leaderboard / src /check_validity.py
Alvaro Romo
Fixed logging messages and refactor code. Added log in private dataset
c2f297a
raw
history blame
11.2 kB
import json
import logging
import re
import huggingface_hub
from huggingface_hub import HfApi, ModelCard, hf_hub_download
from huggingface_hub.hf_api import (
ModelInfo,
get_safetensors_metadata,
parse_safetensors_file_metadata,
)
from transformers import AutoConfig, AutoTokenizer
from src.submit import ModelSizeChecker
# ht to @Wauplin, thank you for the snippet!
# See https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard/discussions/317
def check_model_card(repo_id: str) -> tuple[bool, str]:
# Returns operation status, and error message
try:
card = ModelCard.load(repo_id)
except huggingface_hub.utils.EntryNotFoundError:
return (
False,
"Please add a model card to your model to explain how you trained/fine-tuned it.",
None,
)
# Enforce license metadata
if card.data.license is None and not (
"license_name" in card.data and "license_link" in card.data
):
return (
False,
(
"License not found. Please add a license to your model card using the `license` metadata or a"
" `license_name`/`license_link` pair."
),
None,
)
# Enforce card content
if len(card.text) < 200:
return (
False,
"Please add a description to your model card, it is too short.",
None,
)
return True, "", card
def is_model_on_hub(
model_name: str,
revision: str,
token: str | None = None,
trust_remote_code: bool = False,
test_tokenizer: bool = False,
) -> tuple[bool, str, AutoConfig]:
try:
config = AutoConfig.from_pretrained(
model_name,
revision=revision,
trust_remote_code=trust_remote_code,
token=token,
force_download=True,
)
if test_tokenizer:
try:
_ = AutoTokenizer.from_pretrained(
model_name,
revision=revision,
trust_remote_code=trust_remote_code,
token=token,
)
except ValueError as e:
return (
False,
f"uses a tokenizer which is not in a transformers release: {e}",
None,
)
except Exception:
return (
False,
"'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?",
None,
)
except Exception:
return (
False,
"'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?",
None,
)
return True, None, config
except ValueError:
return (
False,
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
None,
)
except Exception as e:
if "You are trying to access a gated repo." in str(e):
return True, "uses a gated model.", None
return (
False,
f"was not found or misconfigured on the hub! Error raised was {e.args[0]}",
None,
)
def get_model_size(
model_info: ModelInfo, precision: str, base_model: str | None
) -> tuple[float | None, str]:
size_pattern = re.compile(r"(\d+\.)?\d+(b|m)")
safetensors = None
adapter_safetensors = None
# hack way to check that model is adapter
is_adapter = "adapter_config.json" in (
s.rfilename for s in model_info.siblings
)
try:
if is_adapter:
if not base_model:
return (
None,
"Adapter model submission detected. Please ensure the base model information is provided.",
)
adapter_safetensors = parse_safetensors_file_metadata(
model_info.id, "adapter_model.safetensors"
)
safetensors = get_safetensors_metadata(base_model)
else:
safetensors = get_safetensors_metadata(model_info.id)
except Exception as e:
logging.warning(
f"Failed to get safetensors metadata for model {model_info.id}: {e!s}"
)
if safetensors is not None:
model_size = sum(safetensors.parameter_count.values())
if adapter_safetensors is not None:
model_size += sum(safetensors.parameter_count.values())
model_size = round(model_size / 1e9, 3)
else:
try:
size_match = re.search(size_pattern, model_info.id.lower())
if size_match:
model_size = size_match.group(0)
model_size = round(
float(model_size[:-1])
if model_size[-1] == "b"
else float(model_size[:-1]) / 1e3,
3,
)
else:
return None, "Unknown model size"
except AttributeError:
logging.warning(
f"Unable to parse model size from ID: {model_info.id}"
)
return None, "Unknown model size"
size_factor = (
8 if (precision == "GPTQ" or "gptq" in model_info.id.lower()) else 1
)
model_size = size_factor * model_size
return model_size, ""
def get_model_arch(model_info: ModelInfo):
return model_info.config.get("architectures", "Unknown")
def check_chat_template(model: str, revision: str) -> tuple[bool, str]:
try:
# Attempt to download only the tokenizer_config.json file
config_file = hf_hub_download(
