
+
linear(time_embed_dim, time_embed_dim),
|
663 |
+
)
|
664 |
+
)
|
665 |
+
|
666 |
+
if self.num_classes is not None:
|
667 |
+
if isinstance(self.num_classes, int):
|
668 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
669 |
+
elif self.num_classes == "continuous":
|
670 |
+
print("setting up linear c_adm embedding layer")
|
671 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
672 |
+
elif self.num_classes == "timestep":
|
673 |
+
self.label_emb = checkpoint_wrapper_fn(
|
674 |
+
nn.Sequential(
|
675 |
+
Timestep(model_channels),
|
676 |
+
nn.Sequential(
|
677 |
+
linear(model_channels, time_embed_dim),
|
678 |
+
nn.SiLU(),
|
679 |
+
linear(time_embed_dim, time_embed_dim),
|
680 |
+
),
|
681 |
+
)
|
682 |
+
)
|
683 |
+
elif self.num_classes == "sequential":
|
684 |
+
assert adm_in_channels is not None
|
685 |
+
self.label_emb = nn.Sequential(
|
686 |
+
nn.Sequential(
|
687 |
+
linear(adm_in_channels, time_embed_dim),
|
688 |
+
nn.SiLU(),
|
689 |
+
linear(time_embed_dim, time_embed_dim),
|
690 |
+
)
|
691 |
+
)
|
692 |
+
else:
|
693 |
+
raise ValueError()
|
694 |
+
|
695 |
+
self.input_blocks = nn.ModuleList(
|
696 |
+
[
|
697 |
+
TimestepEmbedSequential(
|
698 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
699 |
+
)
|
700 |
+
]
|
701 |
+
)
|
702 |
+
self._feature_size = model_channels
|
703 |
+
input_block_chans = [model_channels]
|
704 |
+
ch = model_channels
|
705 |
+
ds = 1
|
706 |
+
for level, mult in enumerate(channel_mult):
|
707 |
+
for nr in range(self.num_res_blocks[level]):
|
708 |
+
layers = [
|
709 |
+
checkpoint_wrapper_fn(
|
710 |
+
ResBlock(
|
711 |
+
ch,
|
712 |
+
time_embed_dim,
|
713 |
+
dropout,
|
714 |
+
out_channels=mult * model_channels,
|
715 |
+
dims=dims,
|
716 |
+
use_checkpoint=use_checkpoint,
|
717 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
718 |
+
)
|
719 |
+
)
|
720 |
+
]
|
721 |
+
ch = mult * model_channels
|
722 |
+
if ds in attention_resolutions:
|
723 |
+
if num_head_channels == -1:
|
724 |
+
dim_head = ch // num_heads
|
725 |
+
else:
|
726 |
+
num_heads = ch // num_head_channels
|
727 |
+
dim_head = num_head_channels
|
728 |
+
if legacy:
|
729 |
+
# num_heads = 1
|
730 |
+
dim_head = (
|
731 |
+
ch // num_heads
|
732 |
+
if use_spatial_transformer
|
733 |
+
else num_head_channels
|
734 |
+
)
|
735 |
+
if exists(disable_self_attentions):
|
736 |
+
disabled_sa = disable_self_attentions[level]
|
737 |
+
else:
|
738 |
+
disabled_sa = False
|
739 |
+
|
740 |
+
if (
|
741 |
+
not exists(num_attention_blocks)
|
742 |
+
or nr < num_attention_blocks[level]
|
743 |
+
):
|
744 |
+
layers.append(
|
745 |
+
checkpoint_wrapper_fn(
|
746 |
+
AttentionBlock(
|
747 |
+
ch,
|
748 |
+
use_checkpoint=use_checkpoint,
|
749 |
+
num_heads=num_heads,
|
750 |
+
num_head_channels=dim_head,
|
751 |
+
use_new_attention_order=use_new_attention_order,
|
752 |
+
)
|
753 |
+
)
|
754 |
+
if not use_spatial_transformer
|
755 |
+
else checkpoint_wrapper_fn(
|
756 |
+
SpatialTransformer(
|
757 |
+
ch,
|
758 |
+
num_heads,
|
759 |
+
dim_head,
|
760 |
+
depth=transformer_depth[level],
|
761 |
+
context_dim=context_dim,
|
762 |
+
disable_self_attn=disabled_sa,
|
763 |
+
use_linear=use_linear_in_transformer,
|
764 |
+
attn_type=spatial_transformer_attn_type,
|
765 |
+
use_checkpoint=use_checkpoint,
|
766 |
+
)
|
767 |
+
)
|
768 |
+
)
|
769 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
770 |
+
self._feature_size += ch
|
771 |
+
input_block_chans.append(ch)
|
772 |
+
if level != len(channel_mult) - 1:
|
773 |
+
out_ch = ch
|
774 |
+
self.input_blocks.append(
|
775 |
+
TimestepEmbedSequential(
|
776 |
+
checkpoint_wrapper_fn(
|
777 |
+
ResBlock(
|
778 |
+
ch,
|
779 |
+
time_embed_dim,
|
780 |
+
dropout,
|
781 |
+
out_channels=out_ch,
|
782 |
+
dims=dims,
|
783 |
+
use_checkpoint=use_checkpoint,
|
784 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
785 |
+
down=True,
|
786 |
+
)
|
787 |
+
)
|
788 |
+
if resblock_updown
|
789 |
+
else Downsample(
|
790 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
791 |
+
)
|
792 |
+
)
|
793 |
+
)
|
794 |
+
ch = out_ch
|
795 |
+
input_block_chans.append(ch)
|
796 |
+
ds *= 2
|
797 |
+
self._feature_size += ch
|
798 |
+
|
799 |
+
if num_head_channels == -1:
|
800 |
+
dim_head = ch // num_heads
|
801 |
+
else:
|
802 |
+
num_heads = ch // num_head_channels
|
803 |
+
dim_head = num_head_channels
|
804 |
+
if legacy:
|
805 |
+
# num_heads = 1
|
806 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
807 |
+
self.middle_block = TimestepEmbedSequential(
|
808 |
+
checkpoint_wrapper_fn(
|
809 |
+
ResBlock(
|
810 |
+
ch,
|
811 |
+
time_embed_dim,
|
812 |
+
dropout,
|
813 |
+
dims=dims,
|
814 |
+
use_checkpoint=use_checkpoint,
|
815 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
816 |
+
)
|
817 |
+
),
|
818 |
+
checkpoint_wrapper_fn(
|
819 |
+
AttentionBlock(
|
820 |
+
ch,
|
821 |
+
use_checkpoint=use_checkpoint,
|
822 |
+
num_heads=num_heads,
|
823 |
+
num_head_channels=dim_head,
|
824 |
+
use_new_attention_order=use_new_attention_order,
|
825 |
+
)
|
826 |
+
)
|
827 |
+
if not use_spatial_transformer
|
828 |
+
else checkpoint_wrapper_fn(
|
829 |
+
SpatialTransformer( # always uses a self-attn
|
830 |
+
ch,
|
831 |
+
num_heads,
|
832 |
+
dim_head,
|
833 |
+
depth=transformer_depth_middle,
|
834 |
+
context_dim=context_dim,
|
835 |
+
disable_self_attn=disable_middle_self_attn,
|
836 |
+
use_linear=use_linear_in_transformer,
|
837 |
+
attn_type=spatial_transformer_attn_type,
|
838 |
+
use_checkpoint=use_checkpoint,
|
839 |
+
)
|
840 |
+
),
|
841 |
+
checkpoint_wrapper_fn(
|
842 |
+
ResBlock(
|
843 |
+
ch,
|
844 |
+
time_embed_dim,
|
845 |
+
dropout,
|
846 |
+
dims=dims,
|
847 |
+
use_checkpoint=use_checkpoint,
|
848 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
849 |
+
)
|
850 |
+
),
|
851 |
+
)
|
852 |
+
self._feature_size += ch
|
853 |
+
|
854 |
+
self.output_blocks = nn.ModuleList([])
|
855 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
856 |
+
for i in range(self.num_res_blocks[level] + 1):
|
857 |
+
ich = input_block_chans.pop()
|
858 |
+
layers = [
|
859 |
+
checkpoint_wrapper_fn(
|
860 |
+
ResBlock(
|
861 |
+
ch + ich,
|
862 |
+
time_embed_dim,
|
863 |
+
dropout,
|
864 |
+
out_channels=model_channels * mult,
|
865 |
+
dims=dims,
|
866 |
+
use_checkpoint=use_checkpoint,
|
867 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
868 |
+
)
|
869 |
+
)
|
870 |
+
]
|
871 |
+
ch = model_channels * mult
|
872 |
+
if ds in attention_resolutions:
|
873 |
+
if num_head_channels == -1:
|
874 |
+
dim_head = ch // num_heads
|
875 |
+
else:
|
876 |
+
num_heads = ch // num_head_channels
|
877 |
+
dim_head = num_head_channels
|
878 |
+
if legacy:
|
879 |
+
# num_heads = 1
|
880 |
+
dim_head = (
|
881 |
+
ch // num_heads
|
882 |
+
if use_spatial_transformer
|
883 |
+
else num_head_channels
|
884 |
+
)
|
885 |
+
if exists(disable_self_attentions):
|
886 |
+
disabled_sa = disable_self_attentions[level]
|
887 |
+
else:
|
888 |
+
disabled_sa = False
|
889 |
+
|
890 |
+
if (
|
891 |
+
not exists(num_attention_blocks)
|
892 |
+
or i < num_attention_blocks[level]
|
893 |
+
):
|
894 |
+
layers.append(
|
895 |
+
checkpoint_wrapper_fn(
|
896 |
+
AttentionBlock(
|
897 |
+
ch,
|
898 |
+
use_checkpoint=use_checkpoint,
|
899 |
+
num_heads=num_heads_upsample,
|
900 |
+
num_head_channels=dim_head,
|
901 |
+
use_new_attention_order=use_new_attention_order,
|
902 |
+
)
|
903 |
+
)
|
904 |
+
if not use_spatial_transformer
|
905 |
+
else checkpoint_wrapper_fn(
|
906 |
+
SpatialTransformer(
|
907 |
+
ch,
|
908 |
+
num_heads,
|
909 |
+
dim_head,
|
910 |
+
depth=transformer_depth[level],
|
911 |
+
context_dim=context_dim,
|
912 |
+
disable_self_attn=disabled_sa,
|
913 |
+
use_linear=use_linear_in_transformer,
|
914 |
+
attn_type=spatial_transformer_attn_type,
|
915 |
+
use_checkpoint=use_checkpoint,
|
916 |
+
)
|
917 |
+
)
|
918 |
+
)
|
919 |
+
if level and i == self.num_res_blocks[level]:
|
920 |
+
out_ch = ch
|
921 |
+
layers.append(
|
922 |
+
checkpoint_wrapper_fn(
|
923 |
+
ResBlock(
|
924 |
+
ch,
|
925 |
+
time_embed_dim,
|
926 |
+
dropout,
|
927 |
+
out_channels=out_ch,
|
928 |
+
dims=dims,
|
929 |
+
use_checkpoint=use_checkpoint,
|
930 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
931 |
+
up=True,
|
932 |
+
)
|
933 |
+
)
|
934 |
+
if resblock_updown
|
935 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
936 |
+
)
|
937 |
+
ds //= 2
|
938 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
939 |
+
self._feature_size += ch
|
940 |
+
|
941 |
+
self.out = checkpoint_wrapper_fn(
|
942 |
+
nn.Sequential(
|
943 |
+
normalization(ch),
|
944 |
+
nn.SiLU(),
|
945 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
946 |
+
)
|
947 |
+
)
|
948 |
+
if self.predict_codebook_ids:
|
949 |
+
self.id_predictor = checkpoint_wrapper_fn(
|
950 |
+
nn.Sequential(
|
951 |
+
normalization(ch),
|
952 |
+
conv_nd(dims, model_channels, n_embed, 1),
|
953 |
+
# nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
954 |
+
)
|
955 |
+
)
|
956 |
+
|
957 |
+
def convert_to_fp16(self):
|
958 |
+
"""
|
959 |
+
Convert the torso of the model to float16.
|
960 |
+
"""
|
961 |
+
self.input_blocks.apply(convert_module_to_f16)
|
962 |
+
self.middle_block.apply(convert_module_to_f16)
|
963 |
+
self.output_blocks.apply(convert_module_to_f16)
|
964 |
+
|
965 |
+
def convert_to_fp32(self):
|
966 |
+
"""
|
967 |
+
Convert the torso of the model to float32.
|
968 |
+
"""
|
969 |
+
self.input_blocks.apply(convert_module_to_f32)
|
970 |
+
self.middle_block.apply(convert_module_to_f32)
|
971 |
+
self.output_blocks.apply(convert_module_to_f32)
|
972 |
+
|
973 |
+
def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
|
974 |
+
"""
|
975 |
+
Apply the model to an input batch.
|
976 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
977 |
+
:param timesteps: a 1-D batch of timesteps.
|
978 |
+
:param context: conditioning plugged in via crossattn
|
979 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
980 |
+
:return: an [N x C x ...] Tensor of outputs.
|
981 |
+
"""
|
982 |
+
assert (y is not None) == (
|
983 |
+
self.num_classes is not None
|
984 |
+
), "must specify y if and only if the model is class-conditional"
|
985 |
+
hs = []
|
986 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
987 |
+
emb = self.time_embed(t_emb)
|
988 |
+
|
989 |
+
if self.num_classes is not None:
|
990 |
+
assert y.shape[0] == x.shape[0]
|
991 |
+
emb = emb + self.label_emb(y)
|
992 |
+
|
993 |
+
# h = x.type(self.dtype)
|
994 |
+
h = x
|
995 |
+
for i, module in enumerate(self.input_blocks):
|
996 |
+
h = module(h, emb, context)
|
997 |
+
hs.append(h)
|
998 |
+
h = self.middle_block(h, emb, context)
|
999 |
+
for i, module in enumerate(self.output_blocks):
|
1000 |
+
h = th.cat([h, hs.pop()], dim=1)
|
1001 |
+
h = module(h, emb, context)
|
1002 |
+
h = h.type(x.dtype)
|
1003 |
+
if self.predict_codebook_ids:
|
1004 |
+
assert False, "not supported anymore. what the f*** are you doing?"
|
1005 |
+
else:
|
1006 |
+
return self.out(h)
|
1007 |
+
|
1008 |
+
|
1009 |
+
|
1010 |
+
class UNetModel(nn.Module):
|
1011 |
+
"""
|
1012 |
+
The full UNet model with attention and timestep embedding.
|
1013 |
+
:param in_channels: channels in the input Tensor.
|
1014 |
+
:param model_channels: base channel count for the model.
|
1015 |
+
:param out_channels: channels in the output Tensor.
|
1016 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
1017 |
+
:param attention_resolutions: a collection of downsample rates at which
|
1018 |
+
attention will take place. May be a set, list, or tuple.
|
1019 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
1020 |
+
will be used.
|
1021 |
+
:param dropout: the dropout probability.
