Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,110 Bytes
a526622 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import argparse
import torch
import os
import json
from tqdm import tqdm
IMAGE_TOKEN_INDEX = -200
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
IMAGE_PLACEHOLDER = "<image-placeholder>"
# Added by Ferret
DEFAULT_REGION_FEA_TOKEN = "<region_fea>"
VOCAB_IMAGE_W = 1000
VOCAB_IMAGE_H = 1000
from conversation import conv_templates, SeparatorStyle
from builder import load_pretrained_model
from mm_utils import tokenizer_image_token, process_images
from PIL import Image
import math
import pdb
import numpy as np
from copy import deepcopy
from functools import partial
def disable_torch_init():
"""
Disable the redundant torch default initialization to accelerate model creation.
"""
import torch
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
def split_list(lst, n):
"""Split a list into n (roughly) equal-sized chunks"""
chunk_size = math.ceil(len(lst) / n) # integer division
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
def get_chunk(lst, n, k):
chunks = split_list(lst, n)
return chunks[k]
def generate_mask_for_feature(coor, raw_w, raw_h, mask=None):
if mask is not None:
assert mask.shape[0] == raw_w and mask.shape[1] == raw_h
coor_mask = np.zeros((raw_w, raw_h))
# Assume it samples a point.
if len(coor) == 2:
# Define window size
span = 5
# Make sure the window does not exceed array bounds
x_min = max(0, coor[0] - span)
x_max = min(raw_w, coor[0] + span + 1)
y_min = max(0, coor[1] - span)
y_max = min(raw_h, coor[1] + span + 1)
coor_mask[int(x_min):int(x_max), int(y_min):int(y_max)] = 1
assert (coor_mask==1).any(), f"coor: {coor}, raw_w: {raw_w}, raw_h: {raw_h}"
elif len(coor) == 4:
# Box input or Sketch input.
coor_mask[coor[0]:coor[2]+1, coor[1]:coor[3]+1] = 1
if mask is not None:
coor_mask = coor_mask * mask
coor_mask = torch.from_numpy(coor_mask)
try:
assert len(coor_mask.nonzero()) != 0
except:
pdb.set_trace()
return coor_mask
def get_task_from_file(file):
box_in_tasks = ['widgetcaptions', 'taperception', 'ocr', 'icon_recognition', 'widget_classification', 'example_0']
# box_out_tasks = ['widget_listing', 'find_text', 'find_icons', 'find_widget', 'conversation_interaction']
# no_box = ['screen2words', 'detailed_description', 'conversation_perception', 'gpt4']
if any(task in file for task in box_in_tasks):
return 'box_in'
else:
return 'no_box_in'
# elif any(task in file for task in box_out_tasks):
# return 'box_out'
# elif any(task in file for task in no_box):
# return 'no_box'
def get_bbox_coor(box, ratio_w, ratio_h):
return box[0] * ratio_w, box[1] * ratio_h, box[2] * ratio_w, box[3] * ratio_h
def get_model_name_from_path(model_path):
if 'gemma' in model_path:
return 'ferret_gemma'
elif 'llama' or 'vicuna' in model_path:
return 'ferret_llama'
else:
raise ValueError(f"No model matched for {model_path}")
class UIData:
def __init__(self, data_path, image_path, args) -> None:
self.obj_list = json.load(open(data_path, 'r'))
self.image_path = image_path
self.args = args
self._ids = range(len(self.obj_list))
self.task = get_task_from_file(data_path)
@property
def ids(self):
return deepcopy(self._ids)
def __getitem__(self, idx):
i = self.obj_list[idx]
# image stuff
image_path_i = os.path.join(self.image_path, i['image'].split('/')[-1])
image = Image.open(image_path_i).convert('RGB')
q_turn = i['conversations'][0]['value']
if "<image>" in q_turn:
prompt = q_turn.split('\n')[1]
else:
prompt = q_turn
i['question'] = prompt
i['region_masks'] = None
if self.task == 'box_in':
ratio_w = VOCAB_IMAGE_W * 1.0 / i['image_w']
ratio_h = VOCAB_IMAGE_H * 1.0 / i['image_h']
box = i['box_x1y1x2y2'][0][0]
box_x1, box_y1, box_x2, box_y2 = box
box_x1_textvocab, box_y1_textvocab, box_x2_textvocab, box_y2_textvocab = get_bbox_coor(box=box, ratio_h=ratio_h, ratio_w=ratio_w)
if self.args.region_format == 'box':
region_coordinate_raw = [box_x1, box_y1, box_x2, box_y2]
if args.add_region_feature:
i['question'] = prompt.replace('<bbox_location0>', '[{}, {}, {}, {}] {}'.format(int(box_x1_textvocab), int(box_y1_textvocab), int(box_x2_textvocab), int(box_y2_textvocab), DEFAULT_REGION_FEA_TOKEN))
generated_mask = generate_mask_for_feature(region_coordinate_raw, raw_w=i['image_w'], raw_h=i['image_h'], mask=None)
i['region_masks'] = [generated_mask]
else:
i['question'] = prompt.replace('<bbox_location0>', '[{}, {}, {}, {}]'.format(int(box_x1_textvocab), int(box_y1_textvocab), int(box_x2_textvocab), int(box_y2_textvocab)))
else:
raise NotImplementedError(f'{self.args.region_format} is not supported.')
