Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import torch | |
import os | |
import json | |
from tqdm import tqdm | |
IMAGE_TOKEN_INDEX = -200 | |
DEFAULT_IMAGE_TOKEN = "<image>" | |
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>" | |
DEFAULT_IM_START_TOKEN = "<im_start>" | |
DEFAULT_IM_END_TOKEN = "<im_end>" | |
IMAGE_PLACEHOLDER = "<image-placeholder>" | |
# Added by Ferret | |
DEFAULT_REGION_FEA_TOKEN = "<region_fea>" | |
VOCAB_IMAGE_W = 1000 | |
VOCAB_IMAGE_H = 1000 | |
from conversation import conv_templates, SeparatorStyle | |
from builder import load_pretrained_model | |
from mm_utils import tokenizer_image_token, process_images | |
from PIL import Image | |
import math | |
import pdb | |
import numpy as np | |
from copy import deepcopy | |
from functools import partial | |
def disable_torch_init(): | |
""" | |
Disable the redundant torch default initialization to accelerate model creation. | |
""" | |
import torch | |
setattr(torch.nn.Linear, "reset_parameters", lambda self: None) | |
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None) | |
def split_list(lst, n): | |
"""Split a list into n (roughly) equal-sized chunks""" | |
chunk_size = math.ceil(len(lst) / n) # integer division | |
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] | |
def get_chunk(lst, n, k): | |
chunks = split_list(lst, n) | |
return chunks[k] | |
def generate_mask_for_feature(coor, raw_w, raw_h, mask=None): | |
if mask is not None: | |
assert mask.shape[0] == raw_w and mask.shape[1] == raw_h | |
coor_mask = np.zeros((raw_w, raw_h)) | |
# Assume it samples a point. | |
if len(coor) == 2: | |
# Define window size | |
span = 5 | |
# Make sure the window does not exceed array bounds | |
x_min = max(0, coor[0] - span) | |
x_max = min(raw_w, coor[0] + span + 1) | |
y_min = max(0, coor[1] - span) | |
y_max = min(raw_h, coor[1] + span + 1) | |
coor_mask[int(x_min):int(x_max), int(y_min):int(y_max)] = 1 | |
assert (coor_mask==1).any(), f"coor: {coor}, raw_w: {raw_w}, raw_h: {raw_h}" | |
elif len(coor) == 4: | |
# Box input or Sketch input. | |
coor_mask[coor[0]:coor[2]+1, coor[1]:coor[3]+1] = 1 | |
if mask is not None: | |
coor_mask = coor_mask * mask | |
coor_mask = torch.from_numpy(coor_mask) | |
try: | |
assert len(coor_mask.nonzero()) != 0 | |
except: | |
pdb.set_trace() | |
return coor_mask | |
def get_task_from_file(file): | |
box_in_tasks = ['widgetcaptions', 'taperception', 'ocr', 'icon_recognition', 'widget_classification', 'example_0'] | |
# box_out_tasks = ['widget_listing', 'find_text', 'find_icons', 'find_widget', 'conversation_interaction'] | |
# no_box = ['screen2words', 'detailed_description', 'conversation_perception', 'gpt4'] | |
if any(task in file for task in box_in_tasks): | |
return 'box_in' | |
else: | |
return 'no_box_in' | |
# elif any(task in file for task in box_out_tasks): | |
# return 'box_out' | |
# elif any(task in file for task in no_box): | |
# return 'no_box' | |
def get_bbox_coor(box, ratio_w, ratio_h): | |
return box[0] * ratio_w, box[1] * ratio_h, box[2] * ratio_w, box[3] * ratio_h | |
def get_model_name_from_path(model_path): | |
if 'gemma' in model_path: | |
return 'ferret_gemma' | |
elif 'llama' or 'vicuna' in model_path: | |
return 'ferret_llama' | |
else: | |
raise ValueError(f"No model matched for {model_path}") | |
class UIData: | |
def __init__(self, data_path, image_path, args) -> None: | |
self.obj_list = json.load(open(data_path, 'r')) | |
self.image_path = image_path | |
self.args = args | |
self._ids = range(len(self.obj_list)) | |
self.task = get_task_from_file(data_path) | |
def ids(self): | |
return deepcopy(self._ids) | |
def __getitem__(self, idx): | |
i = self.obj_list[idx] | |
# image stuff | |
image_path_i = os.path.join(self.image_path, i['image'].split('/')[-1]) | |
image = Image.open(image_path_i).convert('RGB') | |
q_turn = i['conversations'][0]['value'] | |
if "<image>" in q_turn: | |
prompt = q_turn.split('\n')[1] | |
else: | |
prompt = q_turn | |
i['question'] = prompt | |
i['region_masks'] = None | |
if self.task == 'box_in': | |
ratio_w = VOCAB_IMAGE_W * 1.0 / i['image_w'] | |
ratio_h = VOCAB_IMAGE_H * 1.0 / i['image_h'] | |
box = i['box_x1y1x2y2'][0][0] | |
box_x1, box_y1, box_x2, box_y2 = box | |
box_x1_textvocab, box_y1_textvocab, box_x2_textvocab, box_y2_textvocab = get_bbox_coor(box=box, ratio_h=ratio_h, ratio_w=ratio_w) | |
if self.args.region_format == 'box': | |
region_coordinate_raw = [box_x1, box_y1, box_x2, box_y2] | |
if args.add_region_feature: | |
i['question'] = prompt.replace('<bbox_location0>', '[{}, {}, {}, {}] {}'.format(int(box_x1_textvocab), int(box_y1_textvocab), int(box_x2_textvocab), int(box_y2_textvocab), DEFAULT_REGION_FEA_TOKEN)) | |
generated_mask = generate_mask_for_feature(region_coordinate_raw, raw_w=i['image_w'], raw_h=i['image_h'], mask=None) | |
i['region_masks'] = [generated_mask] | |
else: | |
i['question'] = prompt.replace('<bbox_location0>', '[{}, {}, {}, {}]'.format(int(box_x1_textvocab), int(box_y1_textvocab), int(box_x2_textvocab), int(box_y2_textvocab))) | |
