Spaces:
Running
on
Zero
Running
on
Zero
from typing import Optional, Tuple | |
from einops import rearrange | |
import torch | |
import torch.nn.functional as F | |
from PIL import Image | |
from torch import nn | |
import numpy as np | |
import os | |
import time | |
import gradio as gr | |
import spaces | |
USE_CUDA = torch.cuda.is_available() | |
print("CUDA is available:", USE_CUDA) | |
def transform_images(images, resolution=(1024, 1024)): | |
images = [image.convert("RGB").resize(resolution) for image in images] | |
# Convert to torch tensor | |
images = [torch.tensor(np.array(image).transpose(2, 0, 1)).float() / 255 for image in images] | |
# Normalize | |
images = [(image - 0.5) / 0.5 for image in images] | |
images = torch.stack(images) | |
return images | |
class MobileSAM(nn.Module): | |
def __init__(self, **kwargs): | |
super().__init__(**kwargs) | |
from mobile_sam import sam_model_registry | |
url = 'https://raw.githubusercontent.com/ChaoningZhang/MobileSAM/master/weights/mobile_sam.pt' | |
model_type = "vit_t" | |
sam_checkpoint = "mobile_sam.pt" | |
if not os.path.exists(sam_checkpoint): | |
import requests | |
r = requests.get(url) | |
with open(sam_checkpoint, 'wb') as f: | |
f.write(r.content) | |
mobile_sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) | |
def new_forward_fn(self, x): | |
shortcut = x | |
x = self.conv1(x) | |
x = self.act1(x) | |
x = self.conv2(x) | |
x = self.act2(x) | |
self.attn_output = rearrange(x.clone(), "b c h w -> b h w c") | |
x = self.conv3(x) | |
self.mlp_output = rearrange(x.clone(), "b c h w -> b h w c") | |
x = self.drop_path(x) | |
x += shortcut | |
x = self.act3(x) | |
self.block_output = rearrange(x.clone(), "b c h w -> b h w c") | |
return x | |
setattr(mobile_sam.image_encoder.layers[0].blocks[0].__class__, "forward", new_forward_fn) | |
def new_forward_fn2(self, x): | |
H, W = self.input_resolution | |
B, L, C = x.shape | |
assert L == H * W, "input feature has wrong size" | |
res_x = x | |
if H == self.window_size and W == self.window_size: | |
x = self.attn(x) | |
else: | |
x = x.view(B, H, W, C) | |
pad_b = (self.window_size - H % | |
self.window_size) % self.window_size | |
pad_r = (self.window_size - W % | |
self.window_size) % self.window_size | |
padding = pad_b > 0 or pad_r > 0 | |
if padding: | |
x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b)) | |
pH, pW = H + pad_b, W + pad_r | |
nH = pH // self.window_size | |
nW = pW // self.window_size | |
# window partition | |
x = x.view(B, nH, self.window_size, nW, self.window_size, C).transpose(2, 3).reshape( | |
B * nH * nW, self.window_size * self.window_size, C) | |
x = self.attn(x) | |
# window reverse | |
x = x.view(B, nH, nW, self.window_size, self.window_size, | |
C).transpose(2, 3).reshape(B, pH, pW, C) | |
if padding: | |
x = x[:, :H, :W].contiguous() | |
x = x.view(B, L, C) | |
hw = np.sqrt(x.shape[1]).astype(int) | |
self.attn_output = rearrange(x.clone(), "b (h w) c -> b h w c", h=hw) | |
x = res_x + self.drop_path(x) | |
x = x.transpose(1, 2).reshape(B, C, H, W) | |
x = self.local_conv(x) | |
x = x.view(B, C, L).transpose(1, 2) | |
mlp_output = self.mlp(x) | |
self.mlp_output = rearrange(mlp_output.clone(), "b (h w) c -> b h w c", h=hw) | |
x = x + self.drop_path(mlp_output) | |
self.block_output = rearrange(x.clone(), "b (h w) c -> b h w c", h=hw) | |
return x | |
setattr(mobile_sam.image_encoder.layers[1].blocks[0].__class__, "forward", new_forward_fn2) | |
