File size: 32,196 Bytes
f5de82f
 
68b0288
 
5c67556
68b0288
 
c471250
68b0288
 
 
7a2c457
 
68b0288
7a2c457
 
68b0288
7a2c457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68b0288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a2c457
 
 
 
5c67556
 
7a2c457
 
 
5c67556
 
68b0288
7a2c457
68b0288
 
 
 
7a2c457
68b0288
 
 
 
 
 
 
 
 
 
7a2c457
68b0288
7a2c457
68b0288
 
 
 
 
7a2c457
68b0288
 
 
 
7a2c457
68b0288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a2c457
 
 
 
 
68b0288
7a2c457
 
 
 
 
 
68b0288
7a2c457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68b0288
5c67556
 
 
 
 
 
 
 
 
 
7a2c457
 
 
68b0288
7a2c457
68b0288
7a2c457
5c67556
7a2c457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c471250
68b0288
7a2c457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68b0288
 
7a2c457
 
 
 
 
68b0288
7a2c457
68b0288
7a2c457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5de82f
7a2c457
 
 
 
68b0288
7a2c457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5de82f
 
 
68b0288
7a2c457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68b0288
7a2c457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68b0288
 
c471250
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c67556
c471250
7a2c457
c471250
7a2c457
 
c471250
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a2c457
 
c471250
7a2c457
 
 
 
 
 
c471250
7a2c457
 
 
c471250
7a2c457
 
 
c471250
7a2c457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c471250
7a2c457
 
c471250
 
68b0288
 
 
7a2c457
 
68b0288
7a2c457
 
 
 
 
 
f5de82f
 
68b0288
7a2c457
 
 
68b0288
 
 
c471250
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
# Author: Huzheng Yang
# %%
from typing import Optional, Tuple
from einops import rearrange
import requests
import torch
import torch.nn.functional as F
import timm
from torch import nn
import numpy as np
import os
from functools import partial

MODEL_DICT = {}
LAYER_DICT = {}
RES_DICT = {}

class SAM2(nn.Module):

    def __init__(self, model_cfg='sam2_hiera_b+',):
        super().__init__()

        try:
            from sam2.build_sam import build_sam2
        except ImportError:
            print("Please install segment_anything_2 from https://github.com/facebookresearch/segment-anything-2.git")
            return
        
        config_dict = {
            'sam2_hiera_l': ("sam2_hiera_large.pt", "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_large.pt"),
            'sam2_hiera_b+': ("sam2_hiera_base_plus.pt", "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_base_plus.pt"),
            'sam2_hiera_s': ("sam2_hiera_small.pt", "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_small.pt"),
            'sam2_hiera_t': ("sam2_hiera_tiny.pt", "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_tiny.pt"),
        }
        filename, url = config_dict[model_cfg]
        if not os.path.exists(filename):
            print(f"Downloading {url}")
            r = requests.get(url)
            with open(filename, 'wb') as f:
                f.write(r.content)
        sam2_checkpoint = filename
        
        device = 'cuda' if torch.cuda.is_available() else 'cpu'
        sam2_model = build_sam2(model_cfg, sam2_checkpoint, device=device)

        image_encoder = sam2_model.image_encoder
        image_encoder.eval()
        
        from sam2.modeling.backbones.hieradet import do_pool
        from sam2.modeling.backbones.utils import window_partition, window_unpartition
        def new_forward(self, x: torch.Tensor) -> torch.Tensor:
            shortcut = x  # B, H, W, C
            x = self.norm1(x)

            # Skip connection
            if self.dim != self.dim_out:
                shortcut = do_pool(self.proj(x), self.pool)

            # Window partition
            window_size = self.window_size
            if window_size > 0:
                H, W = x.shape[1], x.shape[2]
                x, pad_hw = window_partition(x, window_size)

            # Window Attention + Q Pooling (if stage change)
            x = self.attn(x)
            if self.q_stride:
                # Shapes have changed due to Q pooling
                window_size = self.window_size // self.q_stride[0]
                H, W = shortcut.shape[1:3]

                pad_h = (window_size - H % window_size) % window_size
                pad_w = (window_size - W % window_size) % window_size
                pad_hw = (H + pad_h, W + pad_w)

