Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,565 Bytes
58c8f75 68b0288 2b98806 07462e7 2b98806 68b0288 2b98806 c320745 68b0288 c320745 1075d8a 2b98806 07462e7 2b98806 68b0288 2b98806 db6540f 07462e7 c320745 04649b1 c320745 68b0288 c320745 db6540f c320745 68b0288 c320745 db6540f c320745 9576e83 2b98806 9cd819b c320745 2b98806 a48bd1b 2b98806 c320745 2b98806 c320745 2b98806 9cd819b 68b0288 2b98806 68b0288 2b98806 68b0288 2b98806 68b0288 07462e7 2b98806 3f7fee9 07462e7 2b98806 c320745 2b98806 c320745 2b98806 9cd819b 2b98806 68b0288 ba0ef59 68b0288 e06cf43 68b0288 9cd819b 68b0288 e06cf43 68b0288 9cd819b 68b0288 9cd819b 68b0288 ba0ef59 68b0288 ba0ef59 9cd819b ba0ef59 2b98806 68b0288 58c8f75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import spaces
import gradio as gr
import torch
from PIL import Image
import numpy as np
import time
import gradio as gr
from backbone import extract_features
from ncut_pytorch import NCUT, rgb_from_tsne_3d, rgb_from_umap_3d
def compute_ncut(
features,
num_eig=100,
num_sample_ncut=10000,
affinity_focal_gamma=0.3,
knn_ncut=10,
knn_tsne=10,
embedding_method="UMAP",
num_sample_tsne=300,
perplexity=150,
n_neighbors=150,
min_dist=0.1,
):
start = time.time()
eigvecs, eigvals = NCUT(
num_eig=num_eig,
num_sample=num_sample_ncut,
device="cuda" if torch.cuda.is_available() else "cpu",
affinity_focal_gamma=affinity_focal_gamma,
knn=knn_ncut,
).fit_transform(features.reshape(-1, features.shape[-1]))
print(f"NCUT time: {time.time() - start:.2f}s")
start = time.time()
if embedding_method == "UMAP":
X_3d, rgb = rgb_from_umap_3d(
eigvecs,
n_neighbors=n_neighbors,
min_dist=min_dist,
device="cuda" if torch.cuda.is_available() else "cpu",
)
print(f"UMAP time: {time.time() - start:.2f}s")
elif embedding_method == "t-SNE":
X_3d, rgb = rgb_from_tsne_3d(
eigvecs,
num_sample=num_sample_tsne,
perplexity=perplexity,
knn=knn_tsne,
device="cuda" if torch.cuda.is_available() else "cpu",
)
print(f"t-SNE time: {time.time() - start:.2f}s")
else:
raise ValueError(f"Embedding method {embedding_method} not supported.")
rgb = rgb.reshape(features.shape[:3] + (3,))
return rgb
def dont_use_too_much_green(image_rgb):
# make sure the foval 40% of the image is red leading
x1, x2 = int(image_rgb.shape[1] * 0.3), int(image_rgb.shape[1] * 0.7)
y1, y2 = int(image_rgb.shape[2] * 0.3), int(image_rgb.shape[2] * 0.7)
sum_values = image_rgb[:, x1:x2, y1:y2].mean((0, 1, 2))
sorted_indices = sum_values.argsort(descending=True)
image_rgb = image_rgb[:, :, :, sorted_indices]
return image_rgb
def to_pil_images(images):
return [
Image.fromarray((image * 255).cpu().numpy().astype(np.uint8)).resize((256, 256), Image.NEAREST)
for image in images
]
default_images = ['./images/image_0.jpg', './images/image_1.jpg', './images/image_2.jpg', './images/image_3.jpg', './images/image_5.jpg']
default_outputs = ['./images/ncut_0.jpg', './images/ncut_1.jpg', './images/ncut_2.jpg', './images/ncut_3.jpg', './images/ncut_5.jpg']
downscaled_images = ['./images/image_0_small.jpg', './images/image_1_small.jpg', './images/image_2_small.jpg', './images/image_3_small.jpg', './images/image_5_small.jpg']
downscaled_outputs = ['./images/ncut_0_small.jpg', './images/ncut_1_small.jpg', './images/ncut_2_small.jpg', './images/ncut_3_small.jpg', './images/ncut_5_small.jpg']
example_items = downscaled_images[:3] + downscaled_outputs[:3]
@spaces.GPU(duration=30)
def main_fn(
images,
model_name="SAM(sam_vit_b)",
layer=-1,
num_eig=100,
node_type="block",
affinity_focal_gamma=0.3,
num_sample_ncut=10000,
knn_ncut=10,
embedding_method="UMAP",
num_sample_tsne=1000,
knn_tsne=10,
perplexity=500,
n_neighbors=500,
min_dist=0.1,
):
if len(images) == 0:
return [], example_items
if perplexity >= num_sample_tsne or n_neighbors >= num_sample_tsne:
# raise gr.Error("Perplexity must be less than the number of samples for t-SNE.")
gr.Warning("Perplexity/n_neighbors must be less than the number of samples.\n" f"Setting to {num_sample_tsne-1}.")