mobile_sam.eval() | |
self.image_encoder = mobile_sam.image_encoder | |
def forward(self, x): | |
with torch.no_grad(): | |
x = torch.nn.functional.interpolate(x, size=(1024, 1024), mode="bilinear") | |
out = self.image_encoder(x) | |
attn_outputs, mlp_outputs, block_outputs = [], [], [] | |
for i_layer in range(len(self.image_encoder.layers)): | |
for i_block in range(len(self.image_encoder.layers[i_layer].blocks)): | |
blk = self.image_encoder.layers[i_layer].blocks[i_block] | |
attn_outputs.append(blk.attn_output) | |
mlp_outputs.append(blk.mlp_output) | |
block_outputs.append(blk.block_output) | |
return attn_outputs, mlp_outputs, block_outputs | |
mobilesam = MobileSAM() | |
def image_mobilesam_feature( | |
images, | |
node_type="block", | |
layer=-1, | |
): | |
print("Running MobileSAM") | |
global USE_CUDA | |
if USE_CUDA: | |
images = images.cuda() | |
global mobilesam | |
feat_extractor = mobilesam | |
if USE_CUDA: | |
feat_extractor = feat_extractor.cuda() | |
print("images shape:", images.shape) | |
# attn_outputs, mlp_outputs, block_outputs = [], [], [] | |
outputs = [] | |
for i in range(images.shape[0]): | |
attn_output, mlp_output, block_output = feat_extractor( | |
images[i].unsqueeze(0) | |
) | |
out_dict = { | |
"attn": attn_output, | |
"mlp": mlp_output, | |
"block": block_output, | |
} | |
out = out_dict[node_type] | |
out = out[layer] | |
outputs.append(out) | |
outputs = torch.cat(outputs, dim=0) | |
return outputs | |
class SAM(torch.nn.Module): | |
def __init__(self, **kwargs): | |
super().__init__(**kwargs) | |
from segment_anything import sam_model_registry, SamPredictor | |
from segment_anything.modeling.sam import Sam | |
checkpoint = "sam_vit_b_01ec64.pth" | |
if not os.path.exists(checkpoint): | |
checkpoint_url = 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth' | |
import requests | |
r = requests.get(checkpoint_url) | |
with open(checkpoint, 'wb') as f: | |
f.write(r.content) | |
sam: Sam = sam_model_registry["vit_b"](checkpoint=checkpoint) | |
from segment_anything.modeling.image_encoder import ( | |
window_partition, | |
window_unpartition, | |
) | |
def new_block_forward(self, x: torch.Tensor) -> torch.Tensor: | |
shortcut = x | |
x = self.norm1(x) | |
# Window partition | |
if self.window_size > 0: | |
H, W = x.shape[1], x.shape[2] | |
x, pad_hw = window_partition(x, self.window_size) | |
x = self.attn(x) | |
# Reverse window partition | |
if self.window_size > 0: | |
x = window_unpartition(x, self.window_size, pad_hw, (H, W)) | |
self.attn_output = x.clone() | |
x = shortcut + x | |
mlp_outout = self.mlp(self.norm2(x)) | |
self.mlp_output = mlp_outout.clone() | |
x = x + mlp_outout | |
self.block_output = x.clone() | |
return x | |
setattr(sam.image_encoder.blocks[0].__class__, "forward", new_block_forward) | |
self.image_encoder = sam.image_encoder | |
self.image_encoder.eval() | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
with torch.no_grad(): | |
x = torch.nn.functional.interpolate(x, size=(1024, 1024), mode="bilinear") | |
out = self.image_encoder(x) | |
attn_outputs, mlp_outputs, block_outputs = [], [], [] | |
for i, blk in enumerate(self.image_encoder.blocks): | |
attn_outputs.append(blk.attn_output) | |
mlp_outputs.append(blk.mlp_output) | |
block_outputs.append(blk.block_output) | |
attn_outputs = torch.stack(attn_outputs) | |
mlp_outputs = torch.stack(mlp_outputs) | |
block_outputs = torch.stack(block_outputs) | |
