|
import gradio as gr |
|
import mysql.connector |
|
import os |
|
from langchain_openai import ChatOpenAI |
|
from langchain_core.prompts import ( |
|
ChatPromptTemplate, |
|
PromptTemplate, |
|
FewShotPromptTemplate, |
|
) |
|
|
|
|
|
from transformers import pipeline |
|
|
|
from sentence_transformers import SentenceTransformer, util |
|
|
|
|
|
db_host = os.environ.get("DB_HOST") |
|
db_user = os.environ.get("DB_USER") |
|
db_pass = os.environ.get("DB_PASS") |
|
db_name = os.environ.get("DB_NAME") |
|
|
|
openai_api_key = os.environ.get("OPENAI_API_KEY") |
|
|
|
db_connection = mysql.connector.connect( |
|
host=db_host, |
|
user=db_user, |
|
password=db_pass, |
|
database=db_name, |
|
) |
|
|
|
db_cursor = db_connection.cursor() |
|
|
|
ORG_ID = 731 |
|
AI_PERSON_ID = 11056 |
|
|
|
potential_labels = [] |
|
|
|
llm = ChatOpenAI(openai_api_key=openai_api_key, model="gpt-4") |
|
|
|
system_prompt = "You are a representative for a local government. A constituent has reached out to you with a question about a local policy. Base your response using the examples below. Be sure to address all points and concerns raised by the constituent. If you do not have enough information to be able to answer the question (you do not see an example that answers the question from the constituent), please make note and another representative will fill in the missing information.\n\n" |
|
|
|
examples_prompt = PromptTemplate( |
|
input_variables=["example"], template="Example:\n\n {example}" |
|
) |
|
|
|
ai_response = "" |
|
|
|
|
|
def get_potential_labels(): |
|
|
|
global potential_labels |
|
db_connection = mysql.connector.connect( |
|
host=db_host, |
|
user=db_user, |
|
password=db_pass, |
|
database=db_name, |
|
) |
|
|
|
db_cursor = db_connection.cursor() |
|
potential_labels = db_cursor.execute( |
|
"SELECT message_category_name FROM radmap_frog12.message_categorys" |
|
) |
|
|
|
potential_labels = db_cursor.fetchall() |
|
|
|
potential_labels = [label[0] for label in potential_labels] |
|
|
|
return potential_labels |
|
|
|
|
|
potential_labels = get_potential_labels() |
|
|
|
|
|
|
|
def classify_email_and_generate_response(representative_email, constituent_email): |
|
potential_labels = get_potential_labels() |
|
classifier_model = pipeline( |
|
"zero-shot-classification", model="MoritzLaurer/deberta-v3-large-zeroshot-v1" |
|
) |
|
print("classifying email") |
|
model_out = classifier_model(constituent_email, potential_labels, multi_label=True) |
|
print("classification complete") |
|
top_labels = [ |
|
label |
|
for label, score in zip(model_out["labels"], model_out["scores"]) |
|
if score > 0.95 |
|
] |
|
if top_labels == []: |
|
|
|
max_score_index = model_out["scores"].index(max(model_out["scores"])) |
|
|
|
top_labels = [model_out["labels"][max_score_index]] |
|
|
|
labels_with_enough_examples = ["Enforcement", "Financial", "Rules"] |
|
|
|
|
|
examples = get_similar_messages(constituent_email) |
|
|
|
if representative_email != "": |
|
current_thread = ( |
|
"Representative message: \n\n" |
|
+ representative_email |
|
+ "\n\nConstituent message: \n\n" |
|
+ constituent_email |
|
) |
|
else: |
|
current_thread = "Constituent message: \n\n" + constituent_email |
|
|
|
prompt = FewShotPromptTemplate( |
|
examples=examples, |
|
example_prompt=examples_prompt, |
|
prefix=system_prompt, |
|
suffix="Current thread:\n\n {current_thread}\n\nYour response:\n\n", |
|
input_variables=["current_thread"], |
|
) |
|
|
|
formatted_prompt = prompt.format(current_thread=current_thread) |