perplexity = num_sample_tsne - 1
n_neighbors = num_sample_tsne - 1
node_type = node_type.split(":")[0].strip()
images = [image[0] for image in images] # remove the label
start = time.time()
features = extract_features(
images, model_name=model_name, node_type=node_type, layer=layer
)
print(f"Feature extraction time (gpu): {time.time() - start:.2f}s")
rgb = compute_ncut(
features,
num_eig=num_eig,
num_sample_ncut=num_sample_ncut,
affinity_focal_gamma=affinity_focal_gamma,
knn_ncut=knn_ncut,
knn_tsne=knn_tsne,
num_sample_tsne=num_sample_tsne,
embedding_method=embedding_method,
perplexity=perplexity,
n_neighbors=n_neighbors,
min_dist=min_dist,
)
rgb = dont_use_too_much_green(rgb)
return to_pil_images(rgb), []
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=5, min_width=200):
gr.Markdown('### Input Images')
input_gallery = gr.Gallery(value=[], label="Select images", show_label=False, elem_id="images", columns=[3], rows=[1], object_fit="contain", height="auto", type="pil", show_share_button=False)
submit_button = gr.Button("🔴Submit", elem_id="submit_button")
clear_images_button = gr.Button("🗑️Clear Images")
gr.Markdown('### Load Examples 👇')
load_images_button = gr.Button("Load", elem_id="load-images-button")
example_gallery = gr.Gallery(value=example_items, label="Example Set A", show_label=False, columns=[3], rows=[2], object_fit="scale-down", height="200px", show_share_button=False)
with gr.Column(scale=5, min_width=200):
gr.Markdown('### Output Images')
output_gallery = gr.Gallery(value=[], label="NCUT Embedding", show_label=False, elem_id="ncut", columns=[3], rows=[1], object_fit="contain", height="auto")
model_dropdown = gr.Dropdown(["SAM(sam_vit_b)", "MobileSAM", "DiNO(dinov2_vitb14_reg)", "CLIP(openai/clip-vit-base-patch16)"], label="Model", value="SAM(sam_vit_b)", elem_id="model_name")
layer_slider = gr.Slider(0, 11, step=1, label="Layer", value=11, elem_id="layer")
num_eig_slider = gr.Slider(1, 1000, step=1, label="Number of eigenvectors", value=100, elem_id="num_eig", info='increase for more clusters')
affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="Affinity focal gamma", value=0.3, elem_id="affinity_focal_gamma", info="decrease for shaper NCUT")
with gr.Accordion("Additional Parameters", open=False):
node_type_dropdown = gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Node type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?")
num_sample_ncut_slider = gr.Slider(100, 50000, step=100, label="num_sample (NCUT)", value=10000, elem_id="num_sample_ncut", info="Nyström approximation")
knn_ncut_slider = gr.Slider(1, 100, step=1, label="KNN (NCUT)", value=10, elem_id="knn_ncut", info="Nyström approximation")
embedding_method_dropdown = gr.Dropdown(["t-SNE", "UMAP"], label="Embedding method", value="t-SNE", elem_id="embedding_method")
num_sample_tsne_slider = gr.Slider(100, 1000, step=100, label="num_sample (t-SNE/UMAP)", value=300, elem_id="num_sample_tsne", info="Nyström approximation")
knn_tsne_slider = gr.Slider(1, 100, step=1, label="KNN (t-SNE/UMAP)", value=10, elem_id="knn_tsne", info="Nyström approximation")
perplexity_slider = gr.Slider(10, 500, step=10, label="Perplexity (t-SNE)", value=150, elem_id="perplexity")
n_neighbors_slider = gr.Slider(10, 500, step=10, label="n_neighbors (UMAP)", value=150, elem_id="n_neighbors")
min_dist_slider = gr.Slider(0.1, 1, step=0.1, label="min_dist (UMAP)", value=0.1, elem_id="min_dist")
def load_default_images():
return default_images, default_outputs, []
def empty_input_and_output():
return [], []
load_images_button.click(load_default_images, outputs=[input_gallery, output_gallery, example_gallery])
clear_images_button.click(empty_input_and_output, outputs=[input_gallery, output_gallery])
submit_button.click(
main_fn,
inputs=[
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown,
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
perplexity_slider, n_neighbors_slider, min_dist_slider
],
outputs=[output_gallery, example_gallery]
)
demo.launch()
|