import json import logging import re import huggingface_hub from huggingface_hub import HfApi, ModelCard, hf_hub_download from huggingface_hub.hf_api import ( ModelInfo, get_safetensors_metadata, parse_safetensors_file_metadata, ) from transformers import AutoConfig, AutoTokenizer from src.submit import ModelSizeChecker # ht to @Wauplin, thank you for the snippet! # See https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard/discussions/317 def check_model_card(repo_id: str) -> tuple[bool, str]: # Returns operation status, and error message try: card = ModelCard.load(repo_id) except huggingface_hub.utils.EntryNotFoundError: return ( False, "Please add a model card to your model to explain how you trained/fine-tuned it.", None, ) # Enforce license metadata if card.data.license is None and not ( "license_name" in card.data and "license_link" in card.data ): return ( False, ( "License not found. Please add a license to your model card using the `license` metadata or a" " `license_name`/`license_link` pair." ), None, ) # Enforce card content if len(card.text) < 200: return ( False, "Please add a description to your model card, it is too short.", None, ) return True, "", card def is_model_on_hub( model_name: str, revision: str, token: str | None = None, trust_remote_code: bool = False, test_tokenizer: bool = False, ) -> tuple[bool, str, AutoConfig]: try: config = AutoConfig.from_pretrained( model_name, revision=revision, trust_remote_code=trust_remote_code, token=token, force_download=True, ) if test_tokenizer: try: _ = AutoTokenizer.from_pretrained( model_name, revision=revision, trust_remote_code=trust_remote_code, token=token, ) except ValueError as e: return ( False, f"uses a tokenizer which is not in a transformers release: {e}", None, ) except Exception: return ( False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None, ) except Exception: return ( False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None, ) return True, None, config except ValueError: return ( False, "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.", None, ) except Exception as e: if "You are trying to access a gated repo." in str(e): return True, "uses a gated model.", None return ( False, f"was not found or misconfigured on the hub! Error raised was {e.args[0]}", None, ) def get_model_size( model_info: ModelInfo, precision: str, base_model: str | None ) -> tuple[float | None, str]: size_pattern = re.compile(r"(\d+\.)?\d+(b|m)") safetensors = None adapter_safetensors = None # hack way to check that model is adapter is_adapter = "adapter_config.json" in ( s.rfilename for s in model_info.siblings ) try: if is_adapter: if not base_model: return ( None, "Adapter model submission detected. Please ensure the base model information is provided.", ) adapter_safetensors = parse_safetensors_file_metadata( model_info.id, "adapter_model.safetensors" ) safetensors = get_safetensors_metadata(base_model) else: safetensors = get_safetensors_metadata(model_info.id) except Exception as e: logging.warning( f"Failed to get safetensors metadata for model {model_info.id}: {e!s}" ) if safetensors is not None: model_size = sum(safetensors.parameter_count.values()) if adapter_safetensors is not None: model_size += sum(safetensors.parameter_count.values()) model_size = round(model_size / 1e9, 3) else: try: size_match = re.search(size_pattern, model_info.id.lower()) if size_match: model_size = size_match.group(0) model_size = round( float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3, ) else: return None, "Unknown model size" except AttributeError: logging.warning( f"Unable to parse model size from ID: {model_info.id}" ) return None, "Unknown model size" size_factor = ( 8 if (precision == "GPTQ" or "gptq" in model_info.id.lower()) else 1 ) model_size = size_factor * model_size return model_size, "" def get_model_arch(model_info: ModelInfo): return model_info.config.get("architectures", "Unknown") def check_chat_template(model: str, revision: str) -> tuple[bool, str]: try: # Attempt to download only the tokenizer_config.json file config_file = hf_hub_download( repo_id=model, filename="tokenizer_config.json", revision=revision, repo_type="model", ) # Read and parse the tokenizer_config.json file with open(config_file, "r") as f: tokenizer_config = json.load(f) # Check if chat_template exists in the tokenizer configuration if "chat_template" not in tokenizer_config: return ( False, f"The model {model} doesn't have a chat_template in its tokenizer_config.json. Please add a chat_template before submitting or submit without it.", ) return True, "" except Exception as e: return ( False, f"Error checking chat_template for model {model}: {str(e)}", ) def get_model_tags(model_card, model: str): is_merge_from_metadata = False is_moe_from_metadata = False tags = [] if model_card is None: return tags if model_card.data.tags: is_merge_from_metadata = any( [ tag in model_card.data.tags for tag in ["merge", "moerge", "mergekit", "lazymergekit"] ] ) is_moe_from_metadata = any( [tag in model_card.data.tags for tag in ["moe", "moerge"]] ) is_merge_from_model_card = any( keyword in model_card.text.lower() for keyword in ["merged model", "merge model", "moerge"] ) if is_merge_from_model_card or is_merge_from_metadata: tags.append("merge") is_moe_from_model_card = any( keyword in model_card.text.lower() for keyword in ["moe", "mixtral"] ) # Hardcoding because of gating problem if "Qwen/Qwen1.5-32B" in model: is_moe_from_model_card = False is_moe_from_name = "moe" in model.lower().replace("/", "-").replace( "_", "-" ).split("-") if is_moe_from_model_card or is_moe_from_name or is_moe_from_metadata: tags.append("moe") return tags def validate_model( model, precision, base_model, weight_type, use_chat_template ): """ Validate model with some checkers to assure tha can be evaluated :param model: hf model name :param precision: model parameters data type :param base_model: base model (if it is need it) :param weight_type: :param use_chat_template: :return: """ API = HfApi() try: model_info = API.model_info(repo_id=model, revision="main") except: return ( "Could not get your model information. Please fill it up properly." ) # Check model size early model_size, error_text = get_model_size( model_info=model_info, precision=precision, base_model=base_model ) if model_size is None: return error_text # Absolute size limit for float16 and bfloat16 if precision in ["float16", "bfloat16"] and model_size > 100: error_message = ( f"Sadly, models larger than 100B parameters cannot be submitted in {precision} precision at this time. " f"Your model size: {model_size:.2f}B parameters." ) return error_message # Precision-adjusted size limit for 8bit, 4bit, and GPTQ if precision in ["8bit", "4bit", "GPTQ"]: size_checker = ModelSizeChecker( model=model, precision=precision, model_size_in_b=model_size ) if not size_checker.can_evaluate(): precision_factor = size_checker.get_precision_factor() max_size = 140 * precision_factor error_message = ( f"Sadly, models this big ({model_size:.2f}B parameters) cannot be evaluated automatically " f"at the moment on our cluster. The maximum size for {precision} precision is {max_size:.2f}B parameters." ) return error_message architecture = "?" # Is the model on the hub? if weight_type in ["Delta", "Adapter"]: base_model_on_hub, error, _ = is_model_on_hub( model_name=base_model, revision="main", token=None, test_tokenizer=True, ) if not base_model_on_hub: return f'Base model "{base_model}" {error}' if not weight_type == "Adapter": model_on_hub, error, model_config = is_model_on_hub( model_name=model, revision=model_info.sha, test_tokenizer=True ) if not model_on_hub or model_config is None: return f'Model "{model}" {error}' if model_config is not None: architectures = getattr(model_config, "architectures", None) if architectures: architecture = ";".join(architectures) # Were the model card and license filled? try: _ = model_info.cardData["license"] except Exception: return "Please select a license for your model" modelcard_OK, error_msg, model_card = check_model_card(model) if not modelcard_OK: return error_msg # Check the chat template submission if use_chat_template: chat_template_valid, chat_template_error = check_chat_template( model, "main" ) if not chat_template_valid: return chat_template_error return None