File size: 14,297 Bytes
86da6bf
 
c471250
86da6bf
 
 
 
68b0288
 
2b98806
 
 
07462e7
2b98806
 
 
86da6bf
 
 
 
 
2b98806
 
 
 
 
 
 
 
 
c320745
68b0288
 
 
c320745
86da6bf
1075d8a
edc0dc6
86da6bf
 
 
 
 
 
 
 
07462e7
2b98806
 
 
68b0288
2b98806
 
86da6bf
2b98806
edc0dc6
 
07462e7
 
86da6bf
 
 
 
 
 
 
 
 
 
 
 
2b98806
edc0dc6
2b98806
 
 
 
 
 
 
 
 
 
 
 
 
 
86da6bf
2b98806
 
 
9cd819b
 
 
 
 
 
 
 
edc0dc6
2b98806
 
 
 
a48bd1b
2b98806
 
 
c320745
2b98806
 
 
c320745
 
86da6bf
2b98806
edc0dc6
68b0288
2b98806
86da6bf
 
2b98806
68b0288
2b98806
68b0288
 
 
 
07462e7
 
2b98806
 
 
edc0dc6
 
07462e7
edc0dc6
2b98806
 
 
 
 
 
 
c320745
2b98806
c320745
 
86da6bf
2b98806
edc0dc6
2b98806
40e33a1
2b98806
86da6bf
 
 
 
 
 
8c6fc00
86da6bf
 
 
 
8c6fc00
86da6bf
 
 
d245991
86da6bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68b0288
8c6fc00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86da6bf
8c6fc00
 
5c1d3a1
40e33a1
8c6fc00
86da6bf
 
 
8c6fc00
 
 
 
 
 
 
 
 
 
 
 
 
 
86da6bf
8c6fc00
 
 
 
714612e
8c6fc00
 
d245991
 
8c6fc00
d245991
 
 
 
 
8c6fc00
 
ba0ef59
68b0288
 
 
e06cf43
68b0288
fb5c245
 
68b0288
86da6bf
 
40e33a1
86da6bf
40e33a1
 
 
 
 
86da6bf
 
 
 
 
 
 
 
 
 
 
 
 
40e33a1
68b0288
e06cf43
68b0288
86da6bf
 
 
 
 
68b0288
86da6bf
 
 
 
 
 
 
 
 
 
68b0288
edc0dc6
d245991
edc0dc6
68b0288
5c1d3a1
68b0288
 
5c1d3a1
86da6bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68b0288
5c1d3a1
 
86da6bf
68b0288
edc0dc6
68b0288
 
 
 
86da6bf
ba0ef59
40e33a1
ba0ef59
2b98806
68b0288
86da6bf
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
# Author: Huzheng Yang
# %%
USE_SPACES = True

if USE_SPACES:
    import spaces

import gradio as gr

import torch
from PIL import Image
import numpy as np
import time

import gradio as gr

if USE_SPACES:
    from backbone import extract_features
else:
    from draft_gradio_backbone import extract_features
from ncut_pytorch import NCUT, eigenvector_to_rgb


def compute_ncut(
    features,
    num_eig=100,
    num_sample_ncut=10000,
    affinity_focal_gamma=0.3,
    knn_ncut=10,
    knn_tsne=10,
    embedding_method="UMAP",
    num_sample_tsne=300,
    perplexity=150,
    n_neighbors=150,
    min_dist=0.1,
    sampling_method="fps",
):        
    logging_str = ""
    
    num_nodes = np.prod(features.shape[:3])
    if num_nodes / 2 < num_eig:
        # raise gr.Error("Number of eigenvectors should be less than half the number of nodes.")
        gr.Warning("Number of eigenvectors should be less than half the number of nodes.\n" f"Setting num_eig to {num_nodes // 2 - 1}.")
        num_eig = num_nodes // 2 - 1
        logging_str += f"Number of eigenvectors should be less than half the number of nodes.\n" f"Setting num_eig to {num_nodes // 2 - 1}.\n"
    
    start = time.time()
    eigvecs, eigvals = NCUT(
        num_eig=num_eig,
        num_sample=num_sample_ncut,
        device="cuda" if torch.cuda.is_available() else "cpu",
        affinity_focal_gamma=affinity_focal_gamma,
        knn=knn_ncut,
        sample_method=sampling_method,
    ).fit_transform(features.reshape(-1, features.shape[-1]))
    # print(f"NCUT time: {time.time() - start:.2f}s")
    logging_str += f"NCUT time: {time.time() - start:.2f}s\n"
    
