File size: 8,849 Bytes
6497501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
021709c
 
 
6497501
 
 
 
 
 
 
 
 
 
 
 
847f4d3
979a298
6497501
 
979a298
847f4d3
 
 
 
979a298
6497501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf50ebc
6497501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import cv2
import torch
import os, glob
import numpy as np
import gradio as gr
from PIL import Image
from omegaconf import OmegaConf
from contextlib import nullcontext
from pytorch_lightning import seed_everything
from os.path import join as ospj

from util import *


def predict(cfgs, model, sampler, batch):

    context = nullcontext if cfgs.aae_enabled else torch.no_grad
    
    with context():
        
        batch, batch_uc_1, batch_uc_2 = prepare_batch(cfgs, batch)

        if cfgs.dual_conditioner:
            c, uc_1, uc_2 = model.conditioner.get_unconditional_conditioning(
                batch,
                batch_uc_1=batch_uc_1,
                batch_uc_2=batch_uc_2,
                force_uc_zero_embeddings=cfgs.force_uc_zero_embeddings,
            )
        else:
            c, uc_1 = model.conditioner.get_unconditional_conditioning(
                batch,
                batch_uc=batch_uc_1,
                force_uc_zero_embeddings=cfgs.force_uc_zero_embeddings,
            )
        
        if cfgs.dual_conditioner:
            x = sampler.get_init_noise(cfgs, model, cond=c, batch=batch, uc_1=uc_1, uc_2=uc_2)
            samples_z = sampler(model, x, cond=c, batch=batch, uc_1=uc_1, uc_2=uc_2, init_step=0,
                                aae_enabled = cfgs.aae_enabled, detailed = cfgs.detailed)
        else:
            x = sampler.get_init_noise(cfgs, model, cond=c, batch=batch, uc=uc_1)
            samples_z = sampler(model, x, cond=c, batch=batch, uc=uc_1, init_step=0,
                                aae_enabled = cfgs.aae_enabled, detailed = cfgs.detailed)

        samples_x = model.decode_first_stage(samples_z)
        samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)

        return samples, samples_z


def demo_predict(input_blk, text, num_samples, steps, scale, seed, show_detail):

    global cfgs, global_index

    global_index += 1

    if num_samples > 1: cfgs.noise_iters = 0

    cfgs.batch_size = num_samples
    cfgs.steps = steps
    cfgs.scale[0] = scale
    cfgs.detailed = show_detail
    seed_everything(seed)

    sampler = init_sampling(cfgs)

    image = input_blk["image"]
    mask = input_blk["mask"]
    image = cv2.resize(image, (cfgs.W, cfgs.H))
    mask = cv2.resize(mask, (cfgs.W, cfgs.H))

    mask = (mask == 0).astype(np.int32)

    image = torch.from_numpy(image.transpose(2,0,1)).to(dtype=torch.float32) / 127.5 - 1.0
    mask = torch.from_numpy(mask.transpose(2,0,1)).to(dtype=torch.float32).mean(dim=0, keepdim=True)
    masked = image * mask
    mask = 1 - mask

    seg_mask = torch.cat((torch.ones(len(text)), torch.zeros(cfgs.seq_len-len(text))))

    # additional cond
    txt = f"\"{text}\""
    original_size_as_tuple = torch.tensor((cfgs.H, cfgs.W))
    crop_coords_top_left = torch.tensor((0, 0))
    target_size_as_tuple = torch.tensor((cfgs.H, cfgs.W))

    image = torch.tile(image[None], (num_samples, 1, 1, 1))
    mask = torch.tile(mask[None], (num_samples, 1, 1, 1))
    masked = torch.tile(masked[None], (num_samples, 1, 1, 1))
    seg_mask = torch.tile(seg_mask[None], (num_samples, 1))
    original_size_as_tuple = torch.tile(original_size_as_tuple[None], (num_samples, 1))
    crop_coords_top_left = torch.tile(crop_coords_top_left[None], (num_samples, 1))
    target_size_as_tuple = torch.tile(target_size_as_tuple[None], (num_samples, 1))

    text = [text for i in range(num_samples)]
    txt = [txt for i in range(num_samples)]
    name = [str(global_index) for i in range(num_samples)]

    batch = {
        "image": image,
        "mask": mask,
        "masked": masked,
        "seg_mask": seg_mask,
        "label": text,
        "txt": txt,
        "original_size_as_tuple": original_size_as_tuple,
        "crop_coords_top_left": crop_coords_top_left,
        "target_size_as_tuple": target_size_as_tuple,
        "name": name
    }