|
|
|
print(formatted_prompt) |
|
|
|
print("Generating GPT4 response") |
|
import time |
|
|
|
start = time.time() |
|
ai_out = llm.invoke(formatted_prompt).content |
|
|
|
print("GPT4 response generated in", time.time() - start, "seconds") |
|
|
|
global ai_response |
|
ai_response = ai_out |
|
|
|
return ", ".join(top_labels), ai_out |
|
|
|
|
|
def remove_spaces_after_comma(s): |
|
parts = s.split(",") |
|
parts = [part.strip() for part in parts] |
|
return ",".join(parts) |
|
|
|
|
|
def get_similar_messages(constituent_email): |
|
db_connection = mysql.connector.connect( |
|
host=db_host, |
|
user=db_user, |
|
password=db_pass, |
|
database=db_name, |
|
) |
|
db_cursor = db_connection.cursor() |
|
|
|
messages_for_category = db_cursor.execute( |
|
"SELECT id, person_id, body FROM radmap_frog12.messages WHERE person_id <> %s AND id IN (SELECT message_id FROM radmap_frog12.message_category_associations)", |
|
(AI_PERSON_ID,), |
|
) |
|
|
|
messages_for_category = db_cursor.fetchall() |
|
embedding_model = SentenceTransformer("all-MiniLM-L6-v2") |
|
|
|
all_message_chains = [] |
|
|
|
for message in messages_for_category: |
|
|
|
|
|
if message[1] != 0: |
|
message_chain = "Representative message: \n\n" + message[2] + "\n\n" |
|
is_representative_turn = False |
|
else: |
|
message_chain = "Constituent message: \n\n" + message[2] + "\n\n" |
|
is_representative_turn = True |
|
embedding = embedding_model.encode([message[2]])[0] |
|
|
|
next_message_id = message[0] |
|
|
|
while next_message_id: |
|
next_message = db_cursor.execute( |
|
"SELECT id, body FROM radmap_frog12.messages WHERE previous_message_id = %s AND person_id <> %s", |
|
(next_message_id, AI_PERSON_ID), |
|
) |
|
next_message = db_cursor.fetchall() |
|
if not next_message: |
|
break |
|
if is_representative_turn: |
|
message_chain += ( |
|
"Representative message: \n\n" + next_message[0][1] + "\n\n" |
|
) |
|
is_representative_turn = False |
|
else: |
|
message_chain += ( |
|
"Constituent message: \n\n" + next_message[0][1] + "\n\n" |
|
) |
|
is_representative_turn = True |
|
|
|
embedding = embedding_model.encode([next_message[0][1]])[0] |
|
|
|
next_message_id = next_message[0][0] |
|
|
|
all_message_chains.append((message_chain, embedding)) |
|
|
|
target_embedding = embedding_model.encode([constituent_email])[0] |
|
|
|
|
|
|
|
top_messages = [] |
|
|
|
for message, embedding in all_message_chains: |
|
cosine_score = util.pytorch_cos_sim(embedding, target_embedding) |
|
if cosine_score > 0.98: |
|
continue |
|
top_messages.append((message, cosine_score)) |
|
|
|
top_messages = sorted(top_messages, key=lambda x: x[1], reverse=True) |
|
|
|
return [{"example": message} for message, score in top_messages[0:3]] |
|
|
|
|
|
|
|
def save_data(orig_user_email, constituent_email, labels, user_response, current_user): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
db_connection = mysql.connector.connect( |
|
host=db_host, |
|
user=db_user, |
|
password=db_pass, |
|
database=db_name, |
|
) |
|
|
|
db_cursor = db_connection.cursor() |
|
|
|
if current_user == "Sheryl Springer": |
|
person_id = 11021 |
|
elif current_user == "Diane Taylor": |
|
person_id = 11023 |
|
elif current_user == "Ann E. Belyea": |
|
person_id = 11025 |
|
elif current_user == "Marcelo Mejia": |
|
person_id = 11027 |
|
elif current_user == "Rishi Vasudeva": |
|
person_id = 11029 |
|
else: |
|
return "You need to select a user to save data" |
|
|
|
try: |
|
first_message_id = 0 |