    start = time.time()
    _, rgb = eigenvector_to_rgb(
        eigvecs,
        method=embedding_method,
        num_sample=num_sample_tsne,
        perplexity=perplexity,
        n_neighbors=n_neighbors,
        min_distance=min_dist,
        knn=knn_tsne,
        device="cuda" if torch.cuda.is_available() else "cpu",
    )
    logging_str += f"{embedding_method} time: {time.time() - start:.2f}s\n"

    rgb = rgb.reshape(features.shape[:3] + (3,))
    return rgb, logging_str


def dont_use_too_much_green(image_rgb):
    # make sure the foval 40% of the image is red leading
    x1, x2 = int(image_rgb.shape[1] * 0.3), int(image_rgb.shape[1] * 0.7)
    y1, y2 = int(image_rgb.shape[2] * 0.3), int(image_rgb.shape[2] * 0.7)
    sum_values = image_rgb[:, x1:x2, y1:y2].mean((0, 1, 2))
    sorted_indices = sum_values.argsort(descending=True)
    image_rgb = image_rgb[:, :, :, sorted_indices]
    return image_rgb


def to_pil_images(images):
    return [
        Image.fromarray((image * 255).cpu().numpy().astype(np.uint8)).resize((256, 256), Image.Resampling.NEAREST)
        for image in images
    ]

default_images = ['./images/image_0.jpg', './images/image_1.jpg', './images/image_2.jpg', './images/image_3.jpg', './images/image_5.jpg']
default_outputs = ['./images/ncut_0.jpg', './images/ncut_1.jpg', './images/ncut_2.jpg', './images/ncut_3.jpg', './images/ncut_5.jpg']

downscaled_images = ['./images/image_0_small.jpg', './images/image_1_small.jpg', './images/image_2_small.jpg', './images/image_3_small.jpg', './images/image_5_small.jpg']
downscaled_outputs = ['./images/ncut_0_small.jpg', './images/ncut_1_small.jpg', './images/ncut_2_small.jpg', './images/ncut_3_small.jpg', './images/ncut_5_small.jpg']

example_items = downscaled_images[:3] + downscaled_outputs[:3]

def ncut_run(
    images,
    model_name="SAM(sam_vit_b)",
    layer=-1,
    num_eig=100,
    node_type="block",
    affinity_focal_gamma=0.3,
    num_sample_ncut=10000,
    knn_ncut=10,
    embedding_method="UMAP",
    num_sample_tsne=1000,
    knn_tsne=10,
    perplexity=500,
    n_neighbors=500,
    min_dist=0.1,
    sampling_method="fps",
):
    logging_str = ""
    if perplexity >= num_sample_tsne or n_neighbors >= num_sample_tsne:
        # raise gr.Error("Perplexity must be less than the number of samples for t-SNE.")
        gr.Warning("Perplexity/n_neighbors must be less than the number of samples.\n" f"Setting Perplexity to {num_sample_tsne-1}.")
        logging_str += f"Perplexity/n_neighbors must be less than the number of samples.\n" f"Setting Perplexity to {num_sample_tsne-1}.\n"
        perplexity = num_sample_tsne - 1
        n_neighbors = num_sample_tsne - 1
    
        
    node_type = node_type.split(":")[0].strip()
    
    images = [image[0] for image in images]     # remove the label
    
    start = time.time()
    features = extract_features(
        images, model_name=model_name, node_type=node_type, layer=layer
    )
    # print(f"Feature extraction time (gpu): {time.time() - start:.2f}s")
    logging_str += f"Backbone time: {time.time() - start:.2f}s\n"
    
    rgb, _logging_str = compute_ncut(
        features,
        num_eig=num_eig,
        num_sample_ncut=num_sample_ncut,
        affinity_focal_gamma=affinity_focal_gamma,
        knn_ncut=knn_ncut,
        knn_tsne=knn_tsne,
        num_sample_tsne=num_sample_tsne,
        embedding_method=embedding_method,
        perplexity=perplexity,
        n_neighbors=n_neighbors,
        min_dist=min_dist,
        sampling_method=sampling_method,
    )
    logging_str += _logging_str
    rgb = dont_use_too_much_green(rgb)
    return to_pil_images(rgb), logging_str

def _ncut_run(*args, **kwargs):
    try:
        return ncut_run(*args, **kwargs)
    except Exception as e:
        gr.Error(str(e))
        return [], "Error: " + str(e)

if USE_SPACES:
    @spaces.GPU(duration=13)
    def quick_run(*args, **kwargs):
        return _ncut_run(*args, **kwargs)