            # Reverse window partition
            if self.window_size > 0:
                x = window_unpartition(x, window_size, pad_hw, (H, W))

            self.attn_output = x.clone()
            
            x = shortcut + self.drop_path(x)
            # MLP
            mlp_out = self.mlp(self.norm2(x))
            self.mlp_output = mlp_out.clone()
            x = x + self.drop_path(mlp_out)
            self.block_output = x.clone()
            return x        
        
        setattr(image_encoder.trunk.blocks[0].__class__, 'forward', new_forward)
        
        self.image_encoder = image_encoder
        
        
        
    @torch.no_grad()
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        output = self.image_encoder(x)
        attn_outputs, mlp_outputs, block_outputs = [], [], []
        for block in self.image_encoder.trunk.blocks:
            attn_outputs.append(block.attn_output)
            mlp_outputs.append(block.mlp_output)
            block_outputs.append(block.block_output)
        return {
            'attn': attn_outputs,
            'mlp': mlp_outputs,
            'block': block_outputs
        }

MODEL_DICT["SAM2(sam2_hiera_t)"] = partial(SAM2, model_cfg='sam2_hiera_t')
LAYER_DICT["SAM2(sam2_hiera_t)"] = 12
RES_DICT["SAM2(sam2_hiera_t)"] = (1024, 1024)
MODEL_DICT["SAM2(sam2_hiera_s)"] = partial(SAM2, model_cfg='sam2_hiera_s')
LAYER_DICT["SAM2(sam2_hiera_s)"] = 16
RES_DICT["SAM2(sam2_hiera_s)"] = (1024, 1024)
MODEL_DICT["SAM2(sam2_hiera_b+)"] = partial(SAM2, model_cfg='sam2_hiera_b+')
LAYER_DICT["SAM2(sam2_hiera_b+)"] = 24
RES_DICT["SAM2(sam2_hiera_b+)"] = (1024, 1024)
MODEL_DICT["SAM2(sam2_hiera_l)"] = partial(SAM2, model_cfg='sam2_hiera_l')
LAYER_DICT["SAM2(sam2_hiera_l)"] = 48
RES_DICT["SAM2(sam2_hiera_l)"] = (1024, 1024)


class SAM(torch.nn.Module):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        from segment_anything import sam_model_registry, SamPredictor
        from segment_anything.modeling.sam import Sam

        checkpoint = "sam_vit_b_01ec64.pth"
        if not os.path.exists(checkpoint):
            checkpoint_url = (
                "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth"
            )
            import requests

            r = requests.get(checkpoint_url)
            with open(checkpoint, "wb") as f:
                f.write(r.content)

        sam: Sam = sam_model_registry["vit_b"](checkpoint=checkpoint)

        from segment_anything.modeling.image_encoder import (
            window_partition,
            window_unpartition,
        )

        def new_block_forward(self, x: torch.Tensor) -> torch.Tensor:
            shortcut = x
            x = self.norm1(x)
            # Window partition
            if self.window_size > 0:
                H, W = x.shape[1], x.shape[2]
                x, pad_hw = window_partition(x, self.window_size)

            x = self.attn(x)
            # Reverse window partition
            if self.window_size > 0:
                x = window_unpartition(x, self.window_size, pad_hw, (H, W))
            self.attn_output = x.clone()

            x = shortcut + x
            mlp_outout = self.mlp(self.norm2(x))
            self.mlp_output = mlp_outout.clone()
            x = x + mlp_outout
            self.block_output = x.clone()

            return x

        setattr(sam.image_encoder.blocks[0].__class__, "forward", new_block_forward)

        self.image_encoder = sam.image_encoder
        self.image_encoder.eval()

    @torch.no_grad()
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        with torch.no_grad():
            x = torch.nn.functional.interpolate(x, size=(1024, 1024), mode="bilinear")
        out = self.image_encoder(x)

        attn_outputs, mlp_outputs, block_outputs = [], [], []
        for i, blk in enumerate(self.image_encoder.blocks):
            attn_outputs.append(blk.attn_output)
            mlp_outputs.append(blk.mlp_output)
            block_outputs.append(blk.block_output)
        attn_outputs = torch.stack(attn_outputs)
        mlp_outputs = torch.stack(mlp_outputs)
        block_outputs = torch.stack(block_outputs)
        return {
            'attn': attn_outputs,
            'mlp': mlp_outputs,
            'block': block_outputs
        }