|
1022 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
1023 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
1024 |
+
downsampling.
|
1025 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
1026 |
+
:param num_classes: if specified (as an int), then this model will be
|
1027 |
+
class-conditional with `num_classes` classes.
|
1028 |
+
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
1029 |
+
:param num_heads: the number of attention heads in each attention layer.
|
1030 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
1031 |
+
a fixed channel width per attention head.
|
1032 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
1033 |
+
of heads for upsampling. Deprecated.
|
1034 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
1035 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
1036 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
1037 |
+
increased efficiency.
|
1038 |
+
"""
|
1039 |
+
|
1040 |
+
def __init__(
|
1041 |
+
self,
|
1042 |
+
in_channels,
|
1043 |
+
model_channels,
|
1044 |
+
out_channels,
|
1045 |
+
num_res_blocks,
|
1046 |
+
attention_resolutions,
|
1047 |
+
dropout=0,
|
1048 |
+
channel_mult=(1, 2, 4, 8),
|
1049 |
+
conv_resample=True,
|
1050 |
+
dims=2,
|
1051 |
+
num_classes=None,
|
1052 |
+
use_checkpoint=False,
|
1053 |
+
use_fp16=False,
|
1054 |
+
num_heads=-1,
|
1055 |
+
num_head_channels=-1,
|
1056 |
+
num_heads_upsample=-1,
|
1057 |
+
use_scale_shift_norm=False,
|
1058 |
+
resblock_updown=False,
|
1059 |
+
use_new_attention_order=False,
|
1060 |
+
use_spatial_transformer=False, # custom transformer support
|
1061 |
+
transformer_depth=1, # custom transformer support
|
1062 |
+
context_dim=None, # custom transformer support
|
1063 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
1064 |
+
legacy=True,
|
1065 |
+
disable_self_attentions=None,
|
1066 |
+
num_attention_blocks=None,
|
1067 |
+
disable_middle_self_attn=False,
|
1068 |
+
use_linear_in_transformer=False,
|
1069 |
+
spatial_transformer_attn_type="softmax",
|
1070 |
+
adm_in_channels=None,
|
1071 |
+
use_fairscale_checkpoint=False,
|
1072 |
+
offload_to_cpu=False,
|
1073 |
+
transformer_depth_middle=None,
|
1074 |
+
):
|
1075 |
+
super().__init__()
|
1076 |
+
from omegaconf.listconfig import ListConfig
|
1077 |
+
|
1078 |
+
if use_spatial_transformer:
|
1079 |
+
assert (
|
1080 |
+
context_dim is not None
|
1081 |
+
), "Fool!! You forgot to include the dimension of your cross-attention conditioning..."
|
1082 |
+
|
1083 |
+
if context_dim is not None:
|
1084 |
+
assert (
|
1085 |
+
use_spatial_transformer
|
1086 |
+
), "Fool!! You forgot to use the spatial transformer for your cross-attention conditioning..."
|
1087 |
+
if type(context_dim) == ListConfig:
|
1088 |
+
context_dim = list(context_dim)
|
1089 |
+
|
1090 |
+
if num_heads_upsample == -1:
|
1091 |
+
num_heads_upsample = num_heads
|
1092 |
+
|
1093 |
+
if num_heads == -1:
|
1094 |
+
assert (
|
1095 |
+
num_head_channels != -1
|
1096 |
+
), "Either num_heads or num_head_channels has to be set"
|
1097 |
+
|
1098 |
+
if num_head_channels == -1:
|
1099 |
+
assert (
|
1100 |
+
num_heads != -1
|
1101 |
+
), "Either num_heads or num_head_channels has to be set"
|
1102 |
+
|
1103 |
+
self.in_channels = in_channels
|
1104 |
+
self.model_channels = model_channels
|
1105 |
+
self.out_channels = out_channels
|
1106 |
+
if isinstance(transformer_depth, int):
|
1107 |
+
transformer_depth = len(channel_mult) * [transformer_depth]
|
1108 |
+
elif isinstance(transformer_depth, ListConfig):
|
1109 |
+
transformer_depth = list(transformer_depth)
|
1110 |
+
transformer_depth_middle = default(
|
1111 |
+
transformer_depth_middle, transformer_depth[-1]
|
1112 |
+
)
|
1113 |
+
|
1114 |
+
if isinstance(num_res_blocks, int):
|
1115 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
1116 |
+
else:
|
1117 |
+
if len(num_res_blocks) != len(channel_mult):
|
1118 |
+
raise ValueError(
|
1119 |
+
"provide num_res_blocks either as an int (globally constant) or "
|
1120 |
+
"as a list/tuple (per-level) with the same length as channel_mult"
|
1121 |
+
)
|
1122 |
+
self.num_res_blocks = num_res_blocks
|
1123 |
+
# self.num_res_blocks = num_res_blocks
|
1124 |
+
if disable_self_attentions is not None:
|
1125 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
1126 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
1127 |
+
if num_attention_blocks is not None:
|
1128 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
1129 |
+
assert all(
|
1130 |
+
map(
|
1131 |
+
lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
|
1132 |
+
range(len(num_attention_blocks)),
|
1133 |
+
)
|
1134 |
+
)
|
1135 |
+
print(
|
1136 |
+
f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
1137 |
+
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
1138 |
+
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
1139 |
+
f"attention will still not be set."
|
1140 |
+
) # todo: convert to warning
|
1141 |
+
|
1142 |
+
self.attention_resolutions = attention_resolutions
|
1143 |
+
self.dropout = dropout
|
1144 |
+
self.channel_mult = channel_mult
|
1145 |
+
self.conv_resample = conv_resample
|
1146 |
+
self.num_classes = num_classes
|
1147 |
+
self.use_checkpoint = use_checkpoint
|
1148 |
+
if use_fp16:
|
1149 |
+
print("WARNING: use_fp16 was dropped and has no effect anymore.")
|
1150 |
+
# self.dtype = th.float16 if use_fp16 else th.float32
|
1151 |
+
self.num_heads = num_heads
|
1152 |
+
self.num_head_channels = num_head_channels
|
1153 |
+
self.num_heads_upsample = num_heads_upsample
|
1154 |
+
self.predict_codebook_ids = n_embed is not None
|
1155 |
+
|
1156 |
+
assert use_fairscale_checkpoint != use_checkpoint or not (
|
1157 |
+
use_checkpoint or use_fairscale_checkpoint
|
1158 |
+
)
|
1159 |
+
|
1160 |
+
self.use_fairscale_checkpoint = False
|
1161 |
+
checkpoint_wrapper_fn = (
|
1162 |
+
partial(checkpoint_wrapper, offload_to_cpu=offload_to_cpu)
|
1163 |
+
if self.use_fairscale_checkpoint
|
1164 |
+
else lambda x: x
|
1165 |
+
)
|
1166 |
+
|
1167 |
+
time_embed_dim = model_channels * 4
|
1168 |
+
self.time_embed = checkpoint_wrapper_fn(
|
1169 |
+
nn.Sequential(
|
1170 |
+
linear(model_channels, time_embed_dim),
|
1171 |
+
nn.SiLU(),
|
1172 |
+
linear(time_embed_dim, time_embed_dim),
|
1173 |
+
)
|
1174 |
+
)
|
1175 |
+
|
1176 |
+
if self.num_classes is not None:
|
1177 |
+
if isinstance(self.num_classes, int):
|
1178 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
1179 |
+
elif self.num_classes == "continuous":
|
1180 |
+
print("setting up linear c_adm embedding layer")
|
1181 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
1182 |
+
elif self.num_classes == "timestep":
|
1183 |
+
self.label_emb = checkpoint_wrapper_fn(
|
1184 |
+
nn.Sequential(
|
1185 |
+
Timestep(model_channels),
|
1186 |
+
nn.Sequential(
|
1187 |
+
linear(model_channels, time_embed_dim),
|
1188 |
+
nn.SiLU(),
|
1189 |
+
linear(time_embed_dim, time_embed_dim),
|
1190 |
+
),
|
1191 |
+
)
|
1192 |
+
)
|
1193 |
+
elif self.num_classes == "sequential":
|
1194 |
+
assert adm_in_channels is not None
|
1195 |
+
self.label_emb = nn.Sequential(
|
1196 |
+
nn.Sequential(
|
1197 |
+
linear(adm_in_channels, time_embed_dim),
|
1198 |
+
nn.SiLU(),
|
1199 |
+
linear(time_embed_dim, time_embed_dim),
|
1200 |
+
)
|
1201 |
+
)
|
1202 |
+
else:
|
1203 |
+
raise ValueError()
|
1204 |
+
|
1205 |
+
self.input_blocks = nn.ModuleList(
|
1206 |
+
[
|
1207 |
+
TimestepEmbedSequential(
|
1208 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
1209 |
+
)
|
1210 |
+
]
|
1211 |
+
)
|
1212 |
+
self._feature_size = model_channels
|
1213 |
+
input_block_chans = [model_channels]
|
1214 |
+
ch = model_channels
|
1215 |
+
ds = 1
|
1216 |
+
for level, mult in enumerate(channel_mult):
|
1217 |
+
for nr in range(self.num_res_blocks[level]):
|
1218 |
+
layers = [
|
1219 |
+
checkpoint_wrapper_fn(
|
1220 |
+
ResBlock(
|
1221 |
+
ch,
|
1222 |
+
time_embed_dim,
|
1223 |
+
dropout,
|
1224 |
+
out_channels=mult * model_channels,
|
1225 |
+
dims=dims,
|
1226 |
+
use_checkpoint=use_checkpoint,
|
1227 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
1228 |
+
)
|
1229 |
+
)
|
1230 |
+
]
|
1231 |
+
ch = mult * model_channels
|
1232 |
+
if ds in attention_resolutions:
|
1233 |
+
if num_head_channels == -1:
|
1234 |
+
dim_head = ch // num_heads
|
1235 |
+
else:
|
1236 |
+
num_heads = ch // num_head_channels
|
1237 |
+
dim_head = num_head_channels
|
1238 |
+
if legacy:
|
1239 |
+
# num_heads = 1
|
1240 |
+
dim_head = (
|
1241 |
+
ch // num_heads
|
1242 |
+
if use_spatial_transformer
|
1243 |
+
else num_head_channels
|
1244 |
+
)
|
1245 |
+
if exists(disable_self_attentions):
|
1246 |
+
disabled_sa = disable_self_attentions[level]
|
1247 |
+
else:
|
1248 |
+
disabled_sa = False
|
1249 |
+
|
1250 |
+
if (
|
1251 |
+
not exists(num_attention_blocks)
|
1252 |
+
or nr < num_attention_blocks[level]
|
1253 |
+
):
|
1254 |
+
layers.append(
|
1255 |
+
checkpoint_wrapper_fn(
|
1256 |
+
AttentionBlock(
|
1257 |
+
ch,
|
1258 |
+
use_checkpoint=use_checkpoint,
|
1259 |
+
num_heads=num_heads,
|
1260 |
+
num_head_channels=dim_head,
|
1261 |
+
use_new_attention_order=use_new_attention_order,
|
1262 |
+
)
|
1263 |
+
)
|
1264 |
+
if not use_spatial_transformer
|
1265 |
+
else checkpoint_wrapper_fn(
|
1266 |
+
SpatialTransformer(
|
1267 |
+
ch,
|
1268 |
+
num_heads,
|
1269 |
+
dim_head,
|
1270 |
+
depth=transformer_depth[level],
|
1271 |
+
context_dim=context_dim,
|
1272 |
+
disable_self_attn=disabled_sa,
|
1273 |
+
use_linear=use_linear_in_transformer,
|
1274 |
+
attn_type=spatial_transformer_attn_type,
|
1275 |
+
use_checkpoint=use_checkpoint,
|
1276 |
+
)
|
1277 |
+
)
|
1278 |
+
)
|
1279 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
1280 |
+
self._feature_size += ch
|
1281 |
+
input_block_chans.append(ch)
|
1282 |
+
if level != len(channel_mult) - 1:
|
1283 |
+
out_ch = ch
|
1284 |
+
self.input_blocks.append(
|
1285 |
+
TimestepEmbedSequential(
|
1286 |
+
checkpoint_wrapper_fn(
|
1287 |
+
ResBlock(
|
1288 |
+
ch,
|
1289 |
+
time_embed_dim,
|
1290 |
+
dropout,
|
1291 |
+
out_channels=out_ch,
|
1292 |
+
dims=dims,
|
1293 |
+
use_checkpoint=use_checkpoint,
|
1294 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
1295 |
+
down=True,
|
1296 |
+
)
|
1297 |
+
)
|
1298 |
+
if resblock_updown
|
1299 |
+
else Downsample(
|
1300 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
1301 |
+
)
|
1302 |
+
)
|
1303 |
+
)
|
1304 |
+
ch = out_ch
|
1305 |
+
input_block_chans.append(ch)
|
1306 |
+
ds *= 2
|
1307 |
+
self._feature_size += ch
|
1308 |
+
|
1309 |
+
if num_head_channels == -1:
|
1310 |
+
dim_head = ch // num_heads
|
1311 |
+
else:
|
1312 |
+
num_heads = ch // num_head_channels
|
1313 |
+
dim_head = num_head_channels
|
1314 |
+
if legacy:
|
1315 |
+
# num_heads = 1
|
1316 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
1317 |
+
self.middle_block = TimestepEmbedSequential(
|
1318 |
+
checkpoint_wrapper_fn(
|
1319 |
+
ResBlock(
|
1320 |
+
ch,
|
1321 |
+
time_embed_dim,
|
1322 |
+
dropout,
|
1323 |
+
dims=dims,
|
1324 |
+
use_checkpoint=use_checkpoint,
|
1325 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
1326 |
