File size: 4,041 Bytes
b291470 bfd452f b291470 f9609e4 b09cb44 f9609e4 b291470 47a2e1b b291470 6c43c87 a1d0b3c b09cb44 b291470 a1d0b3c b09cb44 b291470 a1d0b3c b291470 a1d0b3c b09cb44 a1d0b3c b09cb44 62deb67 71194e6 03e8fb3 b09cb44 a1d0b3c 0df43cf b11414e a1d0b3c bfd452f a1d0b3c b291470 a1d0b3c 8547ad1 a1d0b3c 7fc513a a1d0b3c 3cad95c b09cb44 3cad95c b8a6078 b09cb44 b8a6078 b09cb44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
import streamlit as st
import transformers
import torch
import requests
from PIL import Image
from transformers import AutoTokenizer, AutoModelForSequenceClassification
# Setting the page configurations
st.set_page_config(
page_title="Fake News Detection App",
page_icon="fas fa-exclamation-triangle",
layout="wide",
initial_sidebar_state="auto")
# Load the model and tokenizer
model_name = AutoModelForSequenceClassification.from_pretrained("ikoghoemmanuell/finetuned_fake_news_roberta")
tokenizer_name = AutoTokenizer.from_pretrained("ikoghoemmanuell/finetuned_fake_news_roberta")
# Define the CSS style for the app
st.markdown(
"""
<style>
body {
background-color: #f5f5f5;
}
h1 {
color: #4e79a7;
}
</style>
""",
unsafe_allow_html=True
)
# Set up sidebar
st.sidebar.header('Navigation')
menu = ['Home', 'About']
choice = st.sidebar.selectbox(
"Select an option",
menu)
# Define the function for detecting fake news
@st.cache_resource
def detect_fake_news(text):
# Load the pipeline.
pipeline = transformers.pipeline("text-classification",
model=model_name,
tokenizer=tokenizer_name)
# Predict the sentiment.
prediction = pipeline(text)
sentiment = prediction[0]["label"]
score = prediction[0]["score"]
return sentiment, score
# Home section
if choice == 'Home':
st.markdown("<h1 style='text-align: center;margin-top:0px;'>TRUTH- A fake news detection app</h1>",
unsafe_allow_html=True)
# Loading GIF
gif_url = "https://thumbs.gfycat.com/AnchoredWeeklyGreatwhiteshark-size_restricted.gif"
st.image(gif_url,
use_column_width=True,
width=400)
st.markdown("<h1 style='text-align: center;'>Welcome</h1>",
unsafe_allow_html=True)
st.markdown("<p style='text-align: center;'>This is a Fake News Detection App.</p>",
unsafe_allow_html=True)
# Get user input
text = st.text_input("Enter some text and we'll tell you if it's likely to be fake news or not!")
if st.button('Predict'):
# Show fake news detection output
if text:
with st.spinner('Checking if news is Fake...'):
label, score = detect_fake_news(text)
if label == "LABEL_1":
st.error(f"The text is likely to be fake news with a confidence score of {score*100:.2f}%!")
else:
st.success(f"The text is likely to be genuine with a confidence score of {score*100:.2f}%!")
else:
with st.spinner('Checking if news is Fake...'):
st.warning("Please enter some text to detect fake news.")
# About section
if choice == 'About':
# Load the banner image
banner_image_url = "https://docs.gato.txst.edu/78660/w/2000/a_1dzGZrL3bG/fake-fact.jpg"
# Display the banner image
st.image(
banner_image_url,
use_column_width=True,
width=400)
st.markdown('''
<p style='font-size: 20px; font-style: italic;font-style: bold;'>
TRUTH is a cutting-edge application specifically designed to combat the spread of fake
news. Using state-of-the-art algorithms and advanced deep learning techniques, our app
empowers users to detect and verify the authenticity of news articles. TRUTH provides
accurate assessments of the reliability of news content. With its user-friendly
interface and intuitive design, the app enables users to easily navigate and obtain
trustworthy information in real-time. With TRUTH, you can take control of the news you
consume and make informed decisions based on verified facts.
</p>
''',
unsafe_allow_html=True) |