else: | |
raise NotImplementedError(f'{self.args.region_format} is not supported.') | |
return image, i, image.size | |
def eval_model(args): | |
# Data | |
dataset = UIData(data_path=args.data_path, image_path=args.image_path, args=args) | |
data_ids = dataset.ids | |
# Model | |
disable_torch_init() | |
model_path = os.path.expanduser(args.model_path) | |
model_name = get_model_name_from_path(model_path) | |
tokenizer, model, image_processor, context_len = \ | |
load_pretrained_model(model_path, args.model_base, model_name) | |
chunk_data_ids = get_chunk(data_ids, args.num_chunks, args.chunk_idx) | |
answers_folder = os.path.expanduser(args.answers_file) | |
os.makedirs(answers_folder, exist_ok=True) | |
answers_file = os.path.join(answers_folder, f'{args.chunk_idx}_of_{args.num_chunks}.jsonl') | |
ans_file = open(answers_file, "w") | |
for i, id in enumerate(tqdm(chunk_data_ids)): | |
img, ann, image_size = dataset[id] | |
image_path = ann['image'] | |
qs = ann["question"] | |
cur_prompt = qs | |
if "<image>" in qs: | |
qs = qs.split('\n')[1] | |
if model.config.mm_use_im_start_end: | |
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs | |
else: | |
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs | |
conv = conv_templates[args.conv_mode].copy() | |
conv.append_message(conv.roles[0], qs) | |
conv.append_message(conv.roles[1], None) | |
prompt = conv.get_prompt() | |
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() | |
if model.config.image_aspect_ratio == "square_nocrop": | |
image_tensor = image_processor.preprocess(img, return_tensors='pt', do_resize=True, | |
do_center_crop=False, size=[args.image_h, args.image_w])['pixel_values'][0] | |
elif model.config.image_aspect_ratio == "anyres": | |
image_process_func = partial(image_processor.preprocess, return_tensors='pt', do_resize=True, do_center_crop=False, size=[args.image_h, args.image_w]) | |
image_tensor = process_images([img], image_processor, model.config, image_process_func=image_process_func)[0] | |
else: | |
image_tensor = process_images([img], image_processor, model.config)[0] | |
images = image_tensor.unsqueeze(0).to(args.data_type).cuda() | |
region_masks = ann['region_masks'] | |
if region_masks is not None: | |
region_masks = [[region_mask_i.cuda().half() for region_mask_i in region_masks]] | |
else: | |
region_masks = None | |
with torch.inference_mode(): | |
model.orig_forward = model.forward | |
model.forward = partial( | |
model.orig_forward, | |
region_masks=region_masks | |
) | |
output_ids = model.generate( | |
input_ids, | |
images=images, | |
region_masks=region_masks, | |
image_sizes=[image_size], | |
do_sample=True if args.temperature > 0 else False, | |
temperature=args.temperature, | |
top_p=args.top_p, | |
num_beams=args.num_beams, | |
max_new_tokens=args.max_new_tokens, | |
use_cache=True) | |
model.forward = model.orig_forward | |
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0] | |
outputs = outputs.strip() | |
if 'label' in ann: | |
label = ann['label'] | |
elif len(ann['conversations']) > 1: | |
label = ann['conversations'][1]['value'] | |
else: | |
label = None | |
ans_file.write(json.dumps({"id":ann['id'], # +1 offset | |
"image_path":image_path, | |
"prompt": cur_prompt, | |
"text": outputs, | |
"label": label, | |
}) + "\n") | |
ans_file.flush() | |
ans_file.close() | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model_path", type=str, default="facebook/opt-350m") | |
parser.add_argument("--vision_model_path", type=str, default=None) | |
parser.add_argument("--model_base", type=str, default=None) | |
parser.add_argument("--image_path", type=str, default="") | |
parser.add_argument("--data_path", type=str, default="") | |
parser.add_argument("--answers_file", type=str, default="") | |
parser.add_argument("--conv_mode", type=str, default="ferret_gemma_instruct", | |
help="[ferret_gemma_instruct,ferret_llama_3,ferret_vicuna_v1]") | |
parser.add_argument("--num_chunks", type=int, default=1) | |
parser.add_argument("--chunk_idx", type=int, default=0) | |
parser.add_argument("--image_w", type=int, default=336) # 224 | |
parser.add_argument("--image_h", type=int, default=336) # 224 | |
parser.add_argument("--add_region_feature", action="store_true") | |
parser.add_argument("--region_format", type=str, default="point", choices=["point", "box", "segment", "free_shape"]) | |
parser.add_argument("--no_coor", action="store_true") | |
parser.add_argument("--temperature", type=float, default=0.001) | |
parser.add_argument("--top_p", type=float, default=None) | |
parser.add_argument("--num_beams", type=int, default=1) | |
parser.add_argument("--max_new_tokens", type=int, default=1024) | |
parser.add_argument("--data_type", type=str, default='fp16', choices=['fp16', 'bf16', 'fp32']) | |
args = parser.parse_args() | |
if args.data_type == 'fp16': | |
args.data_type = torch.float16 | |
elif args.data_type == 'bf16': | |
args.data_type = torch.bfloat16 | |
else: | |
args.data_type = torch.float32 | |
eval_model(args) |