MODEL_DICT["SAM(sam_vit_b)"] = partial(SAM)
LAYER_DICT["SAM(sam_vit_b)"] = 12
RES_DICT["SAM(sam_vit_b)"] = (1024, 1024)


class MobileSAM(nn.Module):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)

        from mobile_sam import sam_model_registry

        url = "https://raw.githubusercontent.com/ChaoningZhang/MobileSAM/master/weights/mobile_sam.pt"
        model_type = "vit_t"
        sam_checkpoint = "mobile_sam.pt"
        if not os.path.exists(sam_checkpoint):
            import requests

            r = requests.get(url)
            with open(sam_checkpoint, "wb") as f:
                f.write(r.content)

        mobile_sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)

        def new_forward_fn(self, x):
            shortcut = x

            x = self.conv1(x)
            x = self.act1(x)

            x = self.conv2(x)
            x = self.act2(x)

            self.attn_output = rearrange(x.clone(), "b c h w -> b h w c")

            x = self.conv3(x)

            self.mlp_output = rearrange(x.clone(), "b c h w -> b h w c")

            x = self.drop_path(x)

            x += shortcut
            x = self.act3(x)

            self.block_output = rearrange(x.clone(), "b c h w -> b h w c")

            return x

        setattr(
            mobile_sam.image_encoder.layers[0].blocks[0].__class__,
            "forward",
            new_forward_fn,
        )

        def new_forward_fn2(self, x):
            H, W = self.input_resolution
            B, L, C = x.shape
            assert L == H * W, "input feature has wrong size"
            res_x = x
            if H == self.window_size and W == self.window_size:
                x = self.attn(x)
            else:
                x = x.view(B, H, W, C)
                pad_b = (self.window_size - H % self.window_size) % self.window_size
                pad_r = (self.window_size - W % self.window_size) % self.window_size
                padding = pad_b > 0 or pad_r > 0

                if padding:
                    x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b))

                pH, pW = H + pad_b, W + pad_r
                nH = pH // self.window_size
                nW = pW // self.window_size
                # window partition
                x = (
                    x.view(B, nH, self.window_size, nW, self.window_size, C)
                    .transpose(2, 3)
                    .reshape(B * nH * nW, self.window_size * self.window_size, C)
                )
                x = self.attn(x)
                # window reverse
                x = (
                    x.view(B, nH, nW, self.window_size, self.window_size, C)
                    .transpose(2, 3)
                    .reshape(B, pH, pW, C)
                )

                if padding:
                    x = x[:, :H, :W].contiguous()

                x = x.view(B, L, C)

            hw = np.sqrt(x.shape[1]).astype(int)
            self.attn_output = rearrange(x.clone(), "b (h w) c -> b h w c", h=hw)

            x = res_x + self.drop_path(x)

            x = x.transpose(1, 2).reshape(B, C, H, W)
            x = self.local_conv(x)
            x = x.view(B, C, L).transpose(1, 2)

            mlp_output = self.mlp(x)
            self.mlp_output = rearrange(
                mlp_output.clone(), "b (h w) c -> b h w c", h=hw
            )

            x = x + self.drop_path(mlp_output)
            self.block_output = rearrange(x.clone(), "b (h w) c -> b h w c", h=hw)
            return x

        setattr(
            mobile_sam.image_encoder.layers[1].blocks[0].__class__,
            "forward",
            new_forward_fn2,
        )

        mobile_sam.eval()
        self.image_encoder = mobile_sam.image_encoder

    @torch.no_grad()
    def forward(self, x):
        with torch.no_grad():
            x = torch.nn.functional.interpolate(x, size=(1024, 1024), mode="bilinear")
        out = self.image_encoder(x)

        attn_outputs, mlp_outputs, block_outputs = [], [], []
        for i_layer in range(len(self.image_encoder.layers)):
            for i_block in range(len(self.image_encoder.layers[i_layer].blocks)):
                blk = self.image_encoder.layers[i_layer].blocks[i_block]
                attn_outputs.append(blk.attn_output)
                mlp_outputs.append(blk.mlp_output)
                block_outputs.append(blk.block_output)
        return {
            'attn': attn_outputs,
            'mlp': mlp_outputs,
            'block': block_outputs
        }

