File size: 8,614 Bytes
58c8f75
68b0288
 
2b98806
 
 
07462e7
2b98806
 
 
68b0288
 
2b98806
 
 
 
 
 
 
 
 
c320745
68b0288
 
 
c320745
1075d8a
2b98806
07462e7
2b98806
 
 
68b0288
2b98806
 
 
db6540f
07462e7
 
c320745
04649b1
c320745
 
 
68b0288
c320745
db6540f
c320745
 
 
 
 
 
68b0288
c320745
db6540f
c320745
 
9576e83
2b98806
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cd819b
 
 
 
 
 
 
 
c320745
2b98806
 
 
 
 
a48bd1b
2b98806
 
 
c320745
2b98806
 
 
c320745
 
2b98806
3dc10e3
9cd819b
 
68b0288
2b98806
68b0288
2b98806
68b0288
2b98806
68b0288
 
 
 
07462e7
 
2b98806
 
 
3f7fee9
07462e7
2b98806
 
 
 
 
 
 
 
c320745
2b98806
c320745
 
2b98806
 
9cd819b
2b98806
68b0288
ba0ef59
68b0288
 
 
e06cf43
68b0288
fb5c245
 
68b0288
 
 
9cd819b
68b0288
 
e06cf43
68b0288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cd819b
68b0288
 
3dc10e3
68b0288
9cd819b
3dc10e3
68b0288
ba0ef59
68b0288
 
 
 
 
ba0ef59
9cd819b
ba0ef59
2b98806
68b0288
58c8f75
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import spaces
import gradio as gr

import torch
from PIL import Image
import numpy as np
import time

import gradio as gr

from backbone import extract_features
from ncut_pytorch import NCUT, rgb_from_tsne_3d, rgb_from_umap_3d


def compute_ncut(
    features,
    num_eig=100,
    num_sample_ncut=10000,
    affinity_focal_gamma=0.3,
    knn_ncut=10,
    knn_tsne=10,
    embedding_method="UMAP",
    num_sample_tsne=300,
    perplexity=150,
    n_neighbors=150,
    min_dist=0.1,
):        

    start = time.time()
    eigvecs, eigvals = NCUT(
        num_eig=num_eig,
        num_sample=num_sample_ncut,
        device="cuda" if torch.cuda.is_available() else "cpu",
        affinity_focal_gamma=affinity_focal_gamma,
        knn=knn_ncut,
    ).fit_transform(features.reshape(-1, features.shape[-1]))
    print(f"NCUT time: {time.time() - start:.2f}s")
    
    start = time.time()
    if embedding_method == "UMAP":
        X_3d, rgb = rgb_from_umap_3d(
            eigvecs,
            n_neighbors=n_neighbors,
            min_dist=min_dist,
            device="cuda" if torch.cuda.is_available() else "cpu",
        )
        print(f"UMAP time: {time.time() - start:.2f}s")
    elif embedding_method == "t-SNE":    
        X_3d, rgb = rgb_from_tsne_3d(
            eigvecs,
            num_sample=num_sample_tsne,
            perplexity=perplexity,
            knn=knn_tsne,
            device="cuda" if torch.cuda.is_available() else "cpu",
        )
        print(f"t-SNE time: {time.time() - start:.2f}s")
    else:
        raise ValueError(f"Embedding method {embedding_method} not supported.")
    
    rgb = rgb.reshape(features.shape[:3] + (3,))
    return rgb


def dont_use_too_much_green(image_rgb):
    # make sure the foval 40% of the image is red leading
    x1, x2 = int(image_rgb.shape[1] * 0.3), int(image_rgb.shape[1] * 0.7)
    y1, y2 = int(image_rgb.shape[2] * 0.3), int(image_rgb.shape[2] * 0.7)
    sum_values = image_rgb[:, x1:x2, y1:y2].mean((0, 1, 2))
    sorted_indices = sum_values.argsort(descending=True)
    image_rgb = image_rgb[:, :, :, sorted_indices]
    return image_rgb


def to_pil_images(images):
    return [
        Image.fromarray((image * 255).cpu().numpy().astype(np.uint8)).resize((256, 256), Image.NEAREST)
        for image in images
    ]

default_images = ['./images/image_0.jpg', './images/image_1.jpg', './images/image_2.jpg', './images/image_3.jpg', './images/image_5.jpg']
default_outputs = ['./images/ncut_0.jpg', './images/ncut_1.jpg', './images/ncut_2.jpg', './images/ncut_3.jpg', './images/ncut_5.jpg']

downscaled_images = ['./images/image_0_small.jpg', './images/image_1_small.jpg', './images/image_2_small.jpg', './images/image_3_small.jpg', './images/image_5_small.jpg']
downscaled_outputs = ['./images/ncut_0_small.jpg', './images/ncut_1_small.jpg', './images/ncut_2_small.jpg', './images/ncut_3_small.jpg', './images/ncut_5_small.jpg']

example_items = downscaled_images[:3] + downscaled_outputs[:3]