return image, i, image.size
def eval_model(args):
# Data
dataset = UIData(data_path=args.data_path, image_path=args.image_path, args=args)
data_ids = dataset.ids
# Model
disable_torch_init()
model_path = os.path.expanduser(args.model_path)
model_name = get_model_name_from_path(model_path)
tokenizer, model, image_processor, context_len = \
load_pretrained_model(model_path, args.model_base, model_name)
chunk_data_ids = get_chunk(data_ids, args.num_chunks, args.chunk_idx)
answers_folder = os.path.expanduser(args.answers_file)
os.makedirs(answers_folder, exist_ok=True)
answers_file = os.path.join(answers_folder, f'{args.chunk_idx}_of_{args.num_chunks}.jsonl')
ans_file = open(answers_file, "w")
for i, id in enumerate(tqdm(chunk_data_ids)):
img, ann, image_size = dataset[id]
image_path = ann['image']
qs = ann["question"]
cur_prompt = qs
if "<image>" in qs:
qs = qs.split('\n')[1]
if model.config.mm_use_im_start_end:
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
else:
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
conv = conv_templates[args.conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
if model.config.image_aspect_ratio == "square_nocrop":
image_tensor = image_processor.preprocess(img, return_tensors='pt', do_resize=True,
do_center_crop=False, size=[args.image_h, args.image_w])['pixel_values'][0]
elif model.config.image_aspect_ratio == "anyres":
image_process_func = partial(image_processor.preprocess, return_tensors='pt', do_resize=True, do_center_crop=False, size=[args.image_h, args.image_w])
image_tensor = process_images([img], image_processor, model.config, image_process_func=image_process_func)[0]
else:
image_tensor = process_images([img], image_processor, model.config)[0]
images = image_tensor.unsqueeze(0).to(args.data_type).cuda()
region_masks = ann['region_masks']
if region_masks is not None:
region_masks = [[region_mask_i.cuda().half() for region_mask_i in region_masks]]
else:
region_masks = None
with torch.inference_mode():
model.orig_forward = model.forward
model.forward = partial(
model.orig_forward,
region_masks=region_masks
)
output_ids = model.generate(
input_ids,
images=images,
region_masks=region_masks,
image_sizes=[image_size],
do_sample=True if args.temperature > 0 else False,
temperature=args.temperature,
top_p=args.top_p,
num_beams=args.num_beams,
max_new_tokens=args.max_new_tokens,
use_cache=True)
model.forward = model.orig_forward
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
outputs = outputs.strip()
if 'label' in ann:
label = ann['label']
elif len(ann['conversations']) > 1:
label = ann['conversations'][1]['value']
else:
label = None
ans_file.write(json.dumps({"id":ann['id'], # +1 offset
"image_path":image_path,
"prompt": cur_prompt,
"text": outputs,
"label": label,
}) + "\n")
ans_file.flush()
ans_file.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default="facebook/opt-350m")
parser.add_argument("--vision_model_path", type=str, default=None)
parser.add_argument("--model_base", type=str, default=None)
parser.add_argument("--image_path", type=str, default="")
parser.add_argument("--data_path", type=str, default="")
parser.add_argument("--answers_file", type=str, default="")
parser.add_argument("--conv_mode", type=str, default="ferret_gemma_instruct",
help="[ferret_gemma_instruct,ferret_llama_3,ferret_vicuna_v1]")
parser.add_argument("--num_chunks", type=int, default=1)
parser.add_argument("--chunk_idx", type=int, default=0)
parser.add_argument("--image_w", type=int, default=336) # 224
parser.add_argument("--image_h", type=int, default=336) # 224
parser.add_argument("--add_region_feature", action="store_true")
parser.add_argument("--region_format", type=str, default="point", choices=["point", "box", "segment", "free_shape"])
parser.add_argument("--no_coor", action="store_true")
parser.add_argument("--temperature", type=float, default=0.001)
parser.add_argument("--top_p", type=float, default=None)
parser.add_argument("--num_beams", type=int, default=1)
parser.add_argument("--max_new_tokens", type=int, default=1024)
parser.add_argument("--data_type", type=str, default='fp16', choices=['fp16', 'bf16', 'fp32'])
args = parser.parse_args()
if args.data_type == 'fp16':
args.data_type = torch.float16
elif args.data_type == 'bf16':
args.data_type = torch.bfloat16
else:
args.data_type = torch.float32
eval_model(args) |