iamomtiwari commited on
Commit
9079a04
·
verified ·
1 Parent(s): 418bc1f

Upload 4 files

Browse files
Files changed (4) hide show
  1. app.py +48 -0
  2. linear_regression.pkl +3 -0
  3. requirements.txt +5 -0
  4. svr_model.pkl +3 -0
app.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import joblib
3
+ import numpy as np
4
+ from huggingface_hub import hf_hub_download
5
+
6
+ # Download models from Hugging Face Hub
7
+ svr_path = hf_hub_download(repo_id="iamomtiwari/Nutrition-regression-models", filename="svr_model.pkl")
8
+ lr_path = hf_hub_download(repo_id="iamomtiwari/Nutrition-regression-models", filename="linear_regression.pkl")
9
+
10
+ # Load models
11
+ svr_model = joblib.load(svr_path)
12
+ linear_reg = joblib.load(lr_path)
13
+
14
+ # Selected 10 important features
15
+ features = ['Caloric Value', 'Fat', 'Saturated Fats', 'Carbohydrates', 'Sugars',
16
+ 'Protein', 'Cholesterol', 'Sodium', 'Calcium', 'Iron']
17
+
18
+ # Define prediction function
19
+ def predict(model_name, *inputs):
20
+ input_data = np.array([inputs]).reshape(1, -1)
21
+
22
+ if model_name == "SVR":
23
+ prediction = svr_model.predict(input_data)[0]
24
+ else:
25
+ prediction = linear_reg.predict(input_data)[0]
26
+
27
+ return round(prediction, 4)
28
+
29
+ # Gradio Interface
30
+ with gr.Blocks() as demo:
31
+ gr.Markdown("# Nutrition Density Prediction")
32
+
33
+ model_choice = gr.Radio(["SVR", "Linear Regression"], label="Select Model")
34
+ input_widgets = [gr.Slider(minimum=0, maximum=100, step=0.1, label=feature) for feature in features]
35
+ predict_button = gr.Button("Predict")
36
+ clear_button = gr.Button("Clear")
37
+ output_label = gr.Textbox(label="Prediction")
38
+
39
+ predict_button.click(predict, inputs=[model_choice] + input_widgets, outputs=output_label)
40
+
41
+ # Reset sliders to their default value (0) on "Clear"
42
+ def reset_sliders():
43
+ return [0] * len(features)
44
+
45
+ clear_button.click(reset_sliders, inputs=[], outputs=input_widgets)
46
+
47
+ # Run the app
48
+ demo.launch()
linear_regression.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de35ed6ba09c115498091604224187d4e2bda199f8edd9b2027f562d6fabcc48
3
+ size 1876
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ gradio
2
+ joblib
3
+ pandas
4
+ scikit-learn
5
+ huggingface_hub
svr_model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2fba68204dc51a2026d8541ba7132ba7cb47d11da4a25f6e292b33bf0e1769e0
3
+ size 8370