return attn_outputs, mlp_outputs, block_outputs | |
sam = SAM() | |
def image_sam_feature( | |
images, | |
node_type="block", | |
layer=-1, | |
): | |
global USE_CUDA | |
if USE_CUDA: | |
images = images.cuda() | |
global sam | |
feat_extractor = sam | |
if USE_CUDA: | |
feat_extractor = feat_extractor.cuda() | |
# attn_outputs, mlp_outputs, block_outputs = [], [], [] | |
outputs = [] | |
for i in range(images.shape[0]): | |
attn_output, mlp_output, block_output = feat_extractor( | |
images[i].unsqueeze(0) | |
) | |
out_dict = { | |
"attn": attn_output, | |
"mlp": mlp_output, | |
"block": block_output, | |
} | |
out = out_dict[node_type] | |
out = out[layer] | |
outputs.append(out) | |
outputs = torch.cat(outputs, dim=0) | |
return outputs | |
class DiNOv2(torch.nn.Module): | |
def __init__(self, ver="dinov2_vitb14_reg"): | |
super().__init__() | |
self.dinov2 = torch.hub.load("facebookresearch/dinov2", ver) | |
self.dinov2.requires_grad_(False) | |
self.dinov2.eval() | |
def new_block_forward(self, x: torch.Tensor) -> torch.Tensor: | |
def attn_residual_func(x): | |
return self.ls1(self.attn(self.norm1(x))) | |
def ffn_residual_func(x): | |
return self.ls2(self.mlp(self.norm2(x))) | |
attn_output = attn_residual_func(x) | |
self.attn_output = attn_output.clone() | |
x = x + attn_output | |
mlp_output = ffn_residual_func(x) | |
self.mlp_output = mlp_output.clone() | |
x = x + mlp_output | |
block_output = x | |
self.block_output = block_output.clone() | |
return x | |
setattr(self.dinov2.blocks[0].__class__, "forward", new_block_forward) | |
def forward(self, x): | |
out = self.dinov2(x) | |
attn_outputs, mlp_outputs, block_outputs = [], [], [] | |
for i, blk in enumerate(self.dinov2.blocks): | |
attn_outputs.append(blk.attn_output) | |
mlp_outputs.append(blk.mlp_output) | |
block_outputs.append(blk.block_output) | |
attn_outputs = torch.stack(attn_outputs) | |
mlp_outputs = torch.stack(mlp_outputs) | |
block_outputs = torch.stack(block_outputs) | |
return attn_outputs, mlp_outputs, block_outputs | |
dinov2 = DiNOv2() | |
def image_dino_feature(images, node_type="block", layer=-1): | |
global USE_CUDA | |
if USE_CUDA: | |
images = images.cuda() | |
global dinov2 | |
feat_extractor = dinov2 | |
if USE_CUDA: | |
feat_extractor = feat_extractor.cuda() | |
# attn_outputs, mlp_outputs, block_outputs = [], [], [] | |
outputs = [] | |
for i in range(images.shape[0]): | |
attn_output, mlp_output, block_output = feat_extractor( | |
images[i].unsqueeze(0) | |
) | |
out_dict = { | |
"attn": attn_output, | |
"mlp": mlp_output, | |
"block": block_output, | |
} | |
out = out_dict[node_type] | |
out = out[layer] | |
outputs.append(out) | |
outputs = torch.cat(outputs, dim=0) | |
outputs = rearrange(outputs[:, 5:, :], "b (h w) c -> b h w c", h=32, w=32) | |
return outputs | |
class CLIP(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
from transformers import CLIPProcessor, CLIPModel | |
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16") | |
# processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16") | |
self.model = model.eval() | |
def new_forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: torch.Tensor, | |
causal_attention_mask: torch.Tensor, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.FloatTensor]: | |
residual = hidden_states | |
hidden_states = self.layer_norm1(hidden_states) | |
hidden_states, attn_weights = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