|
if orig_user_email != "": |
|
db_cursor.execute( |
|
"INSERT INTO radmap_frog12.messages (app_id, org_id, person_id, communication_method_id, status_id, subject, body, send_date, message_type, previous_message_id) VALUES (345678, %s, %s, 1, 1, 'Email Classification and Response Tracking', %s, NOW(), 'Email Classification and Response Tracking', %s)", |
|
(ORG_ID, person_id, orig_user_email, message_id), |
|
) |
|
|
|
first_message_id = db_cursor.lastrowid |
|
|
|
db_cursor.execute( |
|
"INSERT INTO radmap_frog12.messages_log (datetime, message_id, app_id, org_id, person_id, communication_method_id, status_id, subject, body, send_date, message_type, previous_message_id) VALUES (NOW(), %s, 345678, %s, %s, 1, 1, 'Email Classification and Response Tracking', %s, NOW(), 'Email Classification and Response Tracking', %s)", |
|
(first_message_id, ORG_ID, person_id, orig_user_email, 0), |
|
) |
|
|
|
db_cursor.execute( |
|
"INSERT INTO radmap_frog12.messages (app_id, org_id, person_id, communication_method_id, status_id, subject, body, send_date, message_type, previous_message_id) VALUES (345678, %s, 0, 1, 1, 'Email Classification and Response Tracking', %s, NOW(), 'Email Classification and Response Tracking', %s)", |
|
(ORG_ID, constituent_email, first_message_id), |
|
) |
|
|
|
second_message_id = db_cursor.lastrowid |
|
|
|
db_cursor.execute( |
|
"INSERT INTO radmap_frog12.messages_log (datetime, message_id, app_id, org_id, person_id, communication_method_id, status_id, subject, body, send_date, message_type, previous_message_id) VALUES (NOW(), %s, 345678, %s, 0, 1, 1, 'Email Classification and Response Tracking', %s, NOW(), 'Email Classification and Response Tracking', %s)", |
|
(second_message_id, ORG_ID, constituent_email, first_message_id), |
|
) |
|
|
|
|
|
db_cursor.execute( |
|
"INSERT INTO radmap_frog12.messages (app_id, org_id, person_id, communication_method_id, status_id, subject, body, send_date, message_type, previous_message_id) VALUES (345678, %s, %s, 1, 1, 'Email Classification and Response Tracking', %s, NOW(), 'Email Classification and Response Tracking', %s)", |
|
(ORG_ID, AI_PERSON_ID, ai_response, second_message_id), |
|
) |
|
|
|
ai_message_id = db_cursor.lastrowid |
|
|
|
db_cursor.execute( |
|
"INSERT INTO radmap_frog12.messages_log (datetime, message_id, app_id, org_id, person_id, communication_method_id, status_id, subject, body, send_date, message_type, previous_message_id) VALUES (NOW(), %s, 345678, %s, %s, 1, 1, 'Email Classification and Response Tracking', %s, NOW(), 'Email Classification and Response Tracking', %s)", |
|
(ai_message_id, ORG_ID, AI_PERSON_ID, ai_response, second_message_id), |
|
) |
|
|
|
db_cursor.execute( |
|
"INSERT INTO radmap_frog12.messages (app_id, org_id, person_id, communication_method_id, status_id, subject, body, send_date, message_type, previous_message_id) VALUES (345678, %s, %s, 1, 1, 'Email Classification and Response Tracking', %s, NOW(), 'Email Classification and Response Tracking', %s)", |
|
(ORG_ID, person_id, user_response, second_message_id), |
|
) |
|
|
|
third_message_id = db_cursor.lastrowid |
|
|
|
db_cursor.execute( |
|
"INSERT INTO radmap_frog12.messages_log (datetime, message_id, app_id, org_id, person_id, communication_method_id, status_id, subject, body, send_date, message_type, previous_message_id) VALUES (NOW(), %s, 345678, %s, %s, 1, 1, 'Email Classification and Response Tracking', %s, NOW(), 'Email Classification and Response Tracking', %s)", |
|
