Spaces:
Sleeping
Sleeping
import gradio as gr | |
import joblib | |
import numpy as np | |
from huggingface_hub import hf_hub_download | |
# Download models from Hugging Face Hub | |
svr_path = hf_hub_download(repo_id="iamomtiwari/Nutrition-regression-models", filename="svr_model.pkl") | |
lr_path = hf_hub_download(repo_id="iamomtiwari/Nutrition-regression-models", filename="linear_regression.pkl") | |
# Load models | |
svr_model = joblib.load(svr_path) | |
linear_reg = joblib.load(lr_path) | |
# Selected 10 important features | |
features = ['Caloric Value', 'Fat', 'Saturated Fats', 'Carbohydrates', 'Sugars', | |
'Protein', 'Cholesterol', 'Sodium', 'Calcium', 'Iron'] | |
# Define prediction function | |
def predict(model_name, *inputs): | |
input_data = np.array([inputs]).reshape(1, -1) | |
if model_name == "SVR": | |
prediction = svr_model.predict(input_data)[0] | |
else: | |
prediction = linear_reg.predict(input_data)[0] | |
return round(prediction, 4) | |
# Gradio Interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Nutrition Density Prediction") | |
model_choice = gr.Radio(["SVR", "Linear Regression"], label="Select Model") | |
input_widgets = [gr.Slider(minimum=0, maximum=100, step=0.1, label=feature) for feature in features] | |
predict_button = gr.Button("Predict") | |
clear_button = gr.Button("Clear") | |
output_label = gr.Textbox(label="Prediction") | |
predict_button.click(predict, inputs=[model_choice] + input_widgets, outputs=output_label) | |
# Reset sliders to their default value (0) on "Clear" | |
def reset_sliders(): | |
return [0] * len(features) | |
clear_button.click(reset_sliders, inputs=[], outputs=input_widgets) | |
# Run the app | |
demo.launch() | |