causal_attention_mask=causal_attention_mask, | |
output_attentions=output_attentions, | |
) | |
hw = np.sqrt(hidden_states.shape[1]-1).astype(int) | |
self.attn_output = rearrange(hidden_states.clone()[:, 1:], "b (h w) c -> b h w c", h=hw) | |
hidden_states = residual + hidden_states | |
residual = hidden_states | |
hidden_states = self.layer_norm2(hidden_states) | |
hidden_states = self.mlp(hidden_states) | |
self.mlp_output = rearrange(hidden_states.clone()[:, 1:], "b (h w) c -> b h w c", h=hw) | |
hidden_states = residual + hidden_states | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (attn_weights,) | |
self.block_output = rearrange(hidden_states.clone()[:, 1:], "b (h w) c -> b h w c", h=hw) | |
return outputs | |
setattr(self.model.vision_model.encoder.layers[0].__class__, "forward", new_forward) | |
def forward(self, x): | |
out = self.model.vision_model(x) | |
attn_outputs, mlp_outputs, block_outputs = [], [], [] | |
for i, blk in enumerate(self.model.vision_model.encoder.layers): | |
attn_outputs.append(blk.attn_output) | |
mlp_outputs.append(blk.mlp_output) | |
block_outputs.append(blk.block_output) | |
attn_outputs = torch.stack(attn_outputs) | |
mlp_outputs = torch.stack(mlp_outputs) | |
block_outputs = torch.stack(block_outputs) | |
return attn_outputs, mlp_outputs, block_outputs | |
clip = CLIP() | |
def image_clip_feature( | |
images, node_type="block", layer=-1 | |
): | |
global USE_CUDA | |
if USE_CUDA: | |
images = images.cuda() | |
global clip | |
feat_extractor = clip | |
if USE_CUDA: | |
feat_extractor = feat_extractor.cuda() | |
# attn_outputs, mlp_outputs, block_outputs = [], [], [] | |
outputs = [] | |
for i in range(images.shape[0]): | |
attn_output, mlp_output, block_output = feat_extractor( | |
images[i].unsqueeze(0) | |
) | |
out_dict = { | |
"attn": attn_output, | |
"mlp": mlp_output, | |
"block": block_output, | |
} | |
out = out_dict[node_type] | |
out = out[layer] | |
outputs.append(out) | |
outputs = torch.cat(outputs, dim=0) | |
return outputs | |
import hashlib | |
import pickle | |
import sys | |
from collections import OrderedDict | |
# Cache dictionary with limited size | |
class LimitedSizeCache(OrderedDict): | |
def __init__(self, max_size_bytes): | |
self.max_size_bytes = max_size_bytes | |
self.current_size_bytes = 0 | |
super().__init__() | |
def __setitem__(self, key, value): | |
item_size = self.get_item_size(value) | |
# Evict items until there is enough space | |
while self.current_size_bytes + item_size > self.max_size_bytes: | |
self.popitem(last=False) | |
super().__setitem__(key, value) | |
self.current_size_bytes += item_size | |
def __delitem__(self, key): | |
value = self[key] | |
super().__delitem__(key) | |
self.current_size_bytes -= self.get_item_size(value) | |
def get_item_size(self, value): | |
"""Estimate the size of the value in bytes.""" | |
return sys.getsizeof(value) | |
# Initialize the cache with a 4GB limit | |
cache = LimitedSizeCache(max_size_bytes=4 * 1024 * 1024 * 1024) # 4GB | |
def compute_hash(*args, **kwargs): | |
"""Compute a unique hash based on the function arguments.""" | |
hasher = hashlib.sha256() | |
pickled_args = pickle.dumps((args, kwargs)) | |
hasher.update(pickled_args) | |
return hasher.hexdigest() | |
def run_model_on_image(images, model_name="sam", node_type="block", layer=-1): | |
global USE_CUDA | |
USE_CUDA = True | |
if model_name == "SAM(sam_vit_b)": | |
if not USE_CUDA: | |