(third_message_id, ORG_ID, person_id, user_response, second_message_id), |
|
) |
|
|
|
|
|
|
|
|
|
labels = remove_spaces_after_comma(labels) |
|
labels = labels.split(",") |
|
for label in labels: |
|
label_exists = db_cursor.execute( |
|
"SELECT * FROM radmap_frog12.message_categorys WHERE message_category_name = %s", |
|
(label,), |
|
) |
|
label_exists = db_cursor.fetchall() |
|
if label_exists: |
|
message_id = db_cursor.execute( |
|
"SELECT id FROM radmap_frog12.messages WHERE body = %s", |
|
(constituent_email,), |
|
) |
|
message_id = db_cursor.fetchall() |
|
|
|
db_cursor.execute( |
|
"INSERT INTO radmap_frog12.message_category_associations (message_id, message_category_id) VALUES (%s, %s)", |
|
(message_id[0][0], label_exists[0][0]), |
|
) |
|
|
|
message_catergory_association_id = db_cursor.lastrowid |
|
|
|
|
|
db_cursor.execute( |
|
"INSERT INTO radmap_frog12.message_category_associations_log (datetime, message_category_associations_id, message_id, message_category_id) VALUES (NOW(), %s, %s, %s)", |
|
( |
|
message_catergory_association_id, |
|
message_id[0][0], |
|
label_exists[0][0], |
|
), |
|
) |
|
|
|
db_connection.commit() |
|
|
|
return "Response successfully saved to database" |
|
|
|
except Exception as e: |
|
print(e) |
|
db_connection.rollback() |
|
return "Error saving data to database" |
|
|
|
|
|
|
|
auth_username = os.environ.get("AUTH_USERNAME") |
|
auth_password = os.environ.get("AUTH_PASSWORD") |
|
|
|
|
|
auth = [(auth_username, auth_password)] |
|
|
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Soft()) as app: |
|
with gr.Row(): |
|
gr.Markdown("## Campaign Messaging Assistant") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
current_user = gr.Dropdown( |
|
label="Current User", |
|
choices=[ |
|
"Sheryl Springer", |
|
"Ann E. Belyea", |
|
"Marcelo Mejia", |
|
"Rishi Vasudeva", |
|
"Diane Taylor", |
|
], |
|
) |
|
|
|
email_labels_input = gr.Markdown( |
|
"## Message Category Library\n ### " + ", ".join(potential_labels), |
|
) |
|
|
|
original_email_input = gr.TextArea( |
|
placeholder="Enter the original email sent by you", |
|
label="Your Original Email (if any)", |
|
) |
|
|
|
spacer1 = gr.Label(visible=False) |
|
|
|
constituent_response_input = gr.TextArea( |
|
placeholder="Enter the incoming message", |
|
label="Incoming Message (may be a response to original email)", |
|
lines=15, |
|
) |
|
|
|
classify_button = gr.Button("Process Message", variant="primary") |
|
|
|
with gr.Column(): |
|
classification_output = gr.TextArea( |
|
label="Message Categories (modify as needed, but only use categories from Library on left). Separate categories with commas", |
|
lines=1, |
|
interactive=True, |
|
) |
|
|
|
spacer2 = gr.Label(visible=False) |
|
|
|
user_response_input = gr.TextArea( |
|
placeholder="Enter your response to the constituent", |
|
label="Suggested Response (modify as needed)", |
|
lines=25, |
|
) |
|
|
|
save_button = gr.Button("Save Response", variant="primary") |
|
save_output = gr.Label(label="Backend Response") |
|
|
|
|
|
classify_button.click( |
|
fn=classify_email_and_generate_response, |
|
inputs=[original_email_input, constituent_response_input], |
|
outputs=[classification_output, user_response_input], |
|
) |
|
|
|
save_button.click( |
|
fn=save_data, |
|
inputs=[ |
|
original_email_input, |
|
constituent_response_input, |
|
classification_output, |
|
user_response_input, |
|
current_user, |
|
], |
|
outputs=save_output, |
|
) |
|
|
|
|
|
app.launch(auth=auth, debug=True) |
|
|