File size: 16,391 Bytes
50a9c82 6af554a 50a9c82 6af554a 50a9c82 6af554a 50a9c82 655b450 b6bafd7 655b450 27eb4fe 6af554a b6bafd7 50a9c82 27eb4fe 327a303 50a9c82 2aa7929 50a9c82 6af554a 27eb4fe 960bd93 6604630 50a9c82 6604630 50a9c82 6af554a 50a9c82 6af554a b6bafd7 6af554a b6bafd7 50a9c82 655b450 6af554a b6bafd7 6af554a 960bd93 6af554a b6bafd7 6af554a 50a9c82 88af45a 50a9c82 0f9c891 655b450 b6bafd7 655b450 50a9c82 b6bafd7 6923dbf 88af45a ce294e4 53a68f0 88af45a 53a68f0 b6bafd7 50a9c82 ce294e4 b6bafd7 50a9c82 b6bafd7 53a68f0 50a9c82 ce294e4 b6bafd7 50a9c82 655b450 50a9c82 2409abe 7cb54ea 2409abe 50a9c82 cc9a127 429a28c 50a9c82 b6bafd7 50a9c82 88af45a 50a9c82 88af45a 50a9c82 88af45a 50a9c82 88af45a 50a9c82 88af45a 50a9c82 88af45a 50a9c82 88af45a 50a9c82 88af45a 50a9c82 b851225 50a9c82 88af45a 50a9c82 88af45a 50a9c82 6af554a 50a9c82 88af45a 50a9c82 c8880ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
import gradio as gr
import mysql.connector
import os
from langchain_openai import ChatOpenAI
from langchain_core.prompts import (
ChatPromptTemplate,
PromptTemplate,
FewShotPromptTemplate,
)
# Use a pipeline as a high-level helper
from transformers import pipeline
from sentence_transformers import SentenceTransformer, util
# get db info from env vars
db_host = os.environ.get("DB_HOST")
db_user = os.environ.get("DB_USER")
db_pass = os.environ.get("DB_PASS")
db_name = os.environ.get("DB_NAME")
openai_api_key = os.environ.get("OPENAI_API_KEY")
db_connection = mysql.connector.connect(
host=db_host,
user=db_user,
password=db_pass,
database=db_name,
)
db_cursor = db_connection.cursor()
ORG_ID = 731
AI_PERSON_ID = 11056
potential_labels = []
llm = ChatOpenAI(openai_api_key=openai_api_key, model="gpt-4")
system_prompt = "You are a representative for a local government. A constituent has reached out to you with a question about a local policy. Base your response using the examples below. Be sure to address all points and concerns raised by the constituent. If you do not have enough information to be able to answer the question (you do not see an example that answers the question from the constituent), please make note and another representative will fill in the missing information.\n\n"
examples_prompt = PromptTemplate(
input_variables=["example"], template="Example:\n\n {example}"
)
ai_response = ""
def get_potential_labels():
# get potential labels from db
global potential_labels
db_connection = mysql.connector.connect(
host=db_host,
user=db_user,
password=db_pass,
database=db_name,
)
db_cursor = db_connection.cursor()
potential_labels = db_cursor.execute(
"SELECT message_category_name FROM radmap_frog12.message_categorys"
)
potential_labels = db_cursor.fetchall()
potential_labels = [label[0] for label in potential_labels]
return potential_labels
potential_labels = get_potential_labels()
# Function to handle the classification
def classify_email_and_generate_response(representative_email, constituent_email):
potential_labels = get_potential_labels()
classifier_model = pipeline(
"zero-shot-classification", model="MoritzLaurer/deberta-v3-large-zeroshot-v1"
)
print("classifying email")
model_out = classifier_model(constituent_email, potential_labels, multi_label=True)
print("classification complete")
top_labels = [
label
for label, score in zip(model_out["labels"], model_out["scores"])
if score > 0.95
]
if top_labels == []:
# Find the index of the highest score
max_score_index = model_out["scores"].index(max(model_out["scores"]))
# Return the label with the highest score
top_labels = [model_out["labels"][max_score_index]]
labels_with_enough_examples = ["Enforcement", "Financial", "Rules"]
# see if any of the labels are in labels_with_enough_examples, if so get the messages for that category, else return
examples = get_similar_messages(constituent_email)
if representative_email != "":
current_thread = (
"Representative message: \n\n"
+ representative_email
+ "\n\nConstituent message: \n\n"
+ constituent_email
)
else:
current_thread = "Constituent message: \n\n" + constituent_email
prompt = FewShotPromptTemplate(
examples=examples,
example_prompt=examples_prompt,
prefix=system_prompt,
suffix="Current thread:\n\n {current_thread}\n\nYour response:\n\n",
input_variables=["current_thread"],
)
formatted_prompt = prompt.format(current_thread=current_thread)
print(formatted_prompt)
print("Generating GPT4 response")
import time
start = time.time()
ai_out = llm.invoke(formatted_prompt).content
print("GPT4 response generated in", time.time() - start, "seconds")
global ai_response
ai_response = ai_out
return ", ".join(top_labels), ai_out
def remove_spaces_after_comma(s):
parts = s.split(",")
parts = [part.strip() for part in parts]
return ",".join(parts)
def get_similar_messages(constituent_email):
db_connection = mysql.connector.connect(