gr.warning("GPU not detected. Running SAM on CPU, ~30s/image.") | |
result = image_sam_feature(images, node_type=node_type, layer=layer) | |
elif model_name == 'MobileSAM': | |
result = image_mobilesam_feature(images, node_type=node_type, layer=layer) | |
elif model_name == "DiNO(dinov2_vitb14_reg)": | |
result = image_dino_feature(images, node_type=node_type, layer=layer) | |
elif model_name == "CLIP(openai/clip-vit-base-patch16)": | |
result = image_clip_feature(images, node_type=node_type, layer=layer) | |
else: | |
raise ValueError(f"Model {model_name} not supported.") | |
return result | |
def extract_features(images, model_name="MobileSAM", node_type="block", layer=-1): | |
resolution_dict = { | |
"MobileSAM": (1024, 1024), | |
"SAM(sam_vit_b)": (1024, 1024), | |
"DiNO(dinov2_vitb14_reg)": (448, 448), | |
"CLIP(openai/clip-vit-base-patch16)": (224, 224), | |
} | |
images = transform_images(images, resolution=resolution_dict[model_name]) | |
# Compute the cache key | |
cache_key = compute_hash(images, model_name, node_type, layer) | |
# Check if the result is already in the cache | |
if cache_key in cache: | |
print("Cache hit!") | |
return cache[cache_key] | |
result = run_model_on_image(images, model_name=model_name, node_type=node_type, layer=layer) | |
# Store the result in the cache | |
cache[cache_key] = result | |
return result | |
def compute_ncut( | |
features, | |
num_eig=100, | |
num_sample_ncut=10000, | |
affinity_focal_gamma=0.3, | |
knn_ncut=10, | |
knn_tsne=10, | |
embedding_method="UMAP", | |
num_sample_tsne=1000, | |
perplexity=500, | |
n_neighbors=500, | |
min_dist=0.1, | |
): | |
from ncut_pytorch import NCUT, rgb_from_tsne_3d, rgb_from_umap_3d | |
start = time.time() | |
eigvecs, eigvals = NCUT( | |
num_eig=num_eig, | |
num_sample=num_sample_ncut, | |
device="cuda" if USE_CUDA else "cpu", | |
affinity_focal_gamma=affinity_focal_gamma, | |
knn=knn_ncut, | |
).fit_transform(features.reshape(-1, features.shape[-1])) | |
print(f"NCUT time: {time.time() - start:.2f}s") | |
start = time.time() | |
if embedding_method == "UMAP": | |
X_3d, rgb = rgb_from_umap_3d( | |
eigvecs, | |
n_neighbors=n_neighbors, | |
min_dist=min_dist, | |
) | |
print(f"UMAP time: {time.time() - start:.2f}s") | |
elif embedding_method == "t-SNE": | |
X_3d, rgb = rgb_from_tsne_3d( | |
eigvecs, | |
num_sample=num_sample_tsne, | |
perplexity=perplexity, | |
knn=knn_tsne, | |
) | |
print(f"t-SNE time: {time.time() - start:.2f}s") | |
else: | |
raise ValueError(f"Embedding method {embedding_method} not supported.") | |
rgb = rgb.reshape(features.shape[:3] + (3,)) | |
return rgb | |
def dont_use_too_much_green(image_rgb): | |
# make sure the foval 40% of the image is red leading | |
x1, x2 = int(image_rgb.shape[1] * 0.3), int(image_rgb.shape[1] * 0.7) | |
y1, y2 = int(image_rgb.shape[2] * 0.3), int(image_rgb.shape[2] * 0.7) | |
sum_values = image_rgb[:, x1:x2, y1:y2].mean((0, 1, 2)) | |
sorted_indices = sum_values.argsort(descending=True) | |
image_rgb = image_rgb[:, :, :, sorted_indices] | |
return image_rgb | |
def to_pil_images(images): | |
return [ | |
Image.fromarray((image * 255).cpu().numpy().astype(np.uint8)).resize((256, 256), Image.NEAREST) | |
for image in images | |
] | |
def main_fn( | |
images, | |
model_name="SAM(sam_vit_b)", | |
layer=-1, | |
num_eig=100, | |
node_type="block", | |
affinity_focal_gamma=0.3, | |
num_sample_ncut=10000, | |
knn_ncut=10, | |
embedding_method="UMAP", | |
num_sample_tsne=1000, | |
