Mamabot / app.py
itsmendas's picture
Update app.py
25db1d7 verified
import os, tempfile
# import pinecone
from pathlib import Path
import traceback
from langchain.chains import RetrievalQA, ConversationalRetrievalChain
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import DirectoryLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.memory import ConversationBufferMemory
from langchain.memory.chat_message_histories import StreamlitChatMessageHistory
from dotenv import load_dotenv
import streamlit as st
load_dotenv()
TMP_DIR = Path(__file__).resolve().parent.joinpath('data', 'tmp')
LOCAL_VECTOR_STORE_DIR = Path(__file__).resolve().parent.joinpath('data', 'vector_store')
# Load environment variables
os.makedirs(TMP_DIR, exist_ok=True)
os.makedirs(LOCAL_VECTOR_STORE_DIR, exist_ok=True)
os.makedirs(TMP_DIR, exist_ok=True)
os.makedirs(LOCAL_VECTOR_STORE_DIR, exist_ok=True)
st.set_page_config(page_title="RAG")
st.title("Retrieval Augmented Generation Engine")
openai_api_key = os.environ.get('OPENAI_API_KEY')
st.session_state.openai_api_key = openai_api_key
def load_documents():
loader = DirectoryLoader(TMP_DIR.as_posix(), glob='**/*.pdf')
documents = loader.load()
return documents
def split_documents(documents):
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
return texts
def embeddings_on_local_vectordb():
# vectordb = Chroma.from_documents(texts, embedding=OpenAIEmbeddings(),
# persist_directory=LOCAL_VECTOR_STORE_DIR.as_posix())
vectordb=Chroma(persist_directory=LOCAL_VECTOR_STORE_DIR.as_posix(), embedding_function=OpenAIEmbeddings())
vectordb.persist()
retriever = vectordb.as_retriever(search_kwargs={'k': 5})
return retriever
# def embeddings_on_pinecone(texts):
# pinecone.init(api_key=st.session_state.pinecone_api_key, environment=st.session_state.pinecone_env)
# embeddings = OpenAIEmbeddings(openai_api_key=st.session_state.openai_api_key)
# vectordb = Pinecone.from_documents(texts, embeddings, index_name=st.session_state.pinecone_index)
# retriever = vectordb.as_retriever()
# return retriever
def query_llm(retriever, query):
try:
qa_chain = ConversationalRetrievalChain.from_llm(
llm=ChatOpenAI(temperature=0, openai_api_key=st.session_state.openai_api_key),
retriever=retriever,
return_source_documents=True,
)
result = qa_chain({'question': query, 'chat_history': st.session_state.messages})
result = result.get('answer')
except Exception as e:
print(f"Exception {e} with traceback : {traceback.format_exc() } occurred for API key: {st.session_state.openai_api_key}")
result = ""
st.session_state.messages.append((query, result))
return result
def input_fields():
#
with st.sidebar:
#
openai_key = st.text_input("OpenAI API key", type="password")
if openai_key != "":
st.session_state.openai_api_key = openai_key
#
# if "pinecone_api_key" in st.secrets:
# st.session_state.pinecone_api_key = st.secrets.pinecone_api_key
# else:
# st.session_state.pinecone_api_key = st.text_input("Pinecone API key", type="password")
#
# if "pinecone_env" in st.secrets:
# st.session_state.pinecone_env = st.secrets.pinecone_env
# else:
# st.session_state.pinecone_env = st.text_input("Pinecone environment")
#
# if "pinecone_index" in st.secrets:
# st.session_state.pinecone_index = st.secrets.pinecone_index
# else:
# st.session_state.pinecone_index = st.text_input("Pinecone index name")
#
# st.session_state.pinecone_db = st.toggle('Use Pinecone Vector DB')
#
st.session_state.source_docs = st.file_uploader(label="Upload Documents", type="pdf", accept_multiple_files=True)
#
retriever = embeddings_on_local_vectordb()
def process_documents():
# if not st.session_state.openai_api_key or not st.session_state.pinecone_api_key or not st.session_state.pinecone_env or not st.session_state.pinecone_index or not st.session_state.source_docs:
if not st.session_state.openai_api_key or not st.session_state.source_docs:
st.warning(f"Please upload the documents and provide the missing fields.")
else:
try:
for source_doc in st.session_state.source_docs:
#
with tempfile.NamedTemporaryFile(delete=False, dir=TMP_DIR.as_posix(), suffix='.pdf') as tmp_file:
tmp_file.write(source_doc.read())
#
documents = load_documents()
#
for _file in TMP_DIR.iterdir():
temp_file = TMP_DIR.joinpath(_file)
temp_file.unlink()
#
texts = split_documents(documents)
print(f"Adding {len(texts)} texts to vector DB")
retriever.add_texts(texts)
retriever.persist()
#
# if not st.session_state.pinecone_db:
# st.session_state.retriever = retriever
# else:
# st.session_state.retriever = embeddings_on_pinecone(texts)
except Exception as e:
st.error(f"An error occurred: {e}")
def boot():
#
input_fields()
#
st.button("Submit Documents", on_click=process_documents)
#
if "messages" not in st.session_state:
st.session_state.messages = []
#
for message in st.session_state.messages:
st.chat_message('human').write(message[0])
st.chat_message('ai').write(message[1])
#
if query := st.chat_input():
st.chat_message("human").write(query)
response = query_llm(retriever, query)
st.chat_message("ai").write(response)
if __name__ == '__main__':
#
boot()