host=db_host,
user=db_user,
password=db_pass,
database=db_name,
)
db_cursor = db_connection.cursor()
messages_for_category = db_cursor.execute(
"SELECT id, person_id, body FROM radmap_frog12.messages WHERE person_id <> %s AND id IN (SELECT message_id FROM radmap_frog12.message_category_associations)",
(AI_PERSON_ID,),
)
messages_for_category = db_cursor.fetchall()
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
all_message_chains = []
for message in messages_for_category:
# TODO: refactor for when integrated with RADMAP
# if person_id is set
if message[1] != 0:
message_chain = "Representative message: \n\n" + message[2] + "\n\n"
is_representative_turn = False
else:
message_chain = "Constituent message: \n\n" + message[2] + "\n\n"
is_representative_turn = True
embedding = embedding_model.encode([message[2]])[0]
next_message_id = message[0]
while next_message_id:
next_message = db_cursor.execute(
"SELECT id, body FROM radmap_frog12.messages WHERE previous_message_id = %s AND person_id <> %s",
(next_message_id, AI_PERSON_ID),
)
next_message = db_cursor.fetchall()
if not next_message:
break
if is_representative_turn:
message_chain += (
"Representative message: \n\n" + next_message[0][1] + "\n\n"
)
is_representative_turn = False
else:
message_chain += (
"Constituent message: \n\n" + next_message[0][1] + "\n\n"
)
is_representative_turn = True
embedding = embedding_model.encode([next_message[0][1]])[0]
next_message_id = next_message[0][0]
all_message_chains.append((message_chain, embedding))
target_embedding = embedding_model.encode([constituent_email])[0]
# Compute cosine-similarities and keep the top 3 most similar sentences
top_messages = []
for message, embedding in all_message_chains:
cosine_score = util.pytorch_cos_sim(embedding, target_embedding)
if cosine_score > 0.98:
continue
top_messages.append((message, cosine_score))
top_messages = sorted(top_messages, key=lambda x: x[1], reverse=True)
return [{"example": message} for message, score in top_messages[0:3]]
# Function to handle saving data
def save_data(orig_user_email, constituent_email, labels, user_response, current_user):
# save the data to the database
# orig_user_email should have volley 0
# constituent_email should have volley 1
# user_response should have volley 2
# app_id, org_id, and person_id should be 0
# subject should be "Email Classification and Response Tracking"
# body should be the original email
db_connection = mysql.connector.connect(
host=db_host,
user=db_user,
password=db_pass,
database=db_name,
)
db_cursor = db_connection.cursor()
if current_user == "Sheryl Springer":
person_id = 11021
elif current_user == "Diane Taylor":
person_id = 11023
elif current_user == "Ann E. Belyea":
person_id = 11025
elif current_user == "Marcelo Mejia":
person_id = 11027
elif current_user == "Rishi Vasudeva":
person_id = 11029
else:
return "You need to select a user to save data"
try:
first_message_id = 0
if orig_user_email != "":
db_cursor.execute(
"INSERT INTO radmap_frog12.messages (app_id, org_id, person_id, communication_method_id, status_id, subject, body, send_date, message_type, previous_message_id) VALUES (345678, %s, %s, 1, 1, 'Email Classification and Response Tracking', %s, NOW(), 'Email Classification and Response Tracking', %s)",
(ORG_ID, person_id, orig_user_email, message_id),
)
first_message_id = db_cursor.lastrowid
db_cursor.execute(
"INSERT INTO radmap_frog12.messages_log (datetime, message_id, app_id, org_id, person_id, communication_method_id, status_id, subject, body, send_date, message_type, previous_message_id) VALUES (NOW(), %s, 345678, %s, %s, 1, 1, 'Email Classification and Response Tracking', %s, NOW(), 'Email Classification and Response Tracking', %s)",
(first_message_id, ORG_ID, person_id, orig_user_email, 0),
)
db_cursor.execute(
"INSERT INTO radmap_frog12.messages (app_id, org_id, person_id, communication_method_id, status_id, subject, body, send_date, message_type, previous_message_id) VALUES (345678, %s, 0, 1, 1, 'Email Classification and Response Tracking', %s, NOW(), 'Email Classification and Response Tracking', %s)",
(ORG_ID, constituent_email, first_message_id),
)
second_message_id = db_cursor.lastrowid
db_cursor.execute(
"INSERT INTO radmap_frog12.messages_log (datetime, message_id, app_id, org_id, person_id, communication_method_id, status_id, subject, body, send_date, message_type, previous_message_id) VALUES (NOW(), %s, 345678, %s, 0, 1, 1, 'Email Classification and Response Tracking', %s, NOW(), 'Email Classification and Response Tracking', %s)",
(second_message_id, ORG_ID, constituent_email, first_message_id),
)
# add the ai response to the database
db_cursor.execute(
"INSERT INTO radmap_frog12.messages (app_id, org_id, person_id, communication_method_id, status_id, subject, body, send_date, message_type, previous_message_id) VALUES (345678, %s, %s, 1, 1, 'Email Classification and Response Tracking', %s, NOW(), 'Email Classification and Response Tracking', %s)",