+
)
|
1327 |
+
),
|
1328 |
+
checkpoint_wrapper_fn(
|
1329 |
+
AttentionBlock(
|
1330 |
+
ch,
|
1331 |
+
use_checkpoint=use_checkpoint,
|
1332 |
+
num_heads=num_heads,
|
1333 |
+
num_head_channels=dim_head,
|
1334 |
+
use_new_attention_order=use_new_attention_order,
|
1335 |
+
)
|
1336 |
+
)
|
1337 |
+
if not use_spatial_transformer
|
1338 |
+
else checkpoint_wrapper_fn(
|
1339 |
+
SpatialTransformer( # always uses a self-attn
|
1340 |
+
ch,
|
1341 |
+
num_heads,
|
1342 |
+
dim_head,
|
1343 |
+
depth=transformer_depth_middle,
|
1344 |
+
context_dim=context_dim,
|
1345 |
+
disable_self_attn=disable_middle_self_attn,
|
1346 |
+
use_linear=use_linear_in_transformer,
|
1347 |
+
attn_type=spatial_transformer_attn_type,
|
1348 |
+
use_checkpoint=use_checkpoint,
|
1349 |
+
)
|
1350 |
+
),
|
1351 |
+
checkpoint_wrapper_fn(
|
1352 |
+
ResBlock(
|
1353 |
+
ch,
|
1354 |
+
time_embed_dim,
|
1355 |
+
dropout,
|
1356 |
+
dims=dims,
|
1357 |
+
use_checkpoint=use_checkpoint,
|
1358 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
1359 |
+
)
|
1360 |
+
),
|
1361 |
+
)
|
1362 |
+
self._feature_size += ch
|
1363 |
+
|
1364 |
+
self.output_blocks = nn.ModuleList([])
|
1365 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
1366 |
+
for i in range(self.num_res_blocks[level] + 1):
|
1367 |
+
ich = input_block_chans.pop()
|
1368 |
+
layers = [
|
1369 |
+
checkpoint_wrapper_fn(
|
1370 |
+
ResBlock(
|
1371 |
+
ch + ich,
|
1372 |
+
time_embed_dim,
|
1373 |
+
dropout,
|
1374 |
+
out_channels=model_channels * mult,
|
1375 |
+
dims=dims,
|
1376 |
+
use_checkpoint=use_checkpoint,
|
1377 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
1378 |
+
)
|
1379 |
+
)
|
1380 |
+
]
|
1381 |
+
ch = model_channels * mult
|
1382 |
+
if ds in attention_resolutions:
|
1383 |
+
if num_head_channels == -1:
|
1384 |
+
dim_head = ch // num_heads
|
1385 |
+
else:
|
1386 |
+
num_heads = ch // num_head_channels
|
1387 |
+
dim_head = num_head_channels
|
1388 |
+
if legacy:
|
1389 |
+
# num_heads = 1
|
1390 |
+
dim_head = (
|
1391 |
+
ch // num_heads
|
1392 |
+
if use_spatial_transformer
|
1393 |
+
else num_head_channels
|
1394 |
+
)
|
1395 |
+
if exists(disable_self_attentions):
|
1396 |
+
disabled_sa = disable_self_attentions[level]
|
1397 |
+
else:
|
1398 |
+
disabled_sa = False
|
1399 |
+
|
1400 |
+
if (
|
1401 |
+
not exists(num_attention_blocks)
|
1402 |
+
or i < num_attention_blocks[level]
|
1403 |
+
):
|
1404 |
+
layers.append(
|
1405 |
+
checkpoint_wrapper_fn(
|
1406 |
+
AttentionBlock(
|
1407 |
+
ch,
|
1408 |
+
use_checkpoint=use_checkpoint,
|
1409 |
+
num_heads=num_heads_upsample,
|
1410 |
+
num_head_channels=dim_head,
|
1411 |
+
use_new_attention_order=use_new_attention_order,
|
1412 |
+
)
|
1413 |
+
)
|
1414 |
+
if not use_spatial_transformer
|
1415 |
+
else checkpoint_wrapper_fn(
|
1416 |
+
SpatialTransformer(
|
1417 |
+
ch,
|
1418 |
+
num_heads,
|
1419 |
+
dim_head,
|
1420 |
+
depth=transformer_depth[level],
|
1421 |
+
context_dim=context_dim,
|
1422 |
+
disable_self_attn=disabled_sa,
|
1423 |
+
use_linear=use_linear_in_transformer,
|
1424 |
+
attn_type=spatial_transformer_attn_type,
|
1425 |
+
use_checkpoint=use_checkpoint,
|
1426 |
+
)
|
1427 |
+
)
|
1428 |
+
)
|
1429 |
+
if level and i == self.num_res_blocks[level]:
|
1430 |
+
out_ch = ch
|
1431 |
+
layers.append(
|
1432 |
+
checkpoint_wrapper_fn(
|
1433 |
+
ResBlock(
|
1434 |
+
ch,
|
1435 |
+
time_embed_dim,
|
1436 |
+
dropout,
|
1437 |
+
out_channels=out_ch,
|
1438 |
+
dims=dims,
|
1439 |
+
use_checkpoint=use_checkpoint,
|
1440 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
1441 |
+
up=True,
|
1442 |
+
)
|
1443 |
+
)
|
1444 |
+
if resblock_updown
|
1445 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
1446 |
+
)
|
1447 |
+
ds //= 2
|
1448 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
1449 |
+
self._feature_size += ch
|
1450 |
+
|
1451 |
+
self.out = checkpoint_wrapper_fn(
|
1452 |
+
nn.Sequential(
|
1453 |
+
normalization(ch),
|
1454 |
+
nn.SiLU(),
|
1455 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
1456 |
+
)
|
1457 |
+
)
|
1458 |
+
if self.predict_codebook_ids:
|
1459 |
+
self.id_predictor = checkpoint_wrapper_fn(
|
1460 |
+
nn.Sequential(
|
1461 |
+
normalization(ch),
|
1462 |
+
conv_nd(dims, model_channels, n_embed, 1),
|
1463 |
+
# nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
1464 |
+
)
|
1465 |
+
)
|
1466 |
+
|
1467 |
+
def convert_to_fp16(self):
|
1468 |
+
"""
|
1469 |
+
Convert the torso of the model to float16.
|
1470 |
+
"""
|
1471 |
+
self.input_blocks.apply(convert_module_to_f16)
|
1472 |
+
self.middle_block.apply(convert_module_to_f16)
|
1473 |
+
self.output_blocks.apply(convert_module_to_f16)
|
1474 |
+
|
1475 |
+
def convert_to_fp32(self):
|
1476 |
+
"""
|
1477 |
+
Convert the torso of the model to float32.
|
1478 |
+
"""
|
1479 |
+
self.input_blocks.apply(convert_module_to_f32)
|
1480 |
+
self.middle_block.apply(convert_module_to_f32)
|
1481 |
+
self.output_blocks.apply(convert_module_to_f32)
|
1482 |
+
|
1483 |
+
def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
|
1484 |
+
"""
|
1485 |
+
Apply the model to an input batch.
|
1486 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
1487 |
+
:param timesteps: a 1-D batch of timesteps.
|
1488 |
+
:param context: conditioning plugged in via crossattn
|
1489 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
1490 |
+
:return: an [N x C x ...] Tensor of outputs.
|
1491 |
+
"""
|
1492 |
+
assert (y is not None) == (
|
1493 |
+
self.num_classes is not None
|
1494 |
+
), "must specify y if and only if the model is class-conditional"
|
1495 |
+
hs = []
|
1496 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
1497 |
+
emb = self.time_embed(t_emb)
|
1498 |
+
|
1499 |
+
if self.num_classes is not None:
|
1500 |
+
assert y.shape[0] == x.shape[0]
|
1501 |
+
emb = emb + self.label_emb(y)
|
1502 |
+
|
1503 |
+
# h = x.type(self.dtype)
|
1504 |
+
h = x
|
1505 |
+
for i, module in enumerate(self.input_blocks):
|
1506 |
+
h = module(h, emb, context)
|
1507 |
+
hs.append(h)
|
1508 |
+
h = self.middle_block(h, emb, context)
|
1509 |
+
for i, module in enumerate(self.output_blocks):
|
1510 |
+
h = th.cat([h, hs.pop()], dim=1)
|
1511 |
+
h = module(h, emb, context)
|
1512 |
+
h = h.type(x.dtype)
|
1513 |
+
if self.predict_codebook_ids:
|
1514 |
+
assert False, "not supported anymore. what the f*** are you doing?"
|
1515 |
+
else:
|
1516 |
+
return self.out(h)
|
1517 |
+
|
1518 |
+
|
1519 |
+
import seaborn as sns
|
1520 |
+
import matplotlib.pyplot as plt
|
1521 |
+
|
1522 |
+
class UNetAddModel(nn.Module):
|
1523 |
+
|
1524 |
+
def __init__(
|
1525 |
+
self,
|
1526 |
+
in_channels,
|
1527 |
+
ctrl_channels,
|
1528 |
+
model_channels,
|
1529 |
+
out_channels,
|
1530 |
+
num_res_blocks,
|
1531 |
+
attention_resolutions,
|
1532 |
+
dropout=0,
|
1533 |
+
channel_mult=(1, 2, 4, 8),
|
1534 |
+
attn_type="attn2",
|
1535 |
+
attn_layers=[],
|
1536 |
+
conv_resample=True,
|
1537 |
+
dims=2,
|
1538 |
+
num_classes=None,
|
1539 |
+
use_checkpoint=False,
|
1540 |
+
use_fp16=False,
|
1541 |
+
num_heads=-1,
|
1542 |
+
num_head_channels=-1,
|
1543 |
+
num_heads_upsample=-1,
|
1544 |
+
use_scale_shift_norm=False,
|
1545 |
+
resblock_updown=False,
|
1546 |
+
use_new_attention_order=False,
|
1547 |
+
use_spatial_transformer=False, # custom transformer support
|
1548 |
+
transformer_depth=1, # custom transformer support
|
1549 |
+
context_dim=None, # custom transformer support
|
1550 |
+
add_context_dim=None,
|
1551 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
1552 |
+
legacy=True,
|
1553 |
+
disable_self_attentions=None,
|
1554 |
+
num_attention_blocks=None,
|
1555 |
+
disable_middle_self_attn=False,
|
1556 |
+
use_linear_in_transformer=False,
|
1557 |
+
spatial_transformer_attn_type="softmax",
|
1558 |
+
adm_in_channels=None,
|
1559 |
+
use_fairscale_checkpoint=False,
|
1560 |
+
offload_to_cpu=False,
|
1561 |
+
transformer_depth_middle=None,
|
1562 |
+
):
|
1563 |
+
super().__init__()
|
1564 |
+
from omegaconf.listconfig import ListConfig
|
1565 |
+
|
1566 |
+
if use_spatial_transformer:
|
1567 |
+
assert (
|
1568 |
+
context_dim is not None
|
1569 |
+
), "Fool!! You forgot to include the dimension of your cross-attention conditioning..."
|
1570 |
+
|
1571 |
+
if context_dim is not None:
|
1572 |
+
assert (
|
1573 |
+
use_spatial_transformer
|
1574 |
+
), "Fool!! You forgot to use the spatial transformer for your cross-attention conditioning..."
|
1575 |
+
if type(context_dim) == ListConfig:
|
1576 |
+
context_dim = list(context_dim)
|
1577 |
+
|
1578 |
+
if num_heads_upsample == -1:
|
1579 |
+
num_heads_upsample = num_heads
|
1580 |
+
|
1581 |
+
if num_heads == -1:
|
1582 |
+
assert (
|
1583 |
+
num_head_channels != -1
|
1584 |
+
), "Either num_heads or num_head_channels has to be set"
|
1585 |
+
|
1586 |
+
if num_head_channels == -1:
|
1587 |
+
assert (
|
1588 |
+
num_heads != -1
|
1589 |
+
), "Either num_heads or num_head_channels has to be set"
|
1590 |
+
|
1591 |
+
self.in_channels = in_channels
|
1592 |
+
self.ctrl_channels = ctrl_channels
|
1593 |
+
self.model_channels = model_channels
|
1594 |
+
self.out_channels = out_channels
|
1595 |
+
if isinstance(transformer_depth, int):
|
1596 |
+
transformer_depth = len(channel_mult) * [transformer_depth]
|
1597 |
+
elif isinstance(transformer_depth, ListConfig):
|
1598 |
+
transformer_depth = list(transformer_depth)
|
1599 |
+
transformer_depth_middle = default(
|
1600 |
+
transformer_depth_middle, transformer_depth[-1]
|
1601 |
+
)
|
1602 |
+
|
1603 |
+
if isinstance(num_res_blocks, int):
|
1604 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
1605 |
+
else:
|
1606 |
+
if len(num_res_blocks) != len(channel_mult):
|
1607 |
+
raise ValueError(
|
1608 |
+
"provide num_res_blocks either as an int (globally constant) or "
|
1609 |
+
"as a list/tuple (per-level) with the same length as channel_mult"
|
1610 |
+
)
|
1611 |
+
self.num_res_blocks = num_res_blocks
|
1612 |
+
# self.num_res_blocks = num_res_blocks
|
1613 |
+
if disable_self_attentions is not None:
|
1614 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
1615 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
1616 |
+
if num_attention_blocks is not None:
|
1617 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
1618 |
+
assert all(
|
1619 |
+
map(
|
1620 |
+
lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
|
1621 |
+
range(len(num_attention_blocks)),
|
1622 |
+
)
|
1623 |
+
)
|
1624 |
+
print(
|
1625 |
+
f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
1626 |
+
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
1627 |
+
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
1628 |
+
f"attention will still not be set."
|
1629 |
+
) # todo: convert to warning
|
1630 |
+
|
1631 |
+
self.attention_resolutions = attention_resolutions
|
1632 |
+
self.dropout = dropout
|
1633 |
+
self.channel_mult = channel_mult
|
1634 |
+
self.conv_resample = conv_resample
|
1635 |
+
self.num_classes = num_classes
|
1636 |
+
self.use_checkpoint = use_checkpoint
|
1637 |
+
if use_fp16:
|
1638 |
+
print("WARNING: use_fp16 was dropped and has no effect anymore.")
