File size: 6,254 Bytes
25db1d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import os, tempfile
# import pinecone
from pathlib import Path
import traceback
from langchain.chains import RetrievalQA, ConversationalRetrievalChain
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import DirectoryLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.memory import ConversationBufferMemory
from langchain.memory.chat_message_histories import StreamlitChatMessageHistory
from dotenv import load_dotenv
import streamlit as st

load_dotenv()
TMP_DIR = Path(__file__).resolve().parent.joinpath('data', 'tmp')
LOCAL_VECTOR_STORE_DIR = Path(__file__).resolve().parent.joinpath('data', 'vector_store')



# Load environment variables
os.makedirs(TMP_DIR, exist_ok=True)
os.makedirs(LOCAL_VECTOR_STORE_DIR, exist_ok=True)



os.makedirs(TMP_DIR, exist_ok=True)
os.makedirs(LOCAL_VECTOR_STORE_DIR, exist_ok=True)
st.set_page_config(page_title="RAG")
st.title("Retrieval Augmented Generation Engine")

openai_api_key = os.environ.get('OPENAI_API_KEY')
st.session_state.openai_api_key  = openai_api_key

def load_documents():
    loader = DirectoryLoader(TMP_DIR.as_posix(), glob='**/*.pdf')
    documents = loader.load()
    return documents

def split_documents(documents):
    text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
    texts = text_splitter.split_documents(documents)
    return texts

def embeddings_on_local_vectordb():
    # vectordb = Chroma.from_documents(texts, embedding=OpenAIEmbeddings(),
    #                                  persist_directory=LOCAL_VECTOR_STORE_DIR.as_posix())
    vectordb=Chroma(persist_directory=LOCAL_VECTOR_STORE_DIR.as_posix(), embedding_function=OpenAIEmbeddings())
    vectordb.persist()
    retriever = vectordb.as_retriever(search_kwargs={'k': 5})
    return retriever

# def embeddings_on_pinecone(texts):
#     pinecone.init(api_key=st.session_state.pinecone_api_key, environment=st.session_state.pinecone_env)
#     embeddings = OpenAIEmbeddings(openai_api_key=st.session_state.openai_api_key)
#     vectordb = Pinecone.from_documents(texts, embeddings, index_name=st.session_state.pinecone_index)
#     retriever = vectordb.as_retriever()
#     return retriever

def query_llm(retriever, query):
    try:
        qa_chain = ConversationalRetrievalChain.from_llm(
            llm=ChatOpenAI(temperature=0, openai_api_key=st.session_state.openai_api_key),
            retriever=retriever,
            return_source_documents=True,
        )
        result = qa_chain({'question': query, 'chat_history': st.session_state.messages})
        result = result.get('answer')
    except Exception as e:
        print(f"Exception {e} with traceback : {traceback.format_exc() } occurred for API key: {st.session_state.openai_api_key}")
        result = ""
    st.session_state.messages.append((query, result))
    return result

def input_fields():
    #
    with st.sidebar:
        #
        openai_key = st.text_input("OpenAI API key", type="password")
        if openai_key != "":
            st.session_state.openai_api_key = openai_key
        #
        # if "pinecone_api_key" in st.secrets:
        #     st.session_state.pinecone_api_key = st.secrets.pinecone_api_key
        # else: 
        #     st.session_state.pinecone_api_key = st.text_input("Pinecone API key", type="password")
        #
        # if "pinecone_env" in st.secrets:
        #     st.session_state.pinecone_env = st.secrets.pinecone_env
        # else:
        #     st.session_state.pinecone_env = st.text_input("Pinecone environment")
        #
        # if "pinecone_index" in st.secrets:
        #     st.session_state.pinecone_index = st.secrets.pinecone_index
        # else:
        #     st.session_state.pinecone_index = st.text_input("Pinecone index name")
    #
    # st.session_state.pinecone_db = st.toggle('Use Pinecone Vector DB')
    #
    st.session_state.source_docs = st.file_uploader(label="Upload Documents", type="pdf", accept_multiple_files=True)
    #

retriever = embeddings_on_local_vectordb()

def process_documents():
    # if not st.session_state.openai_api_key or not st.session_state.pinecone_api_key or not st.session_state.pinecone_env or not st.session_state.pinecone_index or not st.session_state.source_docs:
    if not st.session_state.openai_api_key or not st.session_state.source_docs:
        st.warning(f"Please upload the documents and provide the missing fields.")
    else:
        try:
            for source_doc in st.session_state.source_docs:
                #
                with tempfile.NamedTemporaryFile(delete=False, dir=TMP_DIR.as_posix(), suffix='.pdf') as tmp_file:
                    tmp_file.write(source_doc.read())
                #
                documents = load_documents()
                #
                for _file in TMP_DIR.iterdir():
                    temp_file = TMP_DIR.joinpath(_file)
                    temp_file.unlink()
                #
                texts = split_documents(documents)
                
                print(f"Adding {len(texts)} texts to vector DB")
                retriever.add_texts(texts)
                retriever.persist()
                #
                # if not st.session_state.pinecone_db:
                # st.session_state.retriever = retriever
                # else:
                # st.session_state.retriever = embeddings_on_pinecone(texts)
        except Exception as e:
            st.error(f"An error occurred: {e}")

def boot():
    #
    input_fields()
    #
    st.button("Submit Documents", on_click=process_documents)
    #
    if "messages" not in st.session_state:
        st.session_state.messages = []    
    #
    for message in st.session_state.messages:
        st.chat_message('human').write(message[0])
        st.chat_message('ai').write(message[1])    
    #
    if query := st.chat_input():
        st.chat_message("human").write(query)
        response = query_llm(retriever, query)
        st.chat_message("ai").write(response)

if __name__ == '__main__':
    #
    boot()