MODEL_DICT["MobileSAM"] = partial(MobileSAM)
LAYER_DICT["MobileSAM"] = 12
RES_DICT["MobileSAM"] = (1024, 1024)


class DiNOv2(torch.nn.Module):
    def __init__(self, ver="dinov2_vitb14_reg", num_reg=5):
        super().__init__()
        self.dinov2 = torch.hub.load("facebookresearch/dinov2", ver)
        self.dinov2.requires_grad_(False)
        self.dinov2.eval()
        self.num_reg = num_reg

        def new_block_forward(self, x: torch.Tensor) -> torch.Tensor:
            def attn_residual_func(x):
                return self.ls1(self.attn(self.norm1(x)))

            def ffn_residual_func(x):
                return self.ls2(self.mlp(self.norm2(x)))

            attn_output = attn_residual_func(x)

            hw = np.sqrt(attn_output.shape[1] - num_reg).astype(int)
            self.attn_output = rearrange(
                attn_output.clone()[:, num_reg:], "b (h w) c -> b h w c", h=hw
            )

            x = x + attn_output
            mlp_output = ffn_residual_func(x)
            self.mlp_output = rearrange(
                mlp_output.clone()[:, num_reg:], "b (h w) c -> b h w c", h=hw
            )
            x = x + mlp_output
            block_output = x
            self.block_output = rearrange(
                block_output.clone()[:, num_reg:], "b (h w) c -> b h w c", h=hw
            )
            return x

        setattr(self.dinov2.blocks[0].__class__, "forward", new_block_forward)

    @torch.no_grad()
    def forward(self, x):

        out = self.dinov2(x)

        attn_outputs, mlp_outputs, block_outputs = [], [], []
        for i, blk in enumerate(self.dinov2.blocks):
            attn_outputs.append(blk.attn_output)
            mlp_outputs.append(blk.mlp_output)
            block_outputs.append(blk.block_output)

        attn_outputs = torch.stack(attn_outputs)
        mlp_outputs = torch.stack(mlp_outputs)
        block_outputs = torch.stack(block_outputs)
        return {
            'attn': attn_outputs,
            'mlp': mlp_outputs,
            'block': block_outputs
        }

MODEL_DICT["DiNOv2reg(dinov2_vitb14_reg)"] = partial(DiNOv2, ver="dinov2_vitb14_reg", num_reg=5)
LAYER_DICT["DiNOv2reg(dinov2_vitb14_reg)"] = 12
RES_DICT["DiNOv2reg(dinov2_vitb14_reg)"] = (672, 672)
MODEL_DICT["DiNOv2(dinov2_vitb14)"] = partial(DiNOv2, ver="dinov2_vitb14", num_reg=1)
LAYER_DICT["DiNOv2(dinov2_vitb14)"] = 12
RES_DICT["DiNOv2(dinov2_vitb14)"] = (672, 672)

class DiNO(nn.Module):
    def __init__(self, ver="dino_vitb8"):
        super().__init__()
        model = torch.hub.load('facebookresearch/dino:main', ver)
        model = model.eval()

        def remove_cls_and_reshape(x):
            x = x.clone()
            x = x[:, 1:]
            hw = np.sqrt(x.shape[1]).astype(int)
            x = rearrange(x, "b (h w) c -> b h w c", h=hw)
            return x

        def new_forward(self, x, return_attention=False):
            y, attn = self.attn(self.norm1(x))
            self.attn_output = remove_cls_and_reshape(y.clone())
            if return_attention:
                return attn
            x = x + self.drop_path(y)
            mlp_output = self.mlp(self.norm2(x))
            self.mlp_output = remove_cls_and_reshape(mlp_output.clone())
            x = x + self.drop_path(mlp_output)
            self.block_output = remove_cls_and_reshape(x.clone())
            return x

        setattr(model.blocks[0].__class__, "forward", new_forward)
        
        self.model = model
        self.model.eval()
        self.model.requires_grad_(False)
        
    def forward(self, x):
        out = self.model(x)
        attn_outputs = [block.attn_output for block in self.model.blocks]
        mlp_outputs = [block.mlp_output for block in self.model.blocks]
        block_outputs = [block.block_output for block in self.model.blocks]
        return {
            'attn': attn_outputs,
            'mlp': mlp_outputs,
            'block': block_outputs
        }
            