repo_id=model,
filename="tokenizer_config.json",
revision=revision,
repo_type="model",
)
# Read and parse the tokenizer_config.json file
with open(config_file, "r") as f:
tokenizer_config = json.load(f)
# Check if chat_template exists in the tokenizer configuration
if "chat_template" not in tokenizer_config:
return (
False,
f"The model {model} doesn't have a chat_template in its tokenizer_config.json. Please add a chat_template before submitting or submit without it.",
)
return True, ""
except Exception as e:
return (
False,
f"Error checking chat_template for model {model}: {str(e)}",
)
def get_model_tags(model_card, model: str):
is_merge_from_metadata = False
is_moe_from_metadata = False
tags = []
if model_card is None:
return tags
if model_card.data.tags:
is_merge_from_metadata = any(
[
tag in model_card.data.tags
for tag in ["merge", "moerge", "mergekit", "lazymergekit"]
]
)
is_moe_from_metadata = any(
[tag in model_card.data.tags for tag in ["moe", "moerge"]]
)
is_merge_from_model_card = any(
keyword in model_card.text.lower()
for keyword in ["merged model", "merge model", "moerge"]
)
if is_merge_from_model_card or is_merge_from_metadata:
tags.append("merge")
is_moe_from_model_card = any(
keyword in model_card.text.lower() for keyword in ["moe", "mixtral"]
)
# Hardcoding because of gating problem
if "Qwen/Qwen1.5-32B" in model:
is_moe_from_model_card = False
is_moe_from_name = "moe" in model.lower().replace("/", "-").replace(
"_", "-"
).split("-")
if is_moe_from_model_card or is_moe_from_name or is_moe_from_metadata:
tags.append("moe")
return tags
def validate_model(
model, precision, base_model, weight_type, use_chat_template
):
"""
Validate model with some checkers to assure tha can be evaluated
:param model: hf model name
:param precision: model parameters data type
:param base_model: base model (if it is need it)
:param weight_type:
:param use_chat_template:
:return:
"""
API = HfApi()
try:
model_info = API.model_info(repo_id=model, revision="main")
except:
return (
"Could not get your model information. Please fill it up properly."
)
# Check model size early
model_size, error_text = get_model_size(
model_info=model_info, precision=precision, base_model=base_model
)
if model_size is None:
return error_text
# Absolute size limit for float16 and bfloat16
if precision in ["float16", "bfloat16"] and model_size > 100:
error_message = (
f"Sadly, models larger than 100B parameters cannot be submitted in {precision} precision at this time. "
f"Your model size: {model_size:.2f}B parameters."
)
return error_message
# Precision-adjusted size limit for 8bit, 4bit, and GPTQ
if precision in ["8bit", "4bit", "GPTQ"]:
size_checker = ModelSizeChecker(
model=model, precision=precision, model_size_in_b=model_size
)
if not size_checker.can_evaluate():
precision_factor = size_checker.get_precision_factor()
max_size = 140 * precision_factor
error_message = (
f"Sadly, models this big ({model_size:.2f}B parameters) cannot be evaluated automatically "
f"at the moment on our cluster. The maximum size for {precision} precision is {max_size:.2f}B parameters."
)
return error_message
architecture = "?"
# Is the model on the hub?
if weight_type in ["Delta", "Adapter"]:
base_model_on_hub, error, _ = is_model_on_hub(
model_name=base_model,
revision="main",
token=None,
test_tokenizer=True,
)
if not base_model_on_hub:
return f'Base model "{base_model}" {error}'
if not weight_type == "Adapter":
model_on_hub, error, model_config = is_model_on_hub(
model_name=model, revision=model_info.sha, test_tokenizer=True
)
if not model_on_hub or model_config is None:
return f'Model "{model}" {error}'
if model_config is not None:
architectures = getattr(model_config, "architectures", None)
if architectures:
architecture = ";".join(architectures)
# Were the model card and license filled?
try:
_ = model_info.cardData["license"]
except Exception:
return "Please select a license for your model"
modelcard_OK, error_msg, model_card = check_model_card(model)
if not modelcard_OK:
return error_msg
# Check the chat template submission
if use_chat_template:
chat_template_valid, chat_template_error = check_chat_template(
model, "main"
)
if not chat_template_valid:
return chat_template_error
return None