(ORG_ID, AI_PERSON_ID, ai_response, second_message_id),
)
ai_message_id = db_cursor.lastrowid
db_cursor.execute(
"INSERT INTO radmap_frog12.messages_log (datetime, message_id, app_id, org_id, person_id, communication_method_id, status_id, subject, body, send_date, message_type, previous_message_id) VALUES (NOW(), %s, 345678, %s, %s, 1, 1, 'Email Classification and Response Tracking', %s, NOW(), 'Email Classification and Response Tracking', %s)",
(ai_message_id, ORG_ID, AI_PERSON_ID, ai_response, second_message_id),
)
db_cursor.execute(
"INSERT INTO radmap_frog12.messages (app_id, org_id, person_id, communication_method_id, status_id, subject, body, send_date, message_type, previous_message_id) VALUES (345678, %s, %s, 1, 1, 'Email Classification and Response Tracking', %s, NOW(), 'Email Classification and Response Tracking', %s)",
(ORG_ID, person_id, user_response, second_message_id),
)
third_message_id = db_cursor.lastrowid
db_cursor.execute(
"INSERT INTO radmap_frog12.messages_log (datetime, message_id, app_id, org_id, person_id, communication_method_id, status_id, subject, body, send_date, message_type, previous_message_id) VALUES (NOW(), %s, 345678, %s, %s, 1, 1, 'Email Classification and Response Tracking', %s, NOW(), 'Email Classification and Response Tracking', %s)",
(third_message_id, ORG_ID, person_id, user_response, second_message_id),
)
# insert a row into the message_categorys_associations table for each valid label in labels with the message_id of the constituent_email
# if there is a comma, remove all spaces after the comma
labels = remove_spaces_after_comma(labels)
labels = labels.split(",")
for label in labels:
label_exists = db_cursor.execute(
"SELECT * FROM radmap_frog12.message_categorys WHERE message_category_name = %s",
(label,),
)
label_exists = db_cursor.fetchall()
if label_exists:
message_id = db_cursor.execute(
"SELECT id FROM radmap_frog12.messages WHERE body = %s",
(constituent_email,),
)
message_id = db_cursor.fetchall()
db_cursor.execute(
"INSERT INTO radmap_frog12.message_category_associations (message_id, message_category_id) VALUES (%s, %s)",
(message_id[0][0], label_exists[0][0]),
)
message_catergory_association_id = db_cursor.lastrowid
# save to logs
db_cursor.execute(
"INSERT INTO radmap_frog12.message_category_associations_log (datetime, message_category_associations_id, message_id, message_category_id) VALUES (NOW(), %s, %s, %s)",
(
message_catergory_association_id,
message_id[0][0],
label_exists[0][0],
),
)
db_connection.commit()
return "Response successfully saved to database"
except Exception as e:
print(e)
db_connection.rollback()
return "Error saving data to database"
# read auth from env vars
auth_username = os.environ.get("AUTH_USERNAME")
auth_password = os.environ.get("AUTH_PASSWORD")
# Define your username and password pairs
auth = [(auth_username, auth_password)]
# Start building the Gradio interface
# Start building the Gradio interface with two columns
with gr.Blocks(theme=gr.themes.Soft()) as app:
with gr.Row():
gr.Markdown("## Campaign Messaging Assistant")
with gr.Row():
with gr.Column():
current_user = gr.Dropdown(
label="Current User",
choices=[
"Sheryl Springer",
"Ann E. Belyea",
"Marcelo Mejia",
"Rishi Vasudeva",
"Diane Taylor",
],
)
email_labels_input = gr.Markdown(
"## Message Category Library\n ### " + ", ".join(potential_labels),
)
original_email_input = gr.TextArea(
placeholder="Enter the original email sent by you",
label="Your Original Email (if any)",
)
spacer1 = gr.Label(visible=False)
constituent_response_input = gr.TextArea(
placeholder="Enter the incoming message",
label="Incoming Message (may be a response to original email)",
lines=15,
)
classify_button = gr.Button("Process Message", variant="primary")
with gr.Column():
classification_output = gr.TextArea(
label="Message Categories (modify as needed, but only use categories from Library on left). Separate categories with commas",
lines=1,
interactive=True,
)
spacer2 = gr.Label(visible=False)
user_response_input = gr.TextArea(
placeholder="Enter your response to the constituent",
label="Suggested Response (modify as needed)",
lines=25,
)
save_button = gr.Button("Save Response", variant="primary")
save_output = gr.Label(label="Backend Response")
# Define button actions
classify_button.click(
fn=classify_email_and_generate_response,
inputs=[original_email_input, constituent_response_input],
outputs=[classification_output, user_response_input],
)
save_button.click(
fn=save_data,
inputs=[
original_email_input,
constituent_response_input,
classification_output,
user_response_input,
current_user,
],
outputs=save_output,
)
# Launch the app
app.launch(auth=auth, debug=True)
|