MODEL_DICT["DiNO(dino_vitb8)"] = partial(DiNO)
LAYER_DICT["DiNO(dino_vitb8)"] = 12
RES_DICT["DiNO(dino_vitb8)"] = (448, 448)

def resample_position_embeddings(embeddings, h, w):
    cls_embeddings = embeddings[0]
    patch_embeddings = embeddings[1:]  # [14*14, 768]
    hw = np.sqrt(patch_embeddings.shape[0]).astype(int)
    patch_embeddings = rearrange(patch_embeddings, "(h w) c -> c h w", h=hw)
    patch_embeddings = F.interpolate(patch_embeddings.unsqueeze(0), size=(h, w), mode="nearest").squeeze(0)
    patch_embeddings = rearrange(patch_embeddings, "c h w -> (h w) c")
    embeddings = torch.cat([cls_embeddings.unsqueeze(0), patch_embeddings], dim=0)
    return embeddings

# class CLIP(torch.nn.Module):
#     def __init__(self, ver="openai/clip-vit-base-patch16"):
#         super().__init__()

#         from transformers import CLIPProcessor, CLIPModel

#         model = CLIPModel.from_pretrained(ver)
                
#         # resample the patch embeddings to 56x56, take 896x896 input
#         embeddings = model.vision_model.embeddings.position_embedding.weight
#         embeddings = resample_position_embeddings(embeddings, 42, 42)
#         model.vision_model.embeddings.position_embedding.weight = nn.Parameter(embeddings)
#         model.vision_model.embeddings.position_ids = torch.arange(0, 1+56*56)
        
#         # processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
#         self.model = model.eval()

#         def new_forward(
#             self,
#             hidden_states: torch.Tensor,
#             attention_mask: torch.Tensor,
#             causal_attention_mask: torch.Tensor,
#             output_attentions: Optional[bool] = False,
#         ) -> Tuple[torch.FloatTensor]:

#             residual = hidden_states

#             hidden_states = self.layer_norm1(hidden_states)
#             hidden_states, attn_weights = self.self_attn(
#                 hidden_states=hidden_states,
#                 attention_mask=attention_mask,
#                 causal_attention_mask=causal_attention_mask,
#                 output_attentions=output_attentions,
#             )
#             hw = np.sqrt(hidden_states.shape[1] - 1).astype(int)
#             self.attn_output = rearrange(
#                 hidden_states.clone()[:, 1:], "b (h w) c -> b h w c", h=hw
#             )
#             hidden_states = residual + hidden_states

#             residual = hidden_states
#             hidden_states = self.layer_norm2(hidden_states)
#             hidden_states = self.mlp(hidden_states)
#             self.mlp_output = rearrange(
#                 hidden_states.clone()[:, 1:], "b (h w) c -> b h w c", h=hw
#             )

#             hidden_states = residual + hidden_states

#             outputs = (hidden_states,)

#             if output_attentions:
#                 outputs += (attn_weights,)

#             self.block_output = rearrange(
#                 hidden_states.clone()[:, 1:], "b (h w) c -> b h w c", h=hw
#             )
#             return outputs

#         setattr(
#             self.model.vision_model.encoder.layers[0].__class__, "forward", new_forward
#         )

#     @torch.no_grad()
#     def forward(self, x):

#         out = self.model.vision_model(x)

#         attn_outputs, mlp_outputs, block_outputs = [], [], []
#         for i, blk in enumerate(self.model.vision_model.encoder.layers):
#             attn_outputs.append(blk.attn_output)
#             mlp_outputs.append(blk.mlp_output)
#             block_outputs.append(blk.block_output)

#         attn_outputs = torch.stack(attn_outputs)
#         mlp_outputs = torch.stack(mlp_outputs)
#         block_outputs = torch.stack(block_outputs)
#         return attn_outputs, mlp_outputs, block_outputs