    @spaces.GPU(duration=30)
    def long_run(*args, **kwargs):
        return _ncut_run(*args, **kwargs)

    @spaces.GPU(duration=60)
    def longer_run(*args, **kwargs):
        return _ncut_run(*args, **kwargs)

    @spaces.GPU(duration=120)
    def super_duper_long_run(*args, **kwargs):
        return _ncut_run(*args, **kwargs)

if not USE_SPACES:
    def quick_run(*args, **kwargs):
        return _ncut_run(*args, **kwargs)

    def long_run(*args, **kwargs):
        return _ncut_run(*args, **kwargs)

    def longer_run(*args, **kwargs):
        return _ncut_run(*args, **kwargs)

    def super_duper_long_run(*args, **kwargs):
        return _ncut_run(*args, **kwargs)

def run_fn(
    images,
    model_name="SAM(sam_vit_b)",
    layer=-1,
    num_eig=100,
    node_type="block",
    affinity_focal_gamma=0.3,
    num_sample_ncut=10000,
    knn_ncut=10,
    embedding_method="UMAP",
    num_sample_tsne=1000,
    knn_tsne=10,
    perplexity=500,
    n_neighbors=500,
    min_dist=0.1,
    sampling_method="fps",
):
    if images is None:
        gr.Warning("No images selected.")
        return [], "No images selected."
    
    if sampling_method == "fps":
        sampling_method = "farthest"
    
    kwargs = {
        "model_name": model_name,
        "layer": layer,
        "num_eig": num_eig,
        "node_type": node_type,
        "affinity_focal_gamma": affinity_focal_gamma,
        "num_sample_ncut": num_sample_ncut,
        "knn_ncut": knn_ncut,
        "embedding_method": embedding_method,
        "num_sample_tsne": num_sample_tsne,
        "knn_tsne": knn_tsne,
        "perplexity": perplexity,
        "n_neighbors": n_neighbors,
        "min_dist": min_dist,
        "sampling_method": sampling_method,
    }
    num_images = len(images)
    if num_images > 100:
        return super_duper_long_run(images, **kwargs)
    if num_images > 10:
        return long_run(images, **kwargs)
    if embedding_method == "UMAP":
        if perplexity >= 250 or num_sample_tsne >= 500:
            return longer_run(images, **kwargs)
        return long_run(images, **kwargs)
    if embedding_method == "t-SNE":
        if perplexity >= 250 or num_sample_tsne >= 500:
            return long_run(images, **kwargs)
        return quick_run(images, **kwargs)
    
    return quick_run(images, **kwargs)
    
with gr.Blocks() as demo:

    with gr.Row():
        with gr.Column(scale=5, min_width=200):
            gr.Markdown('### Input Images')
            input_gallery = gr.Gallery(value=[], label="Select images", show_label=False, elem_id="images", columns=[3], rows=[1], object_fit="contain", height="auto", type="pil", show_share_button=False)
            submit_button = gr.Button("🔴RUN", elem_id="submit_button")
            clear_images_button = gr.Button("🗑️Clear", elem_id='clear_button')
        
            gr.Markdown('### Load from Cloud Dataset 👇')
            load_images_button = gr.Button("Load Example", elem_id="load-images-button")
            example_gallery = gr.Gallery(value=example_items, label="Example Set A", show_label=False, columns=[3], rows=[2], object_fit="scale-down", height="200px", show_share_button=False, elem_id="example-gallery")
            hide_button = gr.Button("Hide Example", elem_id="hide-button")

            hide_button.click(
                fn=lambda: gr.update(visible=False),
                outputs=example_gallery
            )
            
            with gr.Accordion("➜ Load from dataset", open=True):
                dataset_names = [
                    'UCSC-VLAA/Recap-COCO-30K',
                    'nateraw/pascal-voc-2012',
                    'johnowhitaker/imagenette2-320',
                    'JapanDegitalMaterial/Places_in_Japan',
                    'Borismile/Anime-dataset',
                ]
                dataset_dropdown = gr.Dropdown(dataset_names, label="Dataset name", value="UCSC-VLAA/Recap-COCO-30K", elem_id="dataset")
                num_images_slider = gr.Slider(1, 200, step=1, label="Number of images", value=9, elem_id="num_images")
                random_seed_slider = gr.Number(0, label="Random seed", value=42, elem_id="random_seed")
                load_dataset_button = gr.Button("Load Dataset", elem_id="load-dataset-button")