@spaces.GPU(duration=30)
def main_fn(
    images,
    model_name="SAM(sam_vit_b)",
    layer=-1,
    num_eig=100,
    node_type="block",
    affinity_focal_gamma=0.3,
    num_sample_ncut=10000,
    knn_ncut=10,
    embedding_method="UMAP",
    num_sample_tsne=1000,
    knn_tsne=10,
    perplexity=500,
    n_neighbors=500,
    min_dist=0.1,
):
    if len(images) is None:
        return [], example_items
    
    if perplexity >= num_sample_tsne or n_neighbors >= num_sample_tsne:
        # raise gr.Error("Perplexity must be less than the number of samples for t-SNE.")
        gr.Warning("Perplexity/n_neighbors must be less than the number of samples.\n" f"Setting to {num_sample_tsne-1}.")
        perplexity = num_sample_tsne - 1
        n_neighbors = num_sample_tsne - 1
    
        
    node_type = node_type.split(":")[0].strip()
    
    images = [image[0] for image in images]     # remove the label
    
    start = time.time()
    features = extract_features(
        images, model_name=model_name, node_type=node_type, layer=layer
    )
    print(f"Feature extraction time (gpu): {time.time() - start:.2f}s")
    
    rgb = compute_ncut(
        features,
        num_eig=num_eig,
        num_sample_ncut=num_sample_ncut,
        affinity_focal_gamma=affinity_focal_gamma,
        knn_ncut=knn_ncut,
        knn_tsne=knn_tsne,
        num_sample_tsne=num_sample_tsne,
        embedding_method=embedding_method,
        perplexity=perplexity,
        n_neighbors=n_neighbors,
        min_dist=min_dist,
    )
    rgb = dont_use_too_much_green(rgb)
    return to_pil_images(rgb), []


with gr.Blocks() as demo:

    with gr.Row():
        with gr.Column(scale=5, min_width=200):
            gr.Markdown('### Input Images')
            input_gallery = gr.Gallery(value=[], label="Select images", show_label=False, elem_id="images", columns=[3], rows=[1], object_fit="contain", height="auto", type="pil", show_share_button=False)
            submit_button = gr.Button("🔴RUN", elem_id="submit_button")
            clear_images_button = gr.Button("🗑️Clear", elem_id='clear_button')
        
            gr.Markdown('### Load Examples 👇')
            load_images_button = gr.Button("Load", elem_id="load-images-button")
            example_gallery = gr.Gallery(value=example_items, label="Example Set A", show_label=False, columns=[3], rows=[2], object_fit="scale-down", height="200px", show_share_button=False)
        
        with gr.Column(scale=5, min_width=200):
            gr.Markdown('### Output Images')
            output_gallery = gr.Gallery(value=[], label="NCUT Embedding", show_label=False, elem_id="ncut", columns=[3], rows=[1], object_fit="contain", height="auto")
            model_dropdown = gr.Dropdown(["SAM(sam_vit_b)", "MobileSAM", "DiNO(dinov2_vitb14_reg)", "CLIP(openai/clip-vit-base-patch16)"], label="Model", value="SAM(sam_vit_b)", elem_id="model_name")
            layer_slider = gr.Slider(0, 11, step=1, label="Layer", value=11, elem_id="layer")
            num_eig_slider = gr.Slider(1, 1000, step=1, label="Number of eigenvectors", value=100, elem_id="num_eig", info='increase for more clusters')
            affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Affinity focal gamma", value=0.3, elem_id="affinity_focal_gamma", info="decrease for shaper NCUT")
            
            with gr.Accordion("Additional Parameters", open=False):
                node_type_dropdown = gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Node type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?")
                num_sample_ncut_slider = gr.Slider(100, 50000, step=100, label="num_sample (NCUT)", value=10000, elem_id="num_sample_ncut", info="Nyström approximation")
                knn_ncut_slider = gr.Slider(1, 100, step=1, label="KNN (NCUT)", value=10, elem_id="knn_ncut", info="Nyström approximation")
                embedding_method_dropdown = gr.Dropdown(["t-SNE", "UMAP"], label="Embedding method", value="t-SNE", elem_id="embedding_method")
                num_sample_tsne_slider = gr.Slider(100, 1000, step=100, label="num_sample (t-SNE/UMAP)", value=300, elem_id="num_sample_tsne", info="Nyström approximation")
                knn_tsne_slider = gr.Slider(1, 100, step=1, label="KNN (t-SNE/UMAP)", value=10, elem_id="knn_tsne", info="Nyström approximation")
                perplexity_slider = gr.Slider(10, 500, step=10, label="Perplexity (t-SNE)", value=150, elem_id="perplexity")
                n_neighbors_slider = gr.Slider(10, 500, step=10, label="n_neighbors (UMAP)", value=150, elem_id="n_neighbors")
                min_dist_slider = gr.Slider(0.1, 1, step=0.1, label="min_dist (UMAP)", value=0.1, elem_id="min_dist")

    def load_default_images():
        return default_images, default_outputs, []

    def empty_input_and_output():
        return [], [], example_items
    
    load_images_button.click(load_default_images, outputs=[input_gallery, output_gallery, example_gallery])
    clear_images_button.click(empty_input_and_output, outputs=[input_gallery, output_gallery, example_gallery])
    submit_button.click(
        main_fn,
        inputs=[
            input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, 
            affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider, 
            embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
            perplexity_slider, n_neighbors_slider, min_dist_slider
        ],
        outputs=[output_gallery, example_gallery]
    )


demo.launch()