# MODEL_DICT["CLIP(openai/clip-vit-base-patch16)"] = partial(CLIP, ver="openai/clip-vit-base-patch16")
# LAYER_DICT["CLIP(openai/clip-vit-base-patch16)"] = 12
# RES_DICT["CLIP(openai/clip-vit-base-patch16)"] = (896, 896)


class OpenCLIPViT(nn.Module):
    def __init__(self, version='ViT-B-16', pretrained='laion2b_s34b_b88k'):
        super().__init__()
        try:
            import open_clip
        except ImportError:
            print("Please install open_clip to use this class.")
            return
        
        model, _, _ = open_clip.create_model_and_transforms(version, pretrained=pretrained)
        
        positional_embedding = resample_position_embeddings(model.visual.positional_embedding, 42, 42)
        model.visual.positional_embedding = nn.Parameter(positional_embedding)
        
        def new_forward(
                self,
                q_x: torch.Tensor,
                k_x: Optional[torch.Tensor] = None,
                v_x: Optional[torch.Tensor] = None,
                attn_mask: Optional[torch.Tensor] = None,
        ):
            def remove_cls_and_reshape(x):
                x = x.clone()
                x = x[1:]
                hw = np.sqrt(x.shape[0]).astype(int)
                x = rearrange(x, "(h w) b c -> b h w c", h=hw)
                return x
            
            k_x = self.ln_1_kv(k_x) if hasattr(self, "ln_1_kv") and k_x is not None else None
            v_x = self.ln_1_kv(v_x) if hasattr(self, "ln_1_kv") and v_x is not None else None

            attn_output = self.attention(q_x=self.ln_1(q_x), k_x=k_x, v_x=v_x, attn_mask=attn_mask)
            self.attn_output = remove_cls_and_reshape(attn_output.clone())
            x = q_x + self.ls_1(attn_output)
            mlp_output = self.mlp(self.ln_2(x))
            self.mlp_output = remove_cls_and_reshape(mlp_output.clone())
            x = x + self.ls_2(mlp_output)    
            self.block_output = remove_cls_and_reshape(x.clone())
            return x


        setattr(model.visual.transformer.resblocks[0].__class__, "forward", new_forward)
        
        self.model = model
        self.model.eval()
    
    def forward(self, x):
        out = self.model(x)
        attn_outputs, mlp_outputs, block_outputs = [], [], []
        for block in self.model.visual.transformer.resblocks:
            attn_outputs.append(block.attn_output)
            mlp_outputs.append(block.mlp_output)
            block_outputs.append(block.block_output)
        return {
            'attn': attn_outputs,
            'mlp': mlp_outputs,
            'block': block_outputs
        }
        
MODEL_DICT["CLIP(ViT-B-16/openai)"] = partial(OpenCLIPViT, version='ViT-B-16', pretrained='openai')
LAYER_DICT["CLIP(ViT-B-16/openai)"] = 12
RES_DICT["CLIP(ViT-B-16/openai)"] = (672, 672)
MODEL_DICT["CLIP(ViT-B-16/laion2b_s34b_b88k)"] = partial(OpenCLIPViT, version='ViT-B-16', pretrained='laion2b_s34b_b88k')
LAYER_DICT["CLIP(ViT-B-16/laion2b_s34b_b88k)"] = 12
RES_DICT["CLIP(ViT-B-16/laion2b_s34b_b88k)"] = (672, 672)

class EVA02(nn.Module):
    
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        
        model = timm.create_model(
            'eva02_base_patch14_448.mim_in22k_ft_in1k',
            pretrained=True,
            num_classes=0,  # remove classifier nn.Linear
        )
        model = model.eval()

        def new_forward(self, x, rope: Optional[torch.Tensor] = None, attn_mask: Optional[torch.Tensor] = None):
        
            def remove_cls_and_reshape(x):
                x = x.clone()
                x = x[:, 1:]
                hw = np.sqrt(x.shape[1]).astype(int)
                x = rearrange(x, "b (h w) c -> b h w c", h=hw)
                return x
            
            if self.gamma_1 is None:
                attn_output = self.attn(self.norm1(x), rope=rope, attn_mask=attn_mask)
                self.attn_output = remove_cls_and_reshape(attn_output.clone())
                x = x + self.drop_path1(attn_output)
                mlp_output = self.mlp(self.norm2(x))
                self.mlp_output = remove_cls_and_reshape(mlp_output.clone())
                x = x + self.drop_path2(mlp_output)
            else:
                attn_output = self.attn(self.norm1(x), rope=rope, attn_mask=attn_mask)
                self.attn_output = remove_cls_and_reshape(attn_output.clone())
                x = x + self.drop_path1(self.gamma_1 * attn_output)
                mlp_output = self.mlp(self.norm2(x))
                self.mlp_output = remove_cls_and_reshape(mlp_output.clone())
                x = x + self.drop_path2(self.gamma_2 * mlp_output)
            self.block_output = remove_cls_and_reshape(x.clone())
            return x

        setattr(model.blocks[0].__class__, "forward", new_forward)
        
        self.model = model
        
    def forward(self, x):
        out = self.model(x)
        attn_outputs = [block.attn_output for block in self.model.blocks]
        mlp_outputs = [block.mlp_output for block in self.model.blocks]
        block_outputs = [block.block_output for block in self.model.blocks]
        return {
            'attn': attn_outputs,
            'mlp': mlp_outputs,
            'block': block_outputs
        }
        