        with gr.Column(scale=5, min_width=200):
            gr.Markdown('### Output Images')
            output_gallery = gr.Gallery(value=[], label="NCUT Embedding", show_label=False, elem_id="ncut", columns=[3], rows=[1], object_fit="contain", height="auto")
            model_dropdown = gr.Dropdown(["SAM(sam_vit_b)", "MobileSAM", "DiNO(dinov2_vitb14_reg)", "CLIP(openai/clip-vit-base-patch16)", "MAE(vit_base)"], label="Backbone", value="SAM(sam_vit_b)", elem_id="model_name")
            layer_slider = gr.Slider(0, 11, step=1, label="Backbone: Layer index", value=11, elem_id="layer")
            node_type_dropdown = gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Backbone: Layer type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?")
            num_eig_slider = gr.Slider(1, 1000, step=1, label="NCUT: Number of eigenvectors", value=100, elem_id="num_eig", info='increase for more clusters')
            affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="NCUT: Affinity focal gamma", value=0.5, elem_id="affinity_focal_gamma", info="decrease for shaper segmentation")
            
            with gr.Accordion("➜ Click to expand: more parameters", open=False):
                num_sample_ncut_slider = gr.Slider(100, 50000, step=100, label="NCUT: num_sample", value=10000, elem_id="num_sample_ncut", info="Nyström approximation")
                sampling_method_dropdown = gr.Dropdown(["fps", "random"], label="NCUT: Sampling method", value="fps", elem_id="sampling_method")
                knn_ncut_slider = gr.Slider(1, 100, step=1, label="NCUT: KNN", value=10, elem_id="knn_ncut", info="Nyström approximation")
                embedding_method_dropdown = gr.Dropdown(["tsne_3d", "umap_3d", "umap_shpere", "tsne_2d", "umap_2d"], label="Coloring method", value="tsne_3d", elem_id="embedding_method")
                num_sample_tsne_slider = gr.Slider(100, 1000, step=100, label="t-SNE/UMAP: num_sample", value=300, elem_id="num_sample_tsne", info="Nyström approximation")
                knn_tsne_slider = gr.Slider(1, 100, step=1, label="t-SNE/UMAP: KNN", value=10, elem_id="knn_tsne", info="Nyström approximation")
                perplexity_slider = gr.Slider(10, 500, step=10, label="t-SNE: Perplexity", value=150, elem_id="perplexity")
                n_neighbors_slider = gr.Slider(10, 500, step=10, label="UMAP: n_neighbors", value=150, elem_id="n_neighbors")
                min_dist_slider = gr.Slider(0.1, 1, step=0.1, label="UMAP: min_dist", value=0.1, elem_id="min_dist")

            # logging text box
            logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
            
    def load_default_images():
        return default_images, default_outputs

    def empty_input_and_output():
        return [], []

    def load_dataset_images(dataset_name, num_images=10, random_seed=42):
        from datasets import load_dataset
        try:
            dataset = load_dataset(dataset_name)['train']
        except Exception as e:
            gr.Error(f"Error loading dataset {dataset_name}: {e}")
            return None
        if num_images > len(dataset):
            num_images = len(dataset)
        image_idx = np.random.RandomState(random_seed).choice(len(dataset), num_images, replace=False)
        image_idx = image_idx.tolist()
        images = [dataset[i]['image'] for i in image_idx]
        return images    

    
    load_images_button.click(load_default_images, outputs=[input_gallery, output_gallery])
    clear_images_button.click(empty_input_and_output, outputs=[input_gallery, output_gallery])
    load_dataset_button.click(load_dataset_images, inputs=[dataset_dropdown, num_images_slider, random_seed_slider], outputs=[input_gallery])
    submit_button.click(
        run_fn,
        inputs=[
            input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown, 
            affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider, 
            embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider, 
            perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown
        ],
        outputs=[output_gallery, logging_text]
    )


if USE_SPACES:
    demo.launch()
else:
    demo.launch(share=True)

# %%