|
1639 |
+
# self.dtype = th.float16 if use_fp16 else th.float32
|
1640 |
+
self.num_heads = num_heads
|
1641 |
+
self.num_head_channels = num_head_channels
|
1642 |
+
self.num_heads_upsample = num_heads_upsample
|
1643 |
+
self.predict_codebook_ids = n_embed is not None
|
1644 |
+
|
1645 |
+
assert use_fairscale_checkpoint != use_checkpoint or not (
|
1646 |
+
use_checkpoint or use_fairscale_checkpoint
|
1647 |
+
)
|
1648 |
+
|
1649 |
+
self.use_fairscale_checkpoint = False
|
1650 |
+
checkpoint_wrapper_fn = (
|
1651 |
+
partial(checkpoint_wrapper, offload_to_cpu=offload_to_cpu)
|
1652 |
+
if self.use_fairscale_checkpoint
|
1653 |
+
else lambda x: x
|
1654 |
+
)
|
1655 |
+
|
1656 |
+
time_embed_dim = model_channels * 4
|
1657 |
+
self.time_embed = checkpoint_wrapper_fn(
|
1658 |
+
nn.Sequential(
|
1659 |
+
linear(model_channels, time_embed_dim),
|
1660 |
+
nn.SiLU(),
|
1661 |
+
linear(time_embed_dim, time_embed_dim),
|
1662 |
+
)
|
1663 |
+
)
|
1664 |
+
|
1665 |
+
if self.num_classes is not None:
|
1666 |
+
if isinstance(self.num_classes, int):
|
1667 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
1668 |
+
elif self.num_classes == "continuous":
|
1669 |
+
print("setting up linear c_adm embedding layer")
|
1670 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
1671 |
+
elif self.num_classes == "timestep":
|
1672 |
+
self.label_emb = checkpoint_wrapper_fn(
|
1673 |
+
nn.Sequential(
|
1674 |
+
Timestep(model_channels),
|
1675 |
+
nn.Sequential(
|
1676 |
+
linear(model_channels, time_embed_dim),
|
1677 |
+
nn.SiLU(),
|
1678 |
+
linear(time_embed_dim, time_embed_dim),
|
1679 |
+
),
|
1680 |
+
)
|
1681 |
+
)
|
1682 |
+
elif self.num_classes == "sequential":
|
1683 |
+
assert adm_in_channels is not None
|
1684 |
+
self.label_emb = nn.Sequential(
|
1685 |
+
nn.Sequential(
|
1686 |
+
linear(adm_in_channels, time_embed_dim),
|
1687 |
+
nn.SiLU(),
|
1688 |
+
linear(time_embed_dim, time_embed_dim),
|
1689 |
+
)
|
1690 |
+
)
|
1691 |
+
else:
|
1692 |
+
raise ValueError()
|
1693 |
+
|
1694 |
+
self.input_blocks = nn.ModuleList(
|
1695 |
+
[
|
1696 |
+
TimestepEmbedSequential(
|
1697 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
1698 |
+
)
|
1699 |
+
]
|
1700 |
+
)
|
1701 |
+
if self.ctrl_channels > 0:
|
1702 |
+
self.add_input_block = TimestepEmbedSequential(
|
1703 |
+
conv_nd(dims, ctrl_channels, 16, 3, padding=1),
|
1704 |
+
nn.SiLU(),
|
1705 |
+
conv_nd(dims, 16, 16, 3, padding=1),
|
1706 |
+
nn.SiLU(),
|
1707 |
+
conv_nd(dims, 16, 32, 3, padding=1),
|
1708 |
+
nn.SiLU(),
|
1709 |
+
conv_nd(dims, 32, 32, 3, padding=1),
|
1710 |
+
nn.SiLU(),
|
1711 |
+
conv_nd(dims, 32, 96, 3, padding=1),
|
1712 |
+
nn.SiLU(),
|
1713 |
+
conv_nd(dims, 96, 96, 3, padding=1),
|
1714 |
+
nn.SiLU(),
|
1715 |
+
conv_nd(dims, 96, 256, 3, padding=1),
|
1716 |
+
nn.SiLU(),
|
1717 |
+
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1))
|
1718 |
+
)
|
1719 |
+
|
1720 |
+
self._feature_size = model_channels
|
1721 |
+
input_block_chans = [model_channels]
|
1722 |
+
ch = model_channels
|
1723 |
+
ds = 1
|
1724 |
+
for level, mult in enumerate(channel_mult):
|
1725 |
+
for nr in range(self.num_res_blocks[level]):
|
1726 |
+
layers = [
|
1727 |
+
checkpoint_wrapper_fn(
|
1728 |
+
ResBlock(
|
1729 |
+
ch,
|
1730 |
+
time_embed_dim,
|
1731 |
+
dropout,
|
1732 |
+
out_channels=mult * model_channels,
|
1733 |
+
dims=dims,
|
1734 |
+
use_checkpoint=use_checkpoint,
|
1735 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
1736 |
+
)
|
1737 |
+
)
|
1738 |
+
]
|
1739 |
+
ch = mult * model_channels
|
1740 |
+
if ds in attention_resolutions:
|
1741 |
+
if num_head_channels == -1:
|
1742 |
+
dim_head = ch // num_heads
|
1743 |
+
else:
|
1744 |
+
num_heads = ch // num_head_channels
|
1745 |
+
dim_head = num_head_channels
|
1746 |
+
if legacy:
|
1747 |
+
# num_heads = 1
|
1748 |
+
dim_head = (
|
1749 |
+
ch // num_heads
|
1750 |
+
if use_spatial_transformer
|
1751 |
+
else num_head_channels
|
1752 |
+
)
|
1753 |
+
if exists(disable_self_attentions):
|
1754 |
+
disabled_sa = disable_self_attentions[level]
|
1755 |
+
else:
|
1756 |
+
disabled_sa = False
|
1757 |
+
|
1758 |
+
if (
|
1759 |
+
not exists(num_attention_blocks)
|
1760 |
+
or nr < num_attention_blocks[level]
|
1761 |
+
):
|
1762 |
+
layers.append(
|
1763 |
+
checkpoint_wrapper_fn(
|
1764 |
+
AttentionBlock(
|
1765 |
+
ch,
|
1766 |
+
use_checkpoint=use_checkpoint,
|
1767 |
+
num_heads=num_heads,
|
1768 |
+
num_head_channels=dim_head,
|
1769 |
+
use_new_attention_order=use_new_attention_order,
|
1770 |
+
)
|
1771 |
+
)
|
1772 |
+
if not use_spatial_transformer
|
1773 |
+
else checkpoint_wrapper_fn(
|
1774 |
+
SpatialTransformer(
|
1775 |
+
ch,
|
1776 |
+
num_heads,
|
1777 |
+
dim_head,
|
1778 |
+
depth=transformer_depth[level],
|
1779 |
+
context_dim=context_dim,
|
1780 |
+
add_context_dim=add_context_dim,
|
1781 |
+
disable_self_attn=disabled_sa,
|
1782 |
+
use_linear=use_linear_in_transformer,
|
1783 |
+
attn_type=spatial_transformer_attn_type,
|
1784 |
+
use_checkpoint=use_checkpoint,
|
1785 |
+
)
|
1786 |
+
)
|
1787 |
+
)
|
1788 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
1789 |
+
self._feature_size += ch
|
1790 |
+
input_block_chans.append(ch)
|
1791 |
+
if level != len(channel_mult) - 1:
|
1792 |
+
out_ch = ch
|
1793 |
+
self.input_blocks.append(
|
1794 |
+
TimestepEmbedSequential(
|
1795 |
+
checkpoint_wrapper_fn(
|
1796 |
+
ResBlock(
|
1797 |
+
ch,
|
1798 |
+
time_embed_dim,
|
1799 |
+
dropout,
|
1800 |
+
out_channels=out_ch,
|
1801 |
+
dims=dims,
|
1802 |
+
use_checkpoint=use_checkpoint,
|
1803 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
1804 |
+
down=True,
|
1805 |
+
)
|
1806 |
+
)
|
1807 |
+
if resblock_updown
|
1808 |
+
else Downsample(
|
1809 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
1810 |
+
)
|
1811 |
+
)
|
1812 |
+
)
|
1813 |
+
ch = out_ch
|
1814 |
+
input_block_chans.append(ch)
|
1815 |
+
ds *= 2
|
1816 |
+
self._feature_size += ch
|
1817 |
+
|
1818 |
+
if num_head_channels == -1:
|
1819 |
+
dim_head = ch // num_heads
|
1820 |
+
else:
|
1821 |
+
num_heads = ch // num_head_channels
|
1822 |
+
dim_head = num_head_channels
|
1823 |
+
if legacy:
|
1824 |
+
# num_heads = 1
|
1825 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
1826 |
+
self.middle_block = TimestepEmbedSequential(
|
1827 |
+
checkpoint_wrapper_fn(
|
1828 |
+
ResBlock(
|
1829 |
+
ch,
|
1830 |
+
time_embed_dim,
|
1831 |
+
dropout,
|
1832 |
+
dims=dims,
|
1833 |
+
use_checkpoint=use_checkpoint,
|
1834 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
1835 |
+
)
|
1836 |
+
),
|
1837 |
+
checkpoint_wrapper_fn(
|
1838 |
+
AttentionBlock(
|
1839 |
+
ch,
|
1840 |
+
use_checkpoint=use_checkpoint,
|
1841 |
+
num_heads=num_heads,
|
1842 |
+
num_head_channels=dim_head,
|
1843 |
+
use_new_attention_order=use_new_attention_order,
|
1844 |
+
)
|
1845 |
+
)
|
1846 |
+
if not use_spatial_transformer
|
1847 |
+
else checkpoint_wrapper_fn(
|
1848 |
+
SpatialTransformer( # always uses a self-attn
|
1849 |
+
ch,
|
1850 |
+
num_heads,
|
1851 |
+
dim_head,
|
1852 |
+
depth=transformer_depth_middle,
|
1853 |
+
context_dim=context_dim,
|
1854 |
+
add_context_dim=add_context_dim,
|
1855 |
+
disable_self_attn=disable_middle_self_attn,
|
1856 |
+
use_linear=use_linear_in_transformer,
|
1857 |
+
attn_type=spatial_transformer_attn_type,
|
1858 |
+
use_checkpoint=use_checkpoint,
|
1859 |
+
)
|
1860 |
+
),
|
1861 |
+
checkpoint_wrapper_fn(
|
1862 |
+
ResBlock(
|
1863 |
+
ch,
|
1864 |
+
time_embed_dim,
|
1865 |
+
dropout,
|
1866 |
+
dims=dims,
|
1867 |
+
use_checkpoint=use_checkpoint,
|
1868 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
1869 |
+
)
|
1870 |
+
),
|
1871 |
+
)
|
1872 |
+
self._feature_size += ch
|
1873 |
+
|
1874 |
+
self.output_blocks = nn.ModuleList([])
|
1875 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
1876 |
+
for i in range(self.num_res_blocks[level] + 1):
|
1877 |
+
ich = input_block_chans.pop()
|
1878 |
+
layers = [
|
1879 |
+
checkpoint_wrapper_fn(
|
1880 |
+
ResBlock(
|
1881 |
+
ch + ich,
|
1882 |
+
time_embed_dim,
|
1883 |
+
dropout,
|
1884 |
+
out_channels=model_channels * mult,
|
1885 |
+
dims=dims,
|
1886 |
+
use_checkpoint=use_checkpoint,
|
1887 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
1888 |
+
)
|
1889 |
+
)
|
1890 |
+
]
|
1891 |
+
ch = model_channels * mult
|
1892 |
+
if ds in attention_resolutions:
|
1893 |
+
if num_head_channels == -1:
|
1894 |
+
dim_head = ch // num_heads
|
1895 |
+
else:
|
1896 |
+
num_heads = ch // num_head_channels
|
1897 |
+
dim_head = num_head_channels
|
1898 |
+
if legacy:
|
1899 |
+
# num_heads = 1
|
1900 |
+
dim_head = (
|
1901 |
+
ch // num_heads
|
1902 |
+
if use_spatial_transformer
|
1903 |
+
else num_head_channels
|
1904 |
+
)
|
1905 |
+
if exists(disable_self_attentions):
|
1906 |
+
disabled_sa = disable_self_attentions[level]
|
1907 |
+
else:
|
1908 |
+
disabled_sa = False
|
1909 |
+
|
1910 |
+
if (
|
1911 |
+
not exists(num_attention_blocks)
|
1912 |
+
or i < num_attention_blocks[level]
|
1913 |
+
):
|
1914 |
+
layers.append(
|
1915 |
+
checkpoint_wrapper_fn(
|
1916 |
+
AttentionBlock(
|
1917 |
+
ch,
|
1918 |
+
use_checkpoint=use_checkpoint,
|
1919 |
+
num_heads=num_heads_upsample,
|
1920 |
+
num_head_channels=dim_head,
|
1921 |
+
use_new_attention_order=use_new_attention_order,
|
1922 |
+
)
|
1923 |
+
)
|
1924 |
+
if not use_spatial_transformer
|
1925 |
+
else checkpoint_wrapper_fn(
|
1926 |
+
SpatialTransformer(
|
1927 |
+
ch,
|
1928 |
+
num_heads,
|
1929 |
+
dim_head,
|
1930 |
+
depth=transformer_depth[level],
|
1931 |
+
context_dim=context_dim,
|
1932 |
+
add_context_dim=add_context_dim,
|
1933 |
+
disable_self_attn=disabled_sa,
|
1934 |
+
use_linear=use_linear_in_transformer,
|
1935 |
+
attn_type=spatial_transformer_attn_type,
|
1936 |
+
use_checkpoint=use_checkpoint,
|
1937 |
+
)
|
1938 |
+
)
|
1939 |
+
)
|
1940 |
+
if level and i == self.num_res_blocks[level]:
|
1941 |
+
out_ch = ch
|
1942 |
+
layers.append(
|
1943 |
+
checkpoint_wrapper_fn(
|
1944 |
+
ResBlock(
|
1945 |
+
ch,
|
1946 |
+
time_embed_dim,
|
1947 |
+
dropout,
|
1948 |
+
out_channels=out_ch,
|
1949 |
+
dims=dims,
|
1950 |
+
use_checkpoint=use_checkpoint,
|
1951 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
1952 |
+
up=True,
|
1953 |
+
)
|
1954 |
+
)
|
1955 |
+
if resblock_updown
|
1956 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
1957 |
+
)
|
1958 |
+
ds //= 2
|
1959 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
1960 |
+
self._feature_size += ch
|
1961 |
+
|
1962 |
+
self.out = checkpoint_wrapper_fn(
|
1963 |
+
nn.Sequential(
|
1964 |
+
normalization(ch),
|
1965 |
+
nn.SiLU(),
|
1966 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
1967 |
+
)
|
1968 |
+
)
|
1969 |
+
if self.predict_codebook_ids:
|
1970 |
+
self.id_predictor = checkpoint_wrapper_fn(
|
1971 |
+
nn.Sequential(
|
1972 |
+
normalization(ch),
|
1973 |
+
conv_nd(dims, model_channels, n_embed, 1),
|
1974 |
+
# nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
1975 |
+
)
|
1976 |
+
)
|
1977 |
+
|
1978 |
+
# cache attn map
|
1979 |
+
self.attn_type = attn_type
|
1980 |
+
self.attn_layers = attn_layers
|
1981 |
+
self.attn_map_cache = []
|
1982 |
+
for name, module in self.named_modules():
|
1983 |
+
if name.endswith(self.attn_type):
|
1984 |
+
item = {"name": name, "heads": module.heads, "size": None, "attn_map": None}
|
1985 |
+
self.attn_map_cache.append(item)
|
1986 |
+
module.attn_map_cache = item
|
1987 |
+
|
1988 |
+
def clear_attn_map(self):
|
1989 |
+
|
1990 |
+
for item in self.attn_map_cache:
|
1991 |
+
if item["attn_map"] is not None:
|
1992 |
+
del item["attn_map"]
|
1993 |
+
item["attn_map"] = None
|
1994 |
+
|
1995 |
+
def save_attn_map(self, save_name="temp", tokens=""):
|
1996 |
+
|
1997 |
+
attn_maps = []
|
1998 |
+
for item in self.attn_map_cache:
|
1999 |
+
name = item["name"]
|
2000 |
+
if any([name.startswith(block) for block in self.attn_layers]):
|
2001 |
+
heads = item["heads"]
|
2002 |
+
attn_maps.append(item["attn_map"].detach().cpu())
|
2003 |
+
|
2004 |
+
attn_map = th.stack(attn_maps, dim=0)
|
2005 |
+
attn_map = th.mean(attn_map, dim=0)
|
2006 |
+
|
2007 |
+
# attn_map: bh * n * l
|
2008 |
+
bh, n, l = attn_map.shape # bh: batch size * heads / n : pixel length(h*w) / l: token length
|
2009 |
+
attn_map = attn_map.reshape((-1,heads,n,l)).mean(dim=1)
|
2010 |
+
b = attn_map.shape[0]
|
2011 |
+
|
2012 |
+
h = w = int(n**0.5)
|
2013 |
+
attn_map = attn_map.permute(0,2,1).reshape((b,l,h,w)).numpy()
|
2014 |
+
|
2015 |
+
attn_map_i = attn_map[-1]
|
2016 |
+
|
2017 |
+
l = attn_map_i.shape[0]
|
2018 |
+
fig = plt.figure(figsize=(12, 8), dpi=300)
|
2019 |
+
for j in range(12):
|
2020 |
+
if j >= l: break
|
2021 |
+
ax = fig.add_subplot(3, 4, j+1)
|
2022 |
+
sns.heatmap(attn_map_i[j], square=True, xticklabels=False, yticklabels=False)
|
2023 |
+
if j < len(tokens):
|
2024 |
+
ax.set_title(tokens[j])
|
2025 |
+
fig.savefig(f"temp/attn_map/attn_map_{save_name}.png")
|
2026 |
+
plt.close()
|
2027 |
+
|
2028 |
+
return attn_map_i
|
2029 |
+
|
2030 |
+
def forward(self, x, timesteps=None, context=None, add_context=None, y=None, **kwargs):
|
2031 |
+
"""
|
2032 |
+
Apply the model to an input batch.