MODEL_DICT["CLIP(eva02_base_patch14_448.mim_in22k_ft_in1k)"] = partial(EVA02)
LAYER_DICT["CLIP(eva02_base_patch14_448.mim_in22k_ft_in1k)"] = 12
RES_DICT["CLIP(eva02_base_patch14_448.mim_in22k_ft_in1k)"] = (448, 448)

class CLIPConvnext(nn.Module):
    def __init__(self):
        super().__init__()
        try:
            import open_clip
        except ImportError:
            print("Please install open_clip to use this class.")
            return
    
        model, _, _ = open_clip.create_model_and_transforms('convnext_base_w_320', pretrained='laion_aesthetic_s13b_b82k')
        
        def new_forward(self, x):
            shortcut = x
            x = self.conv_dw(x)
            if self.use_conv_mlp:
                x = self.norm(x)
                x = self.mlp(x)
            else:
                x = x.permute(0, 2, 3, 1)
                x = self.norm(x)
                x = self.mlp(x)
                x = x.permute(0, 3, 1, 2)
            if self.gamma is not None:
                x = x.mul(self.gamma.reshape(1, -1, 1, 1))

            x = self.drop_path(x) + self.shortcut(shortcut)
            self.block_output = rearrange(x.clone(), "b c h w -> b h w c")
            return x

        setattr(model.visual.trunk.stages[0].blocks[0].__class__, "forward", new_forward)
        
        self.model = model
        self.model.eval()
    
    def forward(self, x):
        out = self.model(x)
        block_outputs = []
        for stage in self.model.visual.trunk.stages:
            for block in stage.blocks:
                block_outputs.append(block.block_output)
        return {
            'attn': None,
            'mlp': None,
            'block': block_outputs
        }
        
    
MODEL_DICT["CLIP(convnext_base_w_320/laion_aesthetic_s13b_b82k)"] = partial(CLIPConvnext)
LAYER_DICT["CLIP(convnext_base_w_320/laion_aesthetic_s13b_b82k)"] = 36
RES_DICT["CLIP(convnext_base_w_320/laion_aesthetic_s13b_b82k)"] = (960, 960)


class MAE(timm.models.vision_transformer.VisionTransformer):
    def __init__(self, **kwargs):
        super(MAE, self).__init__(**kwargs)

        sd = torch.hub.load_state_dict_from_url(
            "https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_base.pth"
        )

        checkpoint_model = sd["model"]
        state_dict = self.state_dict()
        for k in ["head.weight", "head.bias"]:
            if (
                k in checkpoint_model
                and checkpoint_model[k].shape != state_dict[k].shape
            ):
                print(f"Removing key {k} from pretrained checkpoint")
                del checkpoint_model[k]

        # load pre-trained model
        msg = self.load_state_dict(checkpoint_model, strict=False)
        print(msg)
        
        # resample the patch embeddings to 56x56, take 896x896 input
        pos_embed = self.pos_embed[0]
        pos_embed = resample_position_embeddings(pos_embed, 42, 42)
        self.pos_embed = nn.Parameter(pos_embed.unsqueeze(0))
        self.img_size = (672, 672)
        self.patch_embed.img_size = (672, 672)

        self.requires_grad_(False)
        self.eval()
        
        def forward(self, x):
            self.saved_attn_node = self.ls1(self.attn(self.norm1(x)))
            x = x + self.saved_attn_node.clone()
            self.saved_mlp_node = self.ls2(self.mlp(self.norm2(x)))
            x = x + self.saved_mlp_node.clone()
            self.saved_block_output = x.clone()
            return x
        
        setattr(self.blocks[0].__class__, "forward", forward)
        
