ikoghoemmanuell
commited on
Commit
•
b291470
1
Parent(s):
1dfa57b
Upload 2 files
Browse files- app.py +64 -0
- requirements.txt +11 -0
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import transformers
|
3 |
+
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
5 |
+
|
6 |
+
# Load the model and tokenizer
|
7 |
+
model = AutoModelForSequenceClassification.from_pretrained("ikoghoemmanuell/finetuned_fake_news_bert")
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained("ikoghoemmanuell/finetuned_fake_news_bert")
|
9 |
+
|
10 |
+
# Define the function for detecting fake news
|
11 |
+
@st.cache_resource
|
12 |
+
def detect_fake_news(text):
|
13 |
+
# Load the pipeline.
|
14 |
+
pipeline = transformers.pipeline("text-classification")
|
15 |
+
|
16 |
+
# Predict the sentiment.
|
17 |
+
prediction = pipeline(text)
|
18 |
+
sentiment = prediction[0]["label"]
|
19 |
+
score = prediction[0]["score"]
|
20 |
+
|
21 |
+
return sentiment, score
|
22 |
+
|
23 |
+
# Setting the page configurations
|
24 |
+
st.set_page_config(
|
25 |
+
page_title="Fake News Detection App",
|
26 |
+
page_icon=":smile:",
|
27 |
+
layout="wide",
|
28 |
+
initial_sidebar_state="auto",
|
29 |
+
)
|
30 |
+
|
31 |
+
# Add description and title
|
32 |
+
st.write("""
|
33 |
+
# Fake News Detection
|
34 |
+
Enter some text and we'll tell you if it's likely to be fake news or not!
|
35 |
+
""")
|
36 |
+
|
37 |
+
# Add image
|
38 |
+
image = st.image("https://docs.gato.txst.edu/78660/w/2000/a_1dzGZrL3bG/fake-fact.jpg", width=400)
|
39 |
+
|
40 |
+
# Get user input
|
41 |
+
text = st.text_input("Enter some text here:")
|
42 |
+
|
43 |
+
# Define the CSS style for the app
|
44 |
+
st.markdown(
|
45 |
+
"""
|
46 |
+
<style>
|
47 |
+
body {
|
48 |
+
background-color: #f5f5f5;
|
49 |
+
}
|
50 |
+
h1 {
|
51 |
+
color: #4e79a7;
|
52 |
+
}
|
53 |
+
</style>
|
54 |
+
""",
|
55 |
+
unsafe_allow_html=True
|
56 |
+
)
|
57 |
+
|
58 |
+
# Show fake news detection output
|
59 |
+
if text:
|
60 |
+
label, score = detect_fake_news(text)
|
61 |
+
if label == "Fake":
|
62 |
+
st.error(f"The text is likely to be fake news with a confidence score of {score*100:.2f}%!")
|
63 |
+
else:
|
64 |
+
st.success(f"The text is likely to be genuine with a confidence score of {score*100:.2f}%!")
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
# pandas==1.5.3
|
3 |
+
# numpy==1.24.2
|
4 |
+
# pillow
|
5 |
+
# requests
|
6 |
+
# bokeh
|
7 |
+
# scikit-learn==1.2.2
|
8 |
+
|
9 |
+
# for huggingface app
|
10 |
+
torch
|
11 |
+
transformers
|