knn_tsne=10, | |
perplexity=500, | |
n_neighbors=500, | |
min_dist=0.1, | |
): | |
if perplexity >= num_sample_tsne: | |
# raise gr.Error("Perplexity must be less than the number of samples for t-SNE.") | |
gr.Warning("Perplexity must be less than the number of samples for t-SNE.\n" f"Setting perplexity to {num_sample_tsne-1}.") | |
perplexity = num_sample_tsne - 1 | |
images = [image[0] for image in images] | |
start = time.time() | |
features = extract_features( | |
images, model_name=model_name, node_type=node_type, layer=layer | |
) | |
print(f"Feature extraction time (gpu): {time.time() - start:.2f}s") | |
rgb = compute_ncut( | |
features, | |
num_eig=num_eig, | |
num_sample_ncut=num_sample_ncut, | |
affinity_focal_gamma=affinity_focal_gamma, | |
knn_ncut=knn_ncut, | |
knn_tsne=knn_tsne, | |
num_sample_tsne=num_sample_tsne, | |
embedding_method=embedding_method, | |
perplexity=perplexity, | |
n_neighbors=n_neighbors, | |
min_dist=min_dist, | |
) | |
rgb = dont_use_too_much_green(rgb) | |
return to_pil_images(rgb) | |
default_images = ['./images/image_0.jpg', './images/image_1.jpg', './images/image_2.jpg', './images/image_3.jpg', './images/image_5.jpg'] | |
default_outputs = ['./images/ncut_0.jpg', './images/ncut_1.jpg', './images/ncut_2.jpg', './images/ncut_3.jpg', './images/ncut_5.jpg'] | |
demo = gr.Interface( | |
main_fn, | |
[ | |
gr.Gallery(value=default_images, label="Select images", show_label=False, elem_id="images", columns=[3], rows=[1], object_fit="contain", height="auto", type="pil"), | |
gr.Dropdown(["SAM(sam_vit_b)", "MobileSAM", "DiNO(dinov2_vitb14_reg)", "CLIP(openai/clip-vit-base-patch16)"], label="Model", value="SAM(sam_vit_b)", elem_id="model_name"), | |
gr.Slider(0, 11, step=1, label="Layer", value=11, elem_id="layer", info="which layer of the image backbone features"), | |
gr.Slider(1, 1000, step=1, label="Number of eigenvectors", value=100, elem_id="num_eig", info='increase for more object parts, decrease for whole object'), | |
], | |
gr.Gallery(value=default_outputs, label="NCUT Embedding", show_label=False, elem_id="ncut", columns=[3], rows=[1], object_fit="contain", height="auto"), | |
additional_inputs=[ | |
gr.Dropdown(["attn", "mlp", "block"], label="Node type", value="block", elem_id="node_type", info="attn: attention output, mlp: mlp output, block: sum of residual stream"), | |
gr.Slider(0.01, 1, step=0.01, label="Affinity focal gamma", value=0.3, elem_id="affinity_focal_gamma", info="decrease for more aggressive cleaning on the affinity matrix"), | |
gr.Slider(100, 50000, step=100, label="num_sample (NCUT)", value=10000, elem_id="num_sample_ncut", info="Nyström approximation"), | |
gr.Slider(1, 100, step=1, label="KNN (NCUT)", value=10, elem_id="knn_ncut", info="Nyström approximation"), | |
gr.Dropdown(["t-SNE", "UMAP"], label="Embedding method", value="t-SNE", elem_id="embedding_method"), | |
gr.Slider(100, 1000, step=100, label="num_sample (t-SNE/UMAP)", value=300, elem_id="num_sample_tsne", info="Nyström approximation"), | |
gr.Slider(1, 100, step=1, label="KNN (t-SNE/UMAP)", value=10, elem_id="knn_tsne", info="Nyström approximation"), | |
gr.Slider(10, 500, step=10, label="Perplexity (t-SNE)", value=150, elem_id="perplexity"), | |
gr.Slider(10, 500, step=10, label="n_neighbors (UMAP)", value=150, elem_id="n_neighbors"), | |
gr.Slider(0.1, 1, step=0.1, label="min_dist (UMAP)", value=0.1, elem_id="min_dist"), | |
] | |
) | |
demo.launch() | |