|
2033 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
2034 |
+
:param timesteps: a 1-D batch of timesteps.
|
2035 |
+
:param context: conditioning plugged in via crossattn
|
2036 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
2037 |
+
:return: an [N x C x ...] Tensor of outputs.
|
2038 |
+
"""
|
2039 |
+
assert (y is not None) == (
|
2040 |
+
self.num_classes is not None
|
2041 |
+
), "must specify y if and only if the model is class-conditional"
|
2042 |
+
|
2043 |
+
self.clear_attn_map()
|
2044 |
+
|
2045 |
+
hs = []
|
2046 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
2047 |
+
emb = self.time_embed(t_emb)
|
2048 |
+
|
2049 |
+
if self.num_classes is not None:
|
2050 |
+
assert y.shape[0] == x.shape[0]
|
2051 |
+
emb = emb + self.label_emb(y)
|
2052 |
+
|
2053 |
+
# h = x.type(self.dtype)
|
2054 |
+
h = x
|
2055 |
+
if self.ctrl_channels > 0:
|
2056 |
+
in_h, add_h = th.split(h, [self.in_channels, self.ctrl_channels], dim=1)
|
2057 |
+
|
2058 |
+
for i, module in enumerate(self.input_blocks):
|
2059 |
+
if self.ctrl_channels > 0 and i == 0:
|
2060 |
+
h = module(in_h, emb, context, add_context) + self.add_input_block(add_h, emb, context, add_context)
|
2061 |
+
else:
|
2062 |
+
h = module(h, emb, context, add_context)
|
2063 |
+
hs.append(h)
|
2064 |
+
h = self.middle_block(h, emb, context, add_context)
|
2065 |
+
for i, module in enumerate(self.output_blocks):
|
2066 |
+
h = th.cat([h, hs.pop()], dim=1)
|
2067 |
+
h = module(h, emb, context, add_context)
|
2068 |
+
h = h.type(x.dtype)
|
2069 |
+
|
2070 |
+
return self.out(h)
|
sgm/modules/diffusionmodules/sampling.py
ADDED
@@ -0,0 +1,784 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Partially ported from https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py
|
3 |
+
"""
|
4 |
+
|
5 |
+
|
6 |
+
from typing import Dict, Union
|
7 |
+
|
8 |
+
import imageio
|
9 |
+
import torch
|
10 |
+
import json
|
11 |
+
import numpy as np
|
12 |
+
import torch.nn.functional as F
|
13 |
+
from omegaconf import ListConfig, OmegaConf
|
14 |
+
from tqdm import tqdm
|
15 |
+
|
16 |
+
from ...modules.diffusionmodules.sampling_utils import (
|
17 |
+
get_ancestral_step,
|
18 |
+
linear_multistep_coeff,
|
19 |
+
to_d,
|
20 |
+
to_neg_log_sigma,
|
21 |
+
to_sigma,
|
22 |
+
)
|
23 |
+
from ...util import append_dims, default, instantiate_from_config
|
24 |
+
from torchvision.utils import save_image
|
25 |
+
|
26 |
+
DEFAULT_GUIDER = {"target": "sgm.modules.diffusionmodules.guiders.IdentityGuider"}
|
27 |
+
|
28 |
+
|
29 |
+
class BaseDiffusionSampler:
|
30 |
+
def __init__(
|
31 |
+
self,
|
32 |
+
discretization_config: Union[Dict, ListConfig, OmegaConf],
|
33 |
+
num_steps: Union[int, None] = None,
|
34 |
+
guider_config: Union[Dict, ListConfig, OmegaConf, None] = None,
|
35 |
+
verbose: bool = False,
|
36 |
+
device: str = "cuda",
|
37 |
+
):
|
38 |
+
self.num_steps = num_steps
|
39 |
+
self.discretization = instantiate_from_config(discretization_config)
|
40 |
+
self.guider = instantiate_from_config(
|
41 |
+
default(
|
42 |
+
guider_config,
|
43 |
+
DEFAULT_GUIDER,
|
44 |
+
)
|
45 |
+
)
|
46 |
+
self.verbose = verbose
|
47 |
+
self.device = device
|
48 |
+
|
49 |
+
def prepare_sampling_loop(self, x, cond, uc=None, num_steps=None):
|
50 |
+
sigmas = self.discretization(
|
51 |
+
self.num_steps if num_steps is None else num_steps, device=self.device
|
52 |
+
)
|
53 |
+
uc = default(uc, cond)
|
54 |
+
|
55 |
+
x *= torch.sqrt(1.0 + sigmas[0] ** 2.0)
|
56 |
+
num_sigmas = len(sigmas)
|
57 |
+
|
58 |
+
s_in = x.new_ones([x.shape[0]])
|
59 |
+
|
60 |
+
return x, s_in, sigmas, num_sigmas, cond, uc
|
61 |
+
|
62 |
+
def denoise(self, x, model, sigma, cond, uc):
|
63 |
+
denoised = model.denoiser(model.model, *self.guider.prepare_inputs(x, sigma, cond, uc))
|
64 |
+
denoised = self.guider(denoised, sigma)
|
65 |
+
return denoised
|
66 |
+
|
67 |
+
def get_sigma_gen(self, num_sigmas, init_step=0):
|
68 |
+
sigma_generator = range(init_step, num_sigmas - 1)
|
69 |
+
if self.verbose:
|
70 |
+
print("#" * 30, " Sampling setting ", "#" * 30)
|
71 |
+
print(f"Sampler: {self.__class__.__name__}")
|
72 |
+
print(f"Discretization: {self.discretization.__class__.__name__}")
|
73 |
+
print(f"Guider: {self.guider.__class__.__name__}")
|
74 |
+
sigma_generator = tqdm(
|
75 |
+
sigma_generator,
|
76 |
+
total=num_sigmas-1-init_step,
|
77 |
+
desc=f"Sampling with {self.__class__.__name__} for {num_sigmas-1-init_step} steps",
|
78 |
+
)
|
79 |
+
return sigma_generator
|
80 |
+
|
81 |
+
|
82 |
+
class SingleStepDiffusionSampler(BaseDiffusionSampler):
|
83 |
+
def sampler_step(self, sigma, next_sigma, denoiser, x, cond, uc, *args, **kwargs):
|
84 |
+
raise NotImplementedError
|
85 |
+
|
86 |
+
def euler_step(self, x, d, dt):
|
87 |
+
return x + dt * d
|
88 |
+
|
89 |
+
|
90 |
+
class EDMSampler(SingleStepDiffusionSampler):
|
91 |
+
def __init__(
|
92 |
+
self, s_churn=0.0, s_tmin=0.0, s_tmax=float("inf"), s_noise=1.0, *args, **kwargs
|
93 |
+
):
|
94 |
+
super().__init__(*args, **kwargs)
|
95 |
+
|
96 |
+
self.s_churn = s_churn
|
97 |
+
self.s_tmin = s_tmin
|
98 |
+
self.s_tmax = s_tmax
|
99 |
+
self.s_noise = s_noise
|
100 |
+
|
101 |
+
def sampler_step(self, sigma, next_sigma, denoiser, x, cond, uc=None, gamma=0.0):
|
102 |
+
sigma_hat = sigma * (gamma + 1.0)
|
103 |
+
if gamma > 0:
|
104 |
+
eps = torch.randn_like(x) * self.s_noise
|
105 |
+
x = x + eps * append_dims(sigma_hat**2 - sigma**2, x.ndim) ** 0.5
|
106 |
+
|
107 |
+
denoised = self.denoise(x, denoiser, sigma_hat, cond, uc)
|
108 |
+
d = to_d(x, sigma_hat, denoised)
|
109 |
+
dt = append_dims(next_sigma - sigma_hat, x.ndim)
|
110 |
+
|
111 |
+
euler_step = self.euler_step(x, d, dt)
|
112 |
+
x = self.possible_correction_step(
|
113 |
+
euler_step, x, d, dt, next_sigma, denoiser, cond, uc
|
114 |
+
)
|
115 |
+
return x
|
116 |
+
|
117 |
+
def __call__(self, denoiser, x, cond, uc=None, num_steps=None):
|
118 |
+
x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(
|
119 |
+
x, cond, uc, num_steps
|
120 |
+
)
|
121 |
+
|
122 |
+
for i in self.get_sigma_gen(num_sigmas):
|
123 |
+
gamma = (
|
124 |
+
min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1)
|
125 |
+
if self.s_tmin <= sigmas[i] <= self.s_tmax
|
126 |
+
else 0.0
|
127 |
+
)
|
128 |
+
x = self.sampler_step(
|
129 |
+
s_in * sigmas[i],
|
130 |
+
s_in * sigmas[i + 1],
|
131 |
+
denoiser,
|
132 |
+
x,
|
133 |
+
cond,
|
134 |
+
uc,
|
135 |
+
gamma,
|
136 |
+
)
|
137 |
+
|
138 |
+
return x
|
139 |
+
|
140 |
+
|
141 |
+
class AncestralSampler(SingleStepDiffusionSampler):
|
142 |
+
def __init__(self, eta=1.0, s_noise=1.0, *args, **kwargs):
|
143 |
+
super().__init__(*args, **kwargs)
|
144 |
+
|
145 |
+
self.eta = eta
|
146 |
+
self.s_noise = s_noise
|
147 |
+
self.noise_sampler = lambda x: torch.randn_like(x)
|
148 |
+
|
149 |
+
def ancestral_euler_step(self, x, denoised, sigma, sigma_down):
|
150 |
+
d = to_d(x, sigma, denoised)
|
151 |
+
dt = append_dims(sigma_down - sigma, x.ndim)
|
152 |
+
|
153 |
+
return self.euler_step(x, d, dt)
|
154 |
+
|
155 |
+
def ancestral_step(self, x, sigma, next_sigma, sigma_up):
|
156 |
+
x = torch.where(
|
157 |
+
append_dims(next_sigma, x.ndim) > 0.0,
|
158 |
+
x + self.noise_sampler(x) * self.s_noise * append_dims(sigma_up, x.ndim),
|
159 |
+
x,
|
160 |
+
)
|
161 |
+
return x
|
162 |
+
|
163 |
+
def __call__(self, denoiser, x, cond, uc=None, num_steps=None):
|
164 |
+
x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(
|
165 |
+
x, cond, uc, num_steps
|
166 |
+
)
|
167 |
+
|
168 |
+
for i in self.get_sigma_gen(num_sigmas):
|
169 |
+
x = self.sampler_step(
|
170 |
+
s_in * sigmas[i],
|
171 |
+
s_in * sigmas[i + 1],
|
172 |
+
denoiser,
|
173 |
+
x,
|
174 |
+
cond,
|
175 |
+
uc,
|
176 |
+
)
|
177 |
+
|
178 |
+
return x
|
179 |
+
|
180 |
+
|
181 |
+
class LinearMultistepSampler(BaseDiffusionSampler):
|
182 |
+
def __init__(
|
183 |
+
self,
|
184 |
+
order=4,
|
185 |
+
*args,
|
186 |
+
**kwargs,
|
187 |
+
):
|
188 |
+
super().__init__(*args, **kwargs)
|
189 |
+
|
190 |
+
self.order = order
|
191 |
+
|
192 |
+
def __call__(self, denoiser, x, cond, uc=None, num_steps=None, **kwargs):
|
193 |
+
x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(
|
194 |
+
x, cond, uc, num_steps
|
195 |
+
)
|
196 |
+
|
197 |
+
ds = []
|
198 |
+
sigmas_cpu = sigmas.detach().cpu().numpy()
|
199 |
+
for i in self.get_sigma_gen(num_sigmas):
|
200 |
+
sigma = s_in * sigmas[i]
|
201 |
+
denoised = denoiser(
|
202 |
+
*self.guider.prepare_inputs(x, sigma, cond, uc), **kwargs
|
203 |
+
)
|
204 |
+
denoised = self.guider(denoised, sigma)
|
205 |
+
d = to_d(x, sigma, denoised)
|
206 |
+
ds.append(d)
|
207 |
+
if len(ds) > self.order:
|
208 |
+
ds.pop(0)
|
209 |
+
cur_order = min(i + 1, self.order)
|
210 |
+
coeffs = [
|
211 |
+
linear_multistep_coeff(cur_order, sigmas_cpu, i, j)
|
212 |
+
for j in range(cur_order)
|
213 |
+
]
|
214 |
+
x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
|
215 |
+
|
216 |
+
return x
|
217 |
+
|
218 |
+
|
219 |
+
class EulerEDMSampler(EDMSampler):
|
220 |
+
|
221 |
+
def possible_correction_step(
|
222 |
+
self, euler_step, x, d, dt, next_sigma, denoiser, cond, uc
|
223 |
+
):
|
224 |
+
return euler_step
|
225 |
+
|
226 |
+
def get_c_noise(self, x, model, sigma):
|
227 |
+
sigma = model.denoiser.possibly_quantize_sigma(sigma)
|
228 |
+
sigma_shape = sigma.shape
|
229 |
+
sigma = append_dims(sigma, x.ndim)
|
230 |
+
c_skip, c_out, c_in, c_noise = model.denoiser.scaling(sigma)
|
231 |
+
c_noise = model.denoiser.possibly_quantize_c_noise(c_noise.reshape(sigma_shape))
|
232 |
+
return c_noise
|
233 |
+
|
234 |
+
def attend_and_excite(self, x, model, sigma, cond, batch, alpha, iter_enabled, thres, max_iter=20):
|
235 |
+
|
236 |
+
# calc timestep
|
237 |
+
c_noise = self.get_c_noise(x, model, sigma)
|
238 |
+
|
239 |
+
x = x.clone().detach().requires_grad_(True) # https://github.com/yuval-alaluf/Attend-and-Excite/blob/main/pipeline_attend_and_excite.py#L288
|
240 |
+
|
241 |
+
iters = 0
|
242 |
+
while True:
|
243 |
+
|
244 |
+
model_output = model.model(x, c_noise, cond)
|
245 |
+
local_loss = model.loss_fn.get_min_local_loss(model.model.diffusion_model.attn_map_cache, batch["mask"], batch["seg_mask"])
|
246 |
+
grad = torch.autograd.grad(local_loss.requires_grad_(True), [x], retain_graph=True)[0]
|
247 |
+
x = x - alpha * grad
|
248 |
+
iters += 1
|
249 |
+
|
250 |
+
if not iter_enabled or local_loss <= thres or iters > max_iter:
|
251 |
+
break
|
252 |
+
|
253 |
+
return x
|
254 |
+
|
255 |
+
def create_pascal_label_colormap(self):
|
256 |
+
"""
|
257 |
+
PASCAL VOC 分割数据集的类别标签颜色映射label colormap
|
258 |
+
|
259 |
+
返回:
|
260 |
+
可视化分割结果的颜色映射Colormap
|
261 |
+
"""
|
262 |
+
colormap = np.zeros((256, 3), dtype=int)
|
263 |
+
ind = np.arange(256, dtype=int)
|
264 |
+
|
265 |
+
for shift in reversed(range(8)):
|
266 |
+
for channel in range(3):
|
267 |
+