    samples, samples_z = predict(cfgs, model, sampler, batch)
    samples = samples.cpu().numpy().transpose(0, 2, 3, 1) * 255
    results = [Image.fromarray(sample.astype(np.uint8)) for sample in samples]

    if cfgs.detailed:
        sections = []
        attn_map = Image.open(f"./temp/attn_map/attn_map_{global_index}.png")
        seg_maps = np.load(f"./temp/seg_map/seg_{global_index}.npy")
        for i, seg_map in enumerate(seg_maps):
            seg_map = cv2.resize(seg_map, (cfgs.W, cfgs.H))
            sections.append((seg_map, text[0][i]))
        seg = (results[0], sections)
    else:
        attn_map = None
        seg = None

    return results, attn_map, seg


if __name__ == "__main__":

    os.makedirs("./temp/attn_map", exist_ok=True)
    os.makedirs("./temp/seg_map", exist_ok=True)

    cfgs = OmegaConf.load("./configs/demo.yaml")

    model = init_model(cfgs)
    global_index = 0

    block = gr.Blocks().queue()
    with block:

        with gr.Row():

            gr.HTML(
                """
                <div style="text-align: center; max-width: 1200px; margin: 20px auto;">
                <h1 style="font-weight: 600; font-size: 2rem; margin: 0.5rem;">
                    UDiffText: A Unified Framework for High-quality Text Synthesis in Arbitrary Images via Character-aware Diffusion Models
                </h1>        
                <ul style="text-align: center; margin: 0.5rem;"> 
                    <li style="display: inline-block; margin:auto;"><a href='https://arxiv.org/pdf/******'><img src='https://img.shields.io/badge/Arxiv-******-DF826C'></a></li>
                    <li style="display: inline-block; margin:auto;"><a href='https://github.com/ZYM-PKU/UDiffText'><img src='https://img.shields.io/badge/Code-UDiffText-D0F288'></a></li>
                    <li style="display: inline-block; margin:auto;"><a href='https://udifftext.github.io'><img src='https://img.shields.io/badge/Project-UDiffText-8ADAB2'></a></li>
                </ul> 
                <h2 style="text-align: left; font-weight: 450; font-size: 1rem; margin: 0.5rem;">
                    Our proposed UDiffText is capable of synthesizing accurate and harmonious text in either synthetic or real-word images, thus can be applied to tasks like scene text editing (a), arbitrary text generation (b) and accurate T2I generation (c)
                </h2>
                <div align=center><img src="file/demo/teaser.png" alt="UDiffText" width="80%"></div> 
                </div>
                """
            )

        with gr.Row():

            with gr.Column():

                input_blk = gr.Image(source='upload', tool='sketch', type="numpy", label="Input", height=512)
                text = gr.Textbox(label="Text to render:", info="the text you want to render at the masked region")
                run_button = gr.Button(variant="primary")

                with gr.Accordion("Advanced options", open=False):

                    num_samples = gr.Slider(label="Images", info="number of generated images, locked as 1", minimum=1, maximum=1, value=1, step=1)
                    steps = gr.Slider(label="Steps", info ="denoising sampling steps", minimum=1, maximum=200, value=50, step=1)
                    scale = gr.Slider(label="Guidance Scale", info="the scale of classifier-free guidance (CFG)", minimum=0.0, maximum=10.0, value=4.0, step=0.1)
                    seed = gr.Slider(label="Seed", info="random seed for noise initialization", minimum=0, maximum=2147483647, step=1, randomize=True)
                    show_detail = gr.Checkbox(label="Show Detail", info="show the additional visualization results", value=True)

            with gr.Column():

                gallery = gr.Gallery(label="Output", height=512, preview=True)

                with gr.Accordion("Visualization results", open=True):

                    with gr.Tab(label="Attention Maps"):
                        gr.Markdown("### Attention maps for each character (extracted from middle blocks at intermediate sampling step):")
                        attn_map = gr.Image(show_label=False, show_download_button=False)
                    with gr.Tab(label="Segmentation Maps"):
                        gr.Markdown("### Character-level segmentation maps (using upscaled attention maps):")
                        seg_map = gr.AnnotatedImage(height=384, show_label=False)

        # examples
        examples = []
        example_paths = sorted(glob.glob(ospj("./demo/examples", "*")))
        for example_path in example_paths:
            label = example_path.split(os.sep)[-1].split(".")[0].split("_")[0]
            examples.append([example_path, label])

        gr.Markdown("## Examples:")
        gr.Examples(
            examples=examples,
            inputs=[input_blk, text]
        )

        run_button.click(fn=demo_predict, inputs=[input_blk, text, num_samples, steps, scale, seed, show_detail], outputs=[gallery, attn_map, seg_map])

    block.launch()