    def forward(self, x):
        out = super().forward(x)
        def remove_cls_and_reshape(x):
            x = x.clone()
            x = x[:, 1:]
            hw = np.sqrt(x.shape[1]).astype(int)
            x = rearrange(x, "b (h w) c -> b h w c", h=hw)
            return x
        
        attn_outputs = [remove_cls_and_reshape(block.saved_attn_node) for block in self.blocks]
        mlp_outputs = [remove_cls_and_reshape(block.saved_mlp_node) for block in self.blocks]
        block_outputs = [remove_cls_and_reshape(block.saved_block_output) for block in self.blocks]
        return {
            'attn': attn_outputs,
            'mlp': mlp_outputs,
            'block': block_outputs
        }
        

MODEL_DICT["MAE(vit_base)"] = partial(MAE)
LAYER_DICT["MAE(vit_base)"] = 12
RES_DICT["MAE(vit_base)"] = (672, 672)

class ImageNet(nn.Module):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)

        model = timm.create_model(
            'vit_base_patch16_224.augreg2_in21k_ft_in1k',
            pretrained=True,
            num_classes=0,  # remove classifier nn.Linear
        )
        
        # resample the patch embeddings to 56x56, take 896x896 input
        pos_embed = model.pos_embed[0]
        pos_embed = resample_position_embeddings(pos_embed, 42, 42)
        model.pos_embed = nn.Parameter(pos_embed.unsqueeze(0))
        model.img_size = (672, 672)
        model.patch_embed.img_size = (672, 672)

        model.requires_grad_(False)
        model.eval()
        
        def forward(self, x):
            self.saved_attn_node = self.ls1(self.attn(self.norm1(x)))
            x = x + self.saved_attn_node.clone()
            self.saved_mlp_node = self.ls2(self.mlp(self.norm2(x)))
            x = x + self.saved_mlp_node.clone()
            self.saved_block_output = x.clone()
            return x
        
        setattr(model.blocks[0].__class__, "forward", forward)
        
        self.model = model
        
    def forward(self, x):
        out = self.model(x)
        def remove_cls_and_reshape(x):
            x = x.clone()
            x = x[:, 1:]
            hw = np.sqrt(x.shape[1]).astype(int)
            x = rearrange(x, "b (h w) c -> b h w c", h=hw)
            return x
        
        attn_outputs = [remove_cls_and_reshape(block.saved_attn_node) for block in self.model.blocks]
        mlp_outputs = [remove_cls_and_reshape(block.saved_mlp_node) for block in self.model.blocks]
        block_outputs = [remove_cls_and_reshape(block.saved_block_output) for block in self.model.blocks]
        return {
            'attn': attn_outputs,
            'mlp': mlp_outputs,
            'block': block_outputs
        }
            
MODEL_DICT["ImageNet(vit_base)"] = partial(ImageNet)
LAYER_DICT["ImageNet(vit_base)"] = 12
RES_DICT["ImageNet(vit_base)"] = (672, 672)

def download_all_models():
    for model_name in MODEL_DICT:
        print(f"Downloading {model_name}")
        model = MODEL_DICT[model_name]()
        
def get_all_model_names():
    return list(MODEL_DICT.keys())
        
def get_model(model_name):
    return MODEL_DICT[model_name]()

@torch.no_grad()
def extract_features(images, model, model_name, node_type, layer, batch_size=8):
    use_cuda = torch.cuda.is_available()
    
    if use_cuda:
        model = model.cuda()

    chunked_idxs = torch.split(torch.arange(images.shape[0]), batch_size)
    
    outputs = []
    for idxs in chunked_idxs:
        inp = images[idxs]
        if use_cuda:
            inp = inp.cuda()
        out = model(inp)  # {'attn': [B, H, W, C], 'mlp': [B, H, W, C], 'block': [B, H, W, C]}
        out = out[node_type]
        if out is None:
            raise ValueError(f"Node type {node_type} not found in model {model_name}")
        out = out[layer]
        # normalize
        out = F.normalize(out, dim=-1)
        outputs.append(out.cpu().float())
    outputs = torch.cat(outputs, dim=0)

    return outputs

    
if __name__ == '__main__':
    inp = torch.rand(1, 3, 1024, 1024)
    model = MAE()
    out = model(inp)
    print(out[0][0].shape, out[0][1].shape, out[0][2].shape)