colormap[:, channel] |= ((ind >> channel) & 1) << shift
|
268 |
+
ind >>= 3
|
269 |
+
|
270 |
+
return colormap
|
271 |
+
|
272 |
+
def save_segment_map(self, image, attn_maps, tokens=None, save_name=None):
|
273 |
+
|
274 |
+
colormap = self.create_pascal_label_colormap()
|
275 |
+
H, W = image.shape[-2:]
|
276 |
+
|
277 |
+
image_ = image*0.3
|
278 |
+
sections = []
|
279 |
+
for i in range(len(tokens)):
|
280 |
+
attn_map = attn_maps[i]
|
281 |
+
attn_map_t = np.tile(attn_map[None], (1,3,1,1)) # b, 3, h, w
|
282 |
+
attn_map_t = torch.from_numpy(attn_map_t)
|
283 |
+
attn_map_t = F.interpolate(attn_map_t, (W, H))
|
284 |
+
|
285 |
+
color = torch.from_numpy(colormap[i+1][None,:,None,None] / 255.0)
|
286 |
+
colored_attn_map = attn_map_t * color
|
287 |
+
colored_attn_map = colored_attn_map.to(device=image_.device)
|
288 |
+
|
289 |
+
image_ += colored_attn_map*0.7
|
290 |
+
sections.append(attn_map)
|
291 |
+
|
292 |
+
section = np.stack(sections)
|
293 |
+
np.save(f"temp/seg_map/seg_{save_name}.npy", section)
|
294 |
+
|
295 |
+
save_image(image_, f"temp/seg_map/seg_{save_name}.png", normalize=True)
|
296 |
+
|
297 |
+
def get_init_noise(self, cfgs, model, cond, batch, uc=None):
|
298 |
+
|
299 |
+
H, W = batch["target_size_as_tuple"][0]
|
300 |
+
shape = (cfgs.batch_size, cfgs.channel, int(H) // cfgs.factor, int(W) // cfgs.factor)
|
301 |
+
|
302 |
+
randn = torch.randn(shape).to(torch.device("cuda", index=cfgs.gpu))
|
303 |
+
x = randn.clone()
|
304 |
+
|
305 |
+
xs = []
|
306 |
+
self.verbose = False
|
307 |
+
for _ in range(cfgs.noise_iters):
|
308 |
+
|
309 |
+
x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(
|
310 |
+
x, cond, uc, num_steps=2
|
311 |
+
)
|
312 |
+
|
313 |
+
superv = {
|
314 |
+
"mask": batch["mask"] if "mask" in batch else None,
|
315 |
+
"seg_mask": batch["seg_mask"] if "seg_mask" in batch else None
|
316 |
+
}
|
317 |
+
|
318 |
+
local_losses = []
|
319 |
+
|
320 |
+
for i in self.get_sigma_gen(num_sigmas):
|
321 |
+
|
322 |
+
gamma = (
|
323 |
+
min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1)
|
324 |
+
if self.s_tmin <= sigmas[i] <= self.s_tmax
|
325 |
+
else 0.0
|
326 |
+
)
|
327 |
+
|
328 |
+
x, inter, local_loss = self.sampler_step(
|
329 |
+
s_in * sigmas[i],
|
330 |
+
s_in * sigmas[i + 1],
|
331 |
+
model,
|
332 |
+
x,
|
333 |
+
cond,
|
334 |
+
superv,
|
335 |
+
uc,
|
336 |
+
gamma,
|
337 |
+
save_loss=True
|
338 |
+
)
|
339 |
+
|
340 |
+
local_losses.append(local_loss.item())
|
341 |
+
|
342 |
+
xs.append((randn, local_losses[-1]))
|
343 |
+
|
344 |
+
randn = torch.randn(shape).to(torch.device("cuda", index=cfgs.gpu))
|
345 |
+
x = randn.clone()
|
346 |
+
|
347 |
+
self.verbose = True
|
348 |
+
|
349 |
+
xs.sort(key = lambda x: x[-1])
|
350 |
+
|
351 |
+
if len(xs) > 0:
|
352 |
+
print(f"Init local loss: Best {xs[0][1]} Worst {xs[-1][1]}")
|
353 |
+
x = xs[0][0]
|
354 |
+
|
355 |
+
return x
|
356 |
+
|
357 |
+
def sampler_step(self, sigma, next_sigma, model, x, cond, batch=None, uc=None,
|
358 |
+
gamma=0.0, alpha=0, iter_enabled=False, thres=None, update=False,
|
359 |
+
name=None, save_loss=False, save_attn=False, save_inter=False):
|
360 |
+
|
361 |
+
sigma_hat = sigma * (gamma + 1.0)
|
362 |
+
if gamma > 0:
|
363 |
+
eps = torch.randn_like(x) * self.s_noise
|
364 |
+
x = x + eps * append_dims(sigma_hat**2 - sigma**2, x.ndim) ** 0.5
|
365 |
+
|
366 |
+
if update:
|
367 |
+
x = self.attend_and_excite(x, model, sigma_hat, cond, batch, alpha, iter_enabled, thres)
|
368 |
+
|
369 |
+
denoised = self.denoise(x, model, sigma_hat, cond, uc)
|
370 |
+
denoised_decode = model.decode_first_stage(denoised) if save_inter else None
|
371 |
+
|
372 |
+
if save_loss:
|
373 |
+
local_loss = model.loss_fn.get_min_local_loss(model.model.diffusion_model.attn_map_cache, batch["mask"], batch["seg_mask"])
|
374 |
+
local_loss = local_loss[local_loss.shape[0]//2:]
|
375 |
+
else:
|
376 |
+
local_loss = torch.zeros(1)
|
377 |
+
if save_attn:
|
378 |
+
attn_map = model.model.diffusion_model.save_attn_map(save_name=name, tokens=batch["label"][0])
|
379 |
+
denoised_decode = model.decode_first_stage(denoised) if denoised_decode is None else denoised_decode
|
380 |
+
self.save_segment_map(denoised_decode, attn_map, tokens=batch["label"][0], save_name=name)
|
381 |
+
|
382 |
+
d = to_d(x, sigma_hat, denoised)
|
383 |
+
dt = append_dims(next_sigma - sigma_hat, x.ndim)
|
384 |
+
|
385 |
+
euler_step = self.euler_step(x, d, dt)
|
386 |
+
|
387 |
+
return euler_step, denoised_decode, local_loss
|
388 |
+
|
389 |
+
def __call__(self, model, x, cond, batch=None, uc=None, num_steps=None, init_step=0,
|
390 |
+
name=None, aae_enabled=False, detailed=False):
|
391 |
+
|
392 |
+
x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(
|
393 |
+
x, cond, uc, num_steps
|
394 |
+
)
|
395 |
+
|
396 |
+
name = batch["name"][0]
|
397 |
+
inters = []
|
398 |
+
local_losses = []
|
399 |
+
scales = np.linspace(start=1.0, stop=0, num=num_sigmas)
|
400 |
+
iter_lst = np.linspace(start=5, stop=25, num=6, dtype=np.int32)
|
401 |
+
thres_lst = np.linspace(start=-0.5, stop=-0.8, num=6)
|
402 |
+
|
403 |
+
for i in self.get_sigma_gen(num_sigmas, init_step=init_step):
|
404 |
+
|
405 |
+
gamma = (
|
406 |
+
min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1)
|
407 |
+
if self.s_tmin <= sigmas[i] <= self.s_tmax
|
408 |
+
else 0.0
|
409 |
+
)
|
410 |
+
|
411 |
+
alpha = 20 * np.sqrt(scales[i])
|
412 |
+
update = aae_enabled
|
413 |
+
save_loss = detailed
|
414 |
+
save_attn = detailed and (i == (num_sigmas-1)//2)
|
415 |
+
save_inter = detailed
|
416 |
+
|
417 |
+
if i in iter_lst:
|
418 |
+
iter_enabled = True
|
419 |
+
thres = thres_lst[list(iter_lst).index(i)]
|
420 |
+
else:
|
421 |
+
iter_enabled = False
|
422 |
+
thres = 0.0
|
423 |
+
|
424 |
+
x, inter, local_loss = self.sampler_step(
|
425 |
+
s_in * sigmas[i],
|
426 |
+
s_in * sigmas[i + 1],
|
427 |
+
model,
|
428 |
+
x,
|
429 |
+
cond,
|
430 |
+
batch,
|
431 |
+
uc,
|
432 |
+
gamma,
|
433 |
+
alpha=alpha,
|
434 |
+
iter_enabled=iter_enabled,
|
435 |
+
thres=thres,
|
436 |
+
update=update,
|
437 |
+
name=name,
|
438 |
+
save_loss=save_loss,
|
439 |
+
save_attn=save_attn,
|
440 |
+
save_inter=save_inter
|
441 |
+
)
|
442 |
+
|
443 |
+
local_losses.append(local_loss.item())
|
444 |
+
if inter is not None:
|
445 |
+
inter = torch.clamp((inter + 1.0) / 2.0, min=0.0, max=1.0)[0]
|
446 |
+
inter = inter.cpu().numpy().transpose(1, 2, 0) * 255
|
447 |
+
inters.append(inter.astype(np.uint8))
|
448 |
+
|
449 |
+
print(f"Local losses: {local_losses}")
|
450 |
+
|
451 |
+
if len(inters) > 0:
|
452 |
+
imageio.mimsave(f"./temp/inters/{name}.gif", inters, 'GIF', duration=0.02)
|
453 |
+
|
454 |
+
return x
|
455 |
+
|
456 |
+
|
457 |
+
class EulerEDMDualSampler(EulerEDMSampler):
|
458 |
+
|
459 |
+
def prepare_sampling_loop(self, x, cond, uc_1=None, uc_2=None, num_steps=None):
|
460 |
+
sigmas = self.discretization(
|
461 |
+
self.num_steps if num_steps is None else num_steps, device=self.device
|
462 |
+
)
|
463 |
+
uc_1 = default(uc_1, cond)
|
464 |
+
uc_2 = default(uc_2, cond)
|
465 |
+
|
466 |
+
x *= torch.sqrt(1.0 + sigmas[0] ** 2.0)
|
467 |
+
num_sigmas = len(sigmas)
|
468 |
+
|
469 |
+
s_in = x.new_ones([x.shape[0]])
|
470 |
+
|
471 |
+
return x, s_in, sigmas, num_sigmas, cond, uc_1, uc_2
|
472 |
+
|
473 |
+
def denoise(self, x, model, sigma, cond, uc_1, uc_2):
|
474 |
+
denoised = model.denoiser(model.model, *self.guider.prepare_inputs(x, sigma, cond, uc_1, uc_2))
|
475 |
+
denoised = self.guider(denoised, sigma)
|
476 |
+
return denoised
|
477 |
+
|
478 |
+
def get_init_noise(self, cfgs, model, cond, batch, uc_1=None, uc_2=None):
|
479 |
+
|
480 |
+
H, W = batch["target_size_as_tuple"][0]
|
481 |
+
shape = (cfgs.batch_size, cfgs.channel, int(H) // cfgs.factor, int(W) // cfgs.factor)
|
482 |
+
|
483 |
+
randn = torch.randn(shape).to(torch.device("cuda", index=cfgs.gpu))
|
484 |
+
x = randn.clone()
|
485 |
+
|
486 |
+
xs = []
|
487 |
+
self.verbose = False
|
488 |
+
for _ in range(cfgs.noise_iters):
|
489 |
+
|
490 |
+
x, s_in, sigmas, num_sigmas, cond, uc_1, uc_2 = self.prepare_sampling_loop(
|
491 |
+
x, cond, uc_1, uc_2, num_steps=2
|
492 |
+
)
|
493 |
+
|
494 |
+
superv = {
|
495 |
+
"mask": batch["mask"] if "mask" in batch else None,
|
496 |
+
"seg_mask": batch["seg_mask"] if "seg_mask" in batch else None
|
497 |
+
}
|
498 |
+
|
499 |
+
local_losses = []
|
500 |
+
|
501 |
+
for i in self.get_sigma_gen(num_sigmas):
|
502 |
+
|
503 |
+
gamma = (
|
504 |
+
min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1)
|
505 |
+
if self.s_tmin <= sigmas[i] <= self.s_tmax
|
506 |
+
else 0.0
|
507 |
+
)
|
508 |
+
|
509 |
+
x, inter, local_loss = self.sampler_step(
|
510 |
+
s_in * sigmas[i],
|
511 |
+
s_in * sigmas[i + 1],
|
512 |
+
model,
|
513 |
+
x,
|
514 |
+
cond,
|
515 |
+
superv,
|
516 |
+
uc_1,
|
517 |
+
uc_2,
|
518 |
+
gamma,
|
519 |
+
save_loss=True
|
520 |
+
)
|
521 |
+
|
522 |
+
local_losses.append(local_loss.item())
|
523 |
+
|
524 |
+
xs.append((randn, local_losses[-1]))
|
525 |
+
|
526 |
+
randn = torch.randn(shape).to(torch.device("cuda", index=cfgs.gpu))
|
527 |
+
x = randn.clone()
|
528 |
+
|
529 |
+
self.verbose = True
|
530 |
+
|
531 |
+
xs.sort(key = lambda x: x[-1])
|
532 |
+
|
533 |
+
if len(xs) > 0:
|
534 |
+
print(f"Init local loss: Best {xs[0][1]} Worst {xs[-1][1]}")
|
535 |
+
x = xs[0][0]
|
536 |
+
|
537 |
+
return x
|
538 |
+
|
539 |
+
def sampler_step(self, sigma, next_sigma, model, x, cond, batch=None, uc_1=None, uc_2=None,
|
540 |
+
gamma=0.0, alpha=0, iter_enabled=False, thres=None, update=False,
|
541 |
+
name=None, save_loss=False, save_attn=False, save_inter=False):
|
542 |
+
|
543 |
+
sigma_hat = sigma * (gamma + 1.0)
|
544 |
+
if gamma > 0:
|
545 |
+
eps = torch.randn_like(x) * self.s_noise
|
546 |
+
x = x + eps * append_dims(sigma_hat**2 - sigma**2, x.ndim) ** 0.5
|
547 |
+
|
548 |
+
if update:
|
549 |
+
x = self.attend_and_excite(x, model, sigma_hat, cond, batch, alpha, iter_enabled, thres)
|
550 |
+
|
551 |
+
denoised = self.denoise(x, model, sigma_hat, cond, uc_1, uc_2)
|
552 |
+
denoised_decode = model.decode_first_stage(denoised) if save_inter else None
|
553 |
+
|
554 |
+
if save_loss:
|
555 |
+
local_loss = model.loss_fn.get_min_local_loss(model.model.diffusion_model.attn_map_cache, batch["mask"], batch["seg_mask"])
|
556 |
+
local_loss = local_loss[-local_loss.shape[0]//3:]
|
557 |
+
else:
|
558 |
+
local_loss = torch.zeros(1)
|
559 |
+
if save_attn:
|
560 |
+
attn_map = model.model.diffusion_model.save_attn_map(save_name=name, save_single=True)
|
561 |
+
denoised_decode = model.decode_first_stage(denoised) if denoised_decode is None else denoised_decode
|
562 |
+
self.save_segment_map(denoised_decode, attn_map, tokens=batch["label"][0], save_name=name)
|
563 |
+
|
564 |
+
d = to_d(x, sigma_hat, denoised)
|
565 |
+
dt = append_dims(next_sigma - sigma_hat, x.ndim)
|
566 |
+
|
567 |
+
euler_step = self.euler_step(x, d, dt)
