Spaces:
Build error
Build error
# Copyright 2020 Google LLC | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""Bottleneck ResNet v2 with GroupNorm and Weight Standardization.""" | |
import math | |
from os.path import join as pjoin | |
from collections import OrderedDict # pylint: disable=g-importing-member | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
def np2th(weights, conv=False): | |
"""Possibly convert HWIO to OIHW.""" | |
if conv: | |
weights = weights.transpose([3, 2, 0, 1]) | |
return torch.from_numpy(weights) | |
class StdConv2d(nn.Conv2d): | |
def forward(self, x): | |
w = self.weight | |
v, m = torch.var_mean(w, dim=[1, 2, 3], keepdim=True, unbiased=False) | |
w = (w - m) / torch.sqrt(v + 1e-5) | |
return F.conv2d(x, w, self.bias, self.stride, self.padding, | |
self.dilation, self.groups) | |
def conv3x3(cin, cout, stride=1, groups=1, bias=False): | |
return StdConv2d(cin, cout, kernel_size=3, stride=stride, | |
padding=1, bias=bias, groups=groups) | |
def conv1x1(cin, cout, stride=1, bias=False): | |
return StdConv2d(cin, cout, kernel_size=1, stride=stride, | |
padding=0, bias=bias) | |
class PreActBottleneck(nn.Module): | |
"""Pre-activation (v2) bottleneck block. | |
""" | |
def __init__(self, cin, cout=None, cmid=None, stride=1): | |
super().__init__() | |
cout = cout or cin | |
cmid = cmid or cout//4 | |
self.gn1 = nn.GroupNorm(32, cmid, eps=1e-6) | |
self.conv1 = conv1x1(cin, cmid, bias=False) | |
self.gn2 = nn.GroupNorm(32, cmid, eps=1e-6) | |
self.conv2 = conv3x3(cmid, cmid, stride, bias=False) # Original code has it on conv1!! | |
self.gn3 = nn.GroupNorm(32, cout, eps=1e-6) | |
self.conv3 = conv1x1(cmid, cout, bias=False) | |
self.relu = nn.ReLU(inplace=True) | |
if (stride != 1 or cin != cout): | |
# Projection also with pre-activation according to paper. | |
self.downsample = conv1x1(cin, cout, stride, bias=False) | |
self.gn_proj = nn.GroupNorm(cout, cout) | |
def forward(self, x): | |
# Residual branch | |
residual = x | |
if hasattr(self, 'downsample'): | |
residual = self.downsample(x) | |
residual = self.gn_proj(residual) | |
# Unit's branch | |
y = self.relu(self.gn1(self.conv1(x))) | |
y = self.relu(self.gn2(self.conv2(y))) | |
y = self.gn3(self.conv3(y)) | |
y = self.relu(residual + y) | |
return y | |
def load_from(self, weights, n_block, n_unit): | |
conv1_weight = np2th(weights[pjoin(n_block, n_unit, "conv1/kernel")], conv=True) | |
conv2_weight = np2th(weights[pjoin(n_block, n_unit, "conv2/kernel")], conv=True) | |
conv3_weight = np2th(weights[pjoin(n_block, n_unit, "conv3/kernel")], conv=True) | |
gn1_weight = np2th(weights[pjoin(n_block, n_unit, "gn1/scale")]) | |
gn1_bias = np2th(weights[pjoin(n_block, n_unit, "gn1/bias")]) | |
gn2_weight = np2th(weights[pjoin(n_block, n_unit, "gn2/scale")]) | |
gn2_bias = np2th(weights[pjoin(n_block, n_unit, "gn2/bias")]) | |
gn3_weight = np2th(weights[pjoin(n_block, n_unit, "gn3/scale")]) | |
gn3_bias = np2th(weights[pjoin(n_block, n_unit, "gn3/bias")]) | |
self.conv1.weight.copy_(conv1_weight) | |
self.conv2.weight.copy_(conv2_weight) | |
self.conv3.weight.copy_(conv3_weight) | |
self.gn1.weight.copy_(gn1_weight.view(-1)) | |
self.gn1.bias.copy_(gn1_bias.view(-1)) | |
self.gn2.weight.copy_(gn2_weight.view(-1)) | |
self.gn2.bias.copy_(gn2_bias.view(-1)) | |
self.gn3.weight.copy_(gn3_weight.view(-1)) | |
self.gn3.bias.copy_(gn3_bias.view(-1)) | |
if hasattr(self, 'downsample'): | |
proj_conv_weight = np2th(weights[pjoin(n_block, n_unit, "conv_proj/kernel")], conv=True) | |
proj_gn_weight = np2th(weights[pjoin(n_block, n_unit, "gn_proj/scale")]) | |
proj_gn_bias = np2th(weights[pjoin(n_block, n_unit, "gn_proj/bias")]) | |
self.downsample.weight.copy_(proj_conv_weight) | |
self.gn_proj.weight.copy_(proj_gn_weight.view(-1)) | |
self.gn_proj.bias.copy_(proj_gn_bias.view(-1)) | |
class ResNetV2(nn.Module): | |
"""Implementation of Pre-activation (v2) ResNet mode.""" | |
def __init__(self, block_units, width_factor): | |
super().__init__() | |
width = int(64 * width_factor) | |
self.width = width | |
# The following will be unreadable if we split lines. | |
# pylint: disable=line-too-long | |
self.root = nn.Sequential(OrderedDict([ | |
('conv', StdConv2d(3, width, kernel_size=7, stride=2, bias=False, padding=3)), | |
('gn', nn.GroupNorm(32, width, eps=1e-6)), | |
('relu', nn.ReLU(inplace=True)), | |
('pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=0)) | |
])) | |
self.body = nn.Sequential(OrderedDict([ | |
('block1', nn.Sequential(OrderedDict( | |
[('unit1', PreActBottleneck(cin=width, cout=width*4, cmid=width))] + | |
[(f'unit{i:d}', PreActBottleneck(cin=width*4, cout=width*4, cmid=width)) for i in range(2, block_units[0] + 1)], | |
))), | |
('block2', nn.Sequential(OrderedDict( | |
[('unit1', PreActBottleneck(cin=width*4, cout=width*8, cmid=width*2, stride=2))] + | |
[(f'unit{i:d}', PreActBottleneck(cin=width*8, cout=width*8, cmid=width*2)) for i in range(2, block_units[1] + 1)], | |
))), | |
('block3', nn.Sequential(OrderedDict( | |
[('unit1', PreActBottleneck(cin=width*8, cout=width*16, cmid=width*4, stride=2))] + | |
[(f'unit{i:d}', PreActBottleneck(cin=width*16, cout=width*16, cmid=width*4)) for i in range(2, block_units[2] + 1)], | |
))), | |
])) | |
def forward(self, x): | |
x = self.root(x) | |
x = self.body(x) | |
return x | |