|
568 |
+
|
569 |
+
return euler_step, denoised_decode, local_loss
|
570 |
+
|
571 |
+
def __call__(self, model, x, cond, batch=None, uc_1=None, uc_2=None, num_steps=None, init_step=0,
|
572 |
+
name=None, aae_enabled=False, detailed=False):
|
573 |
+
|
574 |
+
x, s_in, sigmas, num_sigmas, cond, uc_1, uc_2 = self.prepare_sampling_loop(
|
575 |
+
x, cond, uc_1, uc_2, num_steps
|
576 |
+
)
|
577 |
+
|
578 |
+
name = batch["name"][0]
|
579 |
+
inters = []
|
580 |
+
local_losses = []
|
581 |
+
scales = np.linspace(start=1.0, stop=0, num=num_sigmas)
|
582 |
+
iter_lst = np.linspace(start=5, stop=25, num=6, dtype=np.int32)
|
583 |
+
thres_lst = np.linspace(start=-0.5, stop=-0.8, num=6)
|
584 |
+
|
585 |
+
for i in self.get_sigma_gen(num_sigmas, init_step=init_step):
|
586 |
+
|
587 |
+
gamma = (
|
588 |
+
min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1)
|
589 |
+
if self.s_tmin <= sigmas[i] <= self.s_tmax
|
590 |
+
else 0.0
|
591 |
+
)
|
592 |
+
|
593 |
+
alpha = 20 * np.sqrt(scales[i])
|
594 |
+
update = aae_enabled
|
595 |
+
save_loss = aae_enabled
|
596 |
+
save_attn = detailed and (i == (num_sigmas-1)//2)
|
597 |
+
save_inter = aae_enabled
|
598 |
+
|
599 |
+
if i in iter_lst:
|
600 |
+
iter_enabled = True
|
601 |
+
thres = thres_lst[list(iter_lst).index(i)]
|
602 |
+
else:
|
603 |
+
iter_enabled = False
|
604 |
+
thres = 0.0
|
605 |
+
|
606 |
+
x, inter, local_loss = self.sampler_step(
|
607 |
+
s_in * sigmas[i],
|
608 |
+
s_in * sigmas[i + 1],
|
609 |
+
model,
|
610 |
+
x,
|
611 |
+
cond,
|
612 |
+
batch,
|
613 |
+
uc_1,
|
614 |
+
uc_2,
|
615 |
+
gamma,
|
616 |
+
alpha=alpha,
|
617 |
+
iter_enabled=iter_enabled,
|
618 |
+
thres=thres,
|
619 |
+
update=update,
|
620 |
+
name=name,
|
621 |
+
save_loss=save_loss,
|
622 |
+
save_attn=save_attn,
|
623 |
+
save_inter=save_inter
|
624 |
+
)
|
625 |
+
|
626 |
+
local_losses.append(local_loss.item())
|
627 |
+
if inter is not None:
|
628 |
+
inter = torch.clamp((inter + 1.0) / 2.0, min=0.0, max=1.0)[0]
|
629 |
+
inter = inter.cpu().numpy().transpose(1, 2, 0) * 255
|
630 |
+
inters.append(inter.astype(np.uint8))
|
631 |
+
|
632 |
+
print(f"Local losses: {local_losses}")
|
633 |
+
|
634 |
+
if len(inters) > 0:
|
635 |
+
imageio.mimsave(f"./temp/inters/{name}.gif", inters, 'GIF', duration=0.1)
|
636 |
+
|
637 |
+
return x
|
638 |
+
|
639 |
+
|
640 |
+
class HeunEDMSampler(EDMSampler):
|
641 |
+
def possible_correction_step(
|
642 |
+
self, euler_step, x, d, dt, next_sigma, denoiser, cond, uc
|
643 |
+
):
|
644 |
+
if torch.sum(next_sigma) < 1e-14:
|
645 |
+
# Save a network evaluation if all noise levels are 0
|
646 |
+
return euler_step
|
647 |
+
else:
|
648 |
+
denoised = self.denoise(euler_step, denoiser, next_sigma, cond, uc)
|
649 |
+
d_new = to_d(euler_step, next_sigma, denoised)
|
650 |
+
d_prime = (d + d_new) / 2.0
|
651 |
+
|
652 |
+
# apply correction if noise level is not 0
|
653 |
+
x = torch.where(
|
654 |
+
append_dims(next_sigma, x.ndim) > 0.0, x + d_prime * dt, euler_step
|
655 |
+
)
|
656 |
+
return x
|
657 |
+
|
658 |
+
|
659 |
+
class EulerAncestralSampler(AncestralSampler):
|
660 |
+
def sampler_step(self, sigma, next_sigma, denoiser, x, cond, uc):
|
661 |
+
sigma_down, sigma_up = get_ancestral_step(sigma, next_sigma, eta=self.eta)
|
662 |
+
denoised = self.denoise(x, denoiser, sigma, cond, uc)
|
663 |
+
x = self.ancestral_euler_step(x, denoised, sigma, sigma_down)
|
664 |
+
x = self.ancestral_step(x, sigma, next_sigma, sigma_up)
|
665 |
+
|
666 |
+
return x
|
667 |
+
|
668 |
+
|
669 |
+
class DPMPP2SAncestralSampler(AncestralSampler):
|
670 |
+
def get_variables(self, sigma, sigma_down):
|
671 |
+
t, t_next = [to_neg_log_sigma(s) for s in (sigma, sigma_down)]
|
672 |
+
h = t_next - t
|
673 |
+
s = t + 0.5 * h
|
674 |
+
return h, s, t, t_next
|
675 |
+
|
676 |
+
def get_mult(self, h, s, t, t_next):
|
677 |
+
mult1 = to_sigma(s) / to_sigma(t)
|
678 |
+
mult2 = (-0.5 * h).expm1()
|
679 |
+
mult3 = to_sigma(t_next) / to_sigma(t)
|
680 |
+
mult4 = (-h).expm1()
|
681 |
+
|
682 |
+
return mult1, mult2, mult3, mult4
|
683 |
+
|
684 |
+
def sampler_step(self, sigma, next_sigma, denoiser, x, cond, uc=None, **kwargs):
|
685 |
+
sigma_down, sigma_up = get_ancestral_step(sigma, next_sigma, eta=self.eta)
|
686 |
+
denoised = self.denoise(x, denoiser, sigma, cond, uc)
|
687 |
+
x_euler = self.ancestral_euler_step(x, denoised, sigma, sigma_down)
|
688 |
+
|
689 |
+
if torch.sum(sigma_down) < 1e-14:
|
690 |
+
# Save a network evaluation if all noise levels are 0
|
691 |
+
x = x_euler
|
692 |
+
else:
|
693 |
+
h, s, t, t_next = self.get_variables(sigma, sigma_down)
|
694 |
+
mult = [
|
695 |
+
append_dims(mult, x.ndim) for mult in self.get_mult(h, s, t, t_next)
|
696 |
+
]
|
697 |
+
|
698 |
+
x2 = mult[0] * x - mult[1] * denoised
|
699 |
+
denoised2 = self.denoise(x2, denoiser, to_sigma(s), cond, uc)
|
700 |
+
x_dpmpp2s = mult[2] * x - mult[3] * denoised2
|
701 |
+
|
702 |
+
# apply correction if noise level is not 0
|
703 |
+
x = torch.where(append_dims(sigma_down, x.ndim) > 0.0, x_dpmpp2s, x_euler)
|
704 |
+
|
705 |
+
x = self.ancestral_step(x, sigma, next_sigma, sigma_up)
|
706 |
+
return x
|
707 |
+
|
708 |
+
|
709 |
+
class DPMPP2MSampler(BaseDiffusionSampler):
|
710 |
+
def get_variables(self, sigma, next_sigma, previous_sigma=None):
|
711 |
+
t, t_next = [to_neg_log_sigma(s) for s in (sigma, next_sigma)]
|
712 |
+
h = t_next - t
|
713 |
+
|
714 |
+
if previous_sigma is not None:
|
715 |
+
h_last = t - to_neg_log_sigma(previous_sigma)
|
716 |
+
r = h_last / h
|
717 |
+
return h, r, t, t_next
|
718 |
+
else:
|
719 |
+
return h, None, t, t_next
|
720 |
+
|
721 |
+
def get_mult(self, h, r, t, t_next, previous_sigma):
|
722 |
+
mult1 = to_sigma(t_next) / to_sigma(t)
|
723 |
+
mult2 = (-h).expm1()
|
724 |
+
|
725 |
+
if previous_sigma is not None:
|
726 |
+
mult3 = 1 + 1 / (2 * r)
|
727 |
+
mult4 = 1 / (2 * r)
|
728 |
+
return mult1, mult2, mult3, mult4
|
729 |
+
else:
|
730 |
+
return mult1, mult2
|
731 |
+
|
732 |
+
def sampler_step(
|
733 |
+
self,
|
734 |
+
old_denoised,
|
735 |
+
previous_sigma,
|
736 |
+
sigma,
|
737 |
+
next_sigma,
|
738 |
+
denoiser,
|
739 |
+
x,
|
740 |
+
cond,
|
741 |
+
uc=None,
|
742 |
+
):
|
743 |
+
denoised = self.denoise(x, denoiser, sigma, cond, uc)
|
744 |
+
|
745 |
+
h, r, t, t_next = self.get_variables(sigma, next_sigma, previous_sigma)
|
746 |
+
mult = [
|
747 |
+
append_dims(mult, x.ndim)
|
748 |
+
for mult in self.get_mult(h, r, t, t_next, previous_sigma)
|
749 |
+
]
|
750 |
+
|
751 |
+
x_standard = mult[0] * x - mult[1] * denoised
|
752 |
+
if old_denoised is None or torch.sum(next_sigma) < 1e-14:
|
753 |
+
# Save a network evaluation if all noise levels are 0 or on the first step
|
754 |
+
return x_standard, denoised
|
755 |
+
else:
|
756 |
+
denoised_d = mult[2] * denoised - mult[3] * old_denoised
|
757 |
+
x_advanced = mult[0] * x - mult[1] * denoised_d
|
758 |
+
|
759 |
+
# apply correction if noise level is not 0 and not first step
|
760 |
+
x = torch.where(
|
761 |
+
append_dims(next_sigma, x.ndim) > 0.0, x_advanced, x_standard
|
762 |
+
)
|
763 |
+
|
764 |
+
return x, denoised
|
765 |
+
|
766 |
+
def __call__(self, denoiser, x, cond, uc=None, num_steps=None, init_step=0, **kwargs):
|
767 |
+
x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop(
|
768 |
+
x, cond, uc, num_steps
|
769 |
+
)
|
770 |
+
|
771 |
+
old_denoised = None
|
772 |
+
for i in self.get_sigma_gen(num_sigmas, init_step=init_step):
|
773 |
+
x, old_denoised = self.sampler_step(
|
774 |
+
old_denoised,
|
775 |
+
None if i == 0 else s_in * sigmas[i - 1],
|
776 |
+
s_in * sigmas[i],
|
777 |
+
s_in * sigmas[i + 1],
|
778 |
+
denoiser,
|
779 |
+
x,
|
780 |
+
cond,
|
781 |
+
uc=uc,
|
782 |
+
)
|
783 |
+
|
784 |
+
return x
|
sgm/modules/diffusionmodules/sampling_utils.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from scipy import integrate
|
3 |
+
|
4 |
+
from ...util import append_dims
|
5 |
+
|
6 |
+
|
7 |
+
class NoDynamicThresholding:
|
8 |
+
def __call__(self, uncond, cond, scale):
|
9 |
+
return uncond + scale * (cond - uncond)
|
10 |
+
|
11 |
+
class DualThresholding: # Dual condition CFG (from instructPix2Pix)
|
12 |
+
def __call__(self, uncond_1, uncond_2, cond, scale):
|
13 |
+
return uncond_1 + scale[0] * (uncond_2 - uncond_1) + scale[1] * (cond - uncond_2)
|
14 |
+
|
15 |
+
def linear_multistep_coeff(order, t, i, j, epsrel=1e-4):
|
16 |
+
if order - 1 > i:
|
17 |
+
raise ValueError(f"Order {order} too high for step {i}")
|
18 |
+
|
19 |
+
def fn(tau):
|
20 |
+
prod = 1.0
|
21 |
+
for k in range(order):
|
22 |
+
if j == k:
|
23 |
+
continue
|
24 |
+
prod *= (tau - t[i - k]) / (t[i - j] - t[i - k])
|
25 |
+
return prod
|
26 |
+
|
27 |
+
return integrate.quad(fn, t[i], t[i + 1], epsrel=epsrel)[0]
|
28 |
+
|
29 |
+
|
30 |
+
def get_ancestral_step(sigma_from, sigma_to, eta=1.0):
|
31 |
+
if not eta:
|
32 |
+
return sigma_to, 0.0
|
33 |
+
sigma_up = torch.minimum(
|
34 |
+
sigma_to,
|
35 |
+
eta
|
36 |
+
* (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5,
|
37 |
+
)
|
38 |
+
sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
|
39 |
+
return sigma_down, sigma_up
|
40 |
+
|
41 |
+
|
42 |
+
def to_d(x, sigma, denoised):
|
43 |
+
return (x - denoised) / append_dims(sigma, x.ndim)
|
44 |
+
|
45 |
+
|
46 |
+
def to_neg_log_sigma(sigma):
|
47 |
+
return sigma.log().neg()
|
48 |
+
|
49 |
+
|
50 |
+
def to_sigma(neg_log_sigma):
|
51 |
+
return neg_log_sigma.neg().exp()
|
sgm/modules/diffusionmodules/sigma_sampling.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from ...util import default, instantiate_from_config
|
4 |
+
|
5 |
+
|
6 |
+
class EDMSampling:
|
7 |
+
def __init__(self, p_mean=-1.2, p_std=1.2):
|
8 |
+
self.p_mean = p_mean
|
9 |
+
self.p_std = p_std
|
10 |
+
|
11 |
+
def __call__(self, n_samples, rand=None):
|
12 |
+
log_sigma = self.p_mean + self.p_std * default(rand, torch.randn((n_samples,)))
|
13 |
+
return log_sigma.exp()
|
14 |
+
|
15 |
+
|
16 |
+
class DiscreteSampling:
|
17 |
+
def __init__(self, discretization_config, num_idx, do_append_zero=False, flip=True):
|
18 |
+
self.num_idx = num_idx
|
19 |
+
self.sigmas = instantiate_from_config(discretization_config)(
|
20 |
+
num_idx, do_append_zero=do_append_zero, flip=flip
|
21 |
+
)
|
22 |
+
|
23 |
+
def idx_to_sigma(self, idx):
|
24 |
+
return self.sigmas[idx]
|
25 |
+
|
26 |
+
def __call__(self, n_samples, rand=None):
|
27 |
+
idx = default(
|
28 |
+
rand,
|
29 |
+
torch.randint(0, self.num_idx, (n_samples,)),
|
30 |
+
)
|
31 |
+
return self.idx_to_sigma(idx)
|
sgm/modules/diffusionmodules/util.py
ADDED
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
adopted from
|
3 |
+
https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
4 |
+
and
|
5 |
+
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
6 |
+
and
|
7 |
+
https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
|
8 |
+
|
9 |
+
thanks!
|
10 |
+
"""
|
11 |
+
|
12 |
+
import math
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
from einops import repeat
|
17 |
+
|
18 |
+
|
19 |
+
def make_beta_schedule(
|
20 |
+
schedule,
|
21 |
+
n_timestep,
|
22 |
+
linear_start=1e-4,
|
23 |
+
linear_end=2e-2,
|
24 |
+
):
|
25 |
+
if schedule == "linear":
|
26 |
+
betas = (
|
27 |
+
torch.linspace(
|
28 |
+
linear_start**0.5, linear_end**0.5, n_timestep, dtype=torch.float64
|
29 |
+
)
|
30 |
+
** 2
|
31 |
+
)
|
32 |
+
return betas.numpy()
|
33 |
+
|
34 |
+
|
35 |
+
def extract_into_tensor(a, t, x_shape):
|
36 |
+
b, *_ = t.shape
|
37 |
+
out = a.gather(-1, t)
|
38 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
39 |
+
|
40 |
+
|
41 |
+
def mixed_checkpoint(func, inputs: dict, params, flag):
|
42 |
+
"""
|
43 |
+
Evaluate a function without caching intermediate activations, allowing for
|
44 |
+
reduced memory at the expense of extra compute in the backward pass. This differs from the original checkpoint function
|
45 |
+
borrowed from https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py in that
|
46 |
+
it also works with non-tensor inputs
|
47 |
+
:param func: the function to evaluate.
|
48 |
+
:param inputs: the argument dictionary to pass to `func`.
|
49 |
+
:param params: a sequence of parameters `func` depends on but does not
|
50 |
+
explicitly take as arguments.
|
51 |
+
:param flag: if False, disable gradient checkpointing.
|
52 |
+
"""
|
53 |
+
if flag:
|
54 |
+
tensor_keys = [key for key in inputs if isinstance(inputs[key], torch.Tensor)]
|
55 |
+
tensor_inputs = [
|
56 |
+
inputs[key] for key in inputs if isinstance(inputs[key], torch.Tensor)
|
57 |
+
]
|
58 |
+
non_tensor_keys = [
|
59 |
+
key for key in inputs if not isinstance(inputs[key], torch.Tensor)
|
60 |
+
]
|
61 |
+
non_tensor_inputs = [
|
62 |
+
inputs[key] for key in inputs if not isinstance(inputs[key], torch.Tensor)
|
63 |
+
]
|
64 |
+
args = tuple(tensor_inputs) + tuple(non_tensor_inputs) + tuple(params)
|
65 |
+
return MixedCheckpointFunction.apply(
|
66 |
+
func,
|
67 |
+
len(tensor_inputs),
|
68 |
+
len(non_tensor_inputs),
|
69 |
+
tensor_keys,
|
70 |
+
non_tensor_keys,
|
71 |
+
*args,
|
72 |
+
)
|
73 |
+
else:
|
74 |
+
return func(**inputs)
|
75 |
+
|
76 |
+
|
77 |
+
class MixedCheckpointFunction(torch.autograd.Function):
|
78 |
+
@staticmethod
|
79 |
+
def forward(
|
80 |
+
ctx,
|
81 |
+
run_function,
|
82 |
+
length_tensors,
|
83 |
+
length_non_tensors,
|
84 |
+
tensor_keys,
|
85 |
+
non_tensor_keys,
|
86 |
+
*args,
|
87 |
+
):
|
88 |
+
ctx.end_tensors = length_tensors
|
89 |
+
ctx.end_non_tensors = length_tensors + length_non_tensors
|
90 |
+
ctx.gpu_autocast_kwargs = {
|
91 |
+
"enabled": torch.is_autocast_enabled(),
|
92 |
+
"dtype": torch.get_autocast_gpu_dtype(),
|
93 |
+
"cache_enabled": torch.is_autocast_cache_enabled(),
|
94 |
+
}
|
95 |
+
assert (
|
96 |
+
len(tensor_keys) == length_tensors
|
97 |
+
and len(non_tensor_keys) == length_non_tensors
|
98 |
+
)
|
99 |
+
|
100 |
+
ctx.input_tensors = {
|
101 |
+
key: val for (key, val) in zip(tensor_keys, list(args[: ctx.end_tensors]))
|
102 |
+
}
|
103 |
+
ctx.input_non_tensors = {
|
104 |
+
key: val
|
105 |
+
for (key, val) in zip(
|
106 |
+
non_tensor_keys, list(args[ctx.end_tensors : ctx.end_non_tensors])
|
107 |
+
)
|
108 |
+
}
|
109 |
+
ctx.run_function = run_function
|
110 |
+
ctx.input_params = list(args[ctx.end_non_tensors :])
|
111 |
+
|
112 |
+
with torch.no_grad():
|
113 |
+
output_tensors = ctx.run_function(
|
114 |
+
**ctx.input_tensors, **ctx.input_non_tensors
|
115 |
+
)
|
116 |
+
return output_tensors
|
117 |
+
|
118 |
+
@staticmethod
|
119 |
+
def backward(ctx, *output_grads):
|
120 |
+
# additional_args = {key: ctx.input_tensors[key] for key in ctx.input_tensors if not isinstance(ctx.input_tensors[key],torch.Tensor)}
|
121 |
+
ctx.input_tensors = {
|
122 |
+
key: ctx.input_tensors[key].detach().requires_grad_(True)
|
123 |
+
for key in ctx.input_tensors
|
124 |
+
}
|
125 |
+
|
126 |
+
with torch.enable_grad(), torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
|
127 |
+
# Fixes a bug where the first op in run_function modifies the
|
128 |
+
# Tensor storage in place, which is not allowed for detach()'d
|
129 |
+
# Tensors.
|
130 |
+
shallow_copies = {
|
131 |
+
key: ctx.input_tensors[key].view_as(ctx.input_tensors[key])
|
132 |
+
for key in ctx.input_tensors
|
133 |
+
}
|
134 |
+
# shallow_copies.update(additional_args)
|
135 |
+
output_tensors = ctx.run_function(**shallow_copies, **ctx.input_non_tensors)
|
136 |
+
input_grads = torch.autograd.grad(
|
137 |
+
output_tensors,
|
138 |
+
list(ctx.input_tensors.values()) + ctx.input_params,
|
139 |
+
output_grads,
|
140 |
+
allow_unused=True,
|
141 |
+
)
|
142 |
+
del ctx.input_tensors
|
143 |
+
del ctx.input_params
|
144 |
+
del output_tensors
|
145 |
+
return (
|
146 |
+
(None, None, None, None, None)
|
147 |
+
+ input_grads[: ctx.end_tensors]
|
148 |
+
+ (None,) * (ctx.end_non_tensors - ctx.end_tensors)
|
149 |
+
+ input_grads[ctx.end_tensors :]
|
150 |
+
)
|
151 |
+
|
152 |
+
|
153 |
+
def checkpoint(func, inputs, params, flag):
|
154 |
+
"""
|
155 |
+
Evaluate a function without caching intermediate activations, allowing for
|
156 |
+
reduced memory at the expense of extra compute in the backward pass.
|
157 |
+
:param func: the function to evaluate.
|
158 |
+
:param inputs: the argument sequence to pass to `func`.
|
159 |
+
:param params: a sequence of parameters `func` depends on but does not
|
160 |
+
explicitly take as arguments.
|
161 |
+
:param flag: if False, disable gradient checkpointing.
|
162 |
+
"""
|
163 |
+
if flag:
|
164 |
+
args = tuple(inputs) + tuple(params)
|
165 |
+
return CheckpointFunction.apply(func, len(inputs), *args)
|
166 |
+
else:
|
167 |
+
return func(*inputs)
|
168 |
+
|
169 |
+
|
170 |
+
class CheckpointFunction(torch.autograd.Function):
|
171 |
+
@staticmethod
|
172 |
+
def forward(ctx, run_function, length, *args):
|
173 |
+
ctx.run_function = run_function
|
174 |
+
ctx.input_tensors = list(args[:length])
|
175 |
+
ctx.input_params = list(args[length:])
|
176 |
+
ctx.gpu_autocast_kwargs = {
|
177 |
+
"enabled": torch.is_autocast_enabled(),
|
178 |
+
"dtype": torch.get_autocast_gpu_dtype(),
|
179 |
+
"cache_enabled": torch.is_autocast_cache_enabled(),
|
180 |
+
}
|
181 |
+
with torch.no_grad():
|
182 |
+
output_tensors = ctx.run_function(*ctx.input_tensors)
|
183 |
+
return output_tensors
|
184 |
+
|
185 |
+
@staticmethod
|
186 |
+
def backward(ctx, *output_grads):
|
187 |
+
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
188 |
+
with torch.enable_grad(), torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
|
189 |
+
# Fixes a bug where the first op in run_function modifies the
|
190 |
+
# Tensor storage in place, which is not allowed for detach()'d
|
191 |
+
# Tensors.
|
192 |
+
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
193 |
+
output_tensors = ctx.run_function(*shallow_copies)
|
194 |
+
input_grads = torch.autograd.grad(
|
195 |
+
output_tensors,
|
196 |
+
ctx.input_tensors + ctx.input_params,
|
197 |
+
output_grads,
|
198 |
+
allow_unused=True,
|
199 |
+
)
|
200 |
+
del ctx.input_tensors
|
201 |
+
del ctx.input_params
|
202 |
+
del output_tensors
|
203 |
+
return (None, None) + input_grads
|
204 |
+
|
205 |
+
|
206 |
+
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
207 |
+
"""
|
208 |
+
Create sinusoidal timestep embeddings.
|
209 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
210 |
+
These may be fractional.
|
211 |
+
:param dim: the dimension of the output.
|
212 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
213 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
214 |
+
"""
|
215 |
+
if not repeat_only:
|
216 |
+
half = dim // 2
|
217 |
+
freqs = torch.exp(
|
218 |
+
-math.log(max_period)
|
219 |
+
* torch.arange(start=0, end=half, dtype=torch.float32)
|
220 |
+
/ half
|
221 |
+
).to(device=timesteps.device)
|
222 |
+
args = timesteps[:, None].float() * freqs[None]
|
223 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
224 |
+
if dim % 2:
|
225 |
+
embedding = torch.cat(
|
226 |
+
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
|
227 |
+
)
|
228 |
+
else:
|
229 |
+
embedding = repeat(timesteps, "b -> b d", d=dim)
|
230 |
+
return embedding
|
231 |
+
|
232 |
+
|
233 |
+
def zero_module(module):
|
234 |
+
"""
|
235 |
+
Zero out the parameters of a module and return it.
|
236 |
+
"""
|
237 |
+
for p in module.parameters():
|
238 |
+
p.detach().zero_()
|
239 |
+
return module
|
240 |
+
|
241 |
+
|
242 |
+
def scale_module(module, scale):
|
243 |
+
"""
|
244 |
+
Scale the parameters of a module and return it.
|
245 |
+
"""
|
246 |
+
for p in module.parameters():
|
247 |
+
p.detach().mul_(scale)
|
248 |
+
return module
|
249 |
+
|
250 |
+
|
251 |
+
def mean_flat(tensor):
|
252 |
+
"""
|
253 |
+
Take the mean over all non-batch dimensions.
|
254 |
+
"""
|
255 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
256 |
+
|
257 |
+
|
258 |
+
def normalization(channels):
|
259 |
+
"""
|
260 |
+
Make a standard normalization layer.
|
261 |
+
:param channels: number of input channels.
|
262 |
+
:return: an nn.Module for normalization.
|
263 |
+
"""
|
264 |
+
return GroupNorm32(32, channels)
|
265 |
+
|
266 |
+
|
267 |
+
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
|
268 |
+
class SiLU(nn.Module):
|
269 |
+
def forward(self, x):
|
270 |
+
return x * torch.sigmoid(x)
|
271 |
+
|
272 |
+
|
273 |
+
class GroupNorm32(nn.GroupNorm):
|
274 |
+
def forward(self, x):
|
275 |
+
return super().forward(x.float()).type(x.dtype)
|
276 |
+
|
277 |
+
|
278 |
+
def conv_nd(dims, *args, **kwargs):
|
279 |
+
"""
|
280 |
+
Create a 1D, 2D, or 3D convolution module.
|
281 |
+
"""
|
282 |
+
if dims == 1:
|
283 |
+
return nn.Conv1d(*args, **kwargs)
|
284 |
+
elif dims == 2:
|
285 |
+
return nn.Conv2d(*args, **kwargs)
|
286 |
+
elif dims == 3:
|
287 |
+
return nn.Conv3d(*args, **kwargs)
|
288 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
289 |
+
|
290 |
+
|
291 |
+
def linear(*args, **kwargs):
|
292 |
+
"""
|
293 |
+
Create a linear module.
|
294 |
+
"""
|
295 |
+
return nn.Linear(*args, **kwargs)
|
296 |
+
|
297 |
+
|
298 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
299 |
+
"""
|
300 |
+
Create a 1D, 2D, or 3D average pooling module.
|
301 |
+
"""
|
302 |
+
if dims == 1:
|
303 |
+
return nn.AvgPool1d(*args, **kwargs)
|
304 |
+
elif dims == 2:
|
305 |
+
return nn.AvgPool2d(*args, **kwargs)
|
306 |
+
elif dims == 3:
|
307 |
+
return nn.AvgPool3d(*args, **kwargs)
|
308 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|