Spaces:
Build error
Build error
add app.py
Browse files- .gitignore +1 -0
- app.py +156 -0
- models/__init__.py +192 -0
- models/beit.py +598 -0
- models/clip/__init__.py +1 -0
- models/clip/bpe_simple_vocab_16e6.txt.gz +3 -0
- models/clip/clip.py +229 -0
- models/clip/model.py +577 -0
- models/clip/simple_tokenizer.py +132 -0
- models/deploy.py +389 -0
- models/protonet.py +51 -0
- models/resnet_v2.py +164 -0
- models/utils.py +238 -0
- models/vision_transformer.py +246 -0
- models/vit_google.py +372 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
*.pyc
|
app.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import time
|
4 |
+
import random
|
5 |
+
import torch
|
6 |
+
import torchvision.transforms as transforms
|
7 |
+
#import requests
|
8 |
+
import gradio as gr
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
|
11 |
+
from models import get_model
|
12 |
+
from dotmap import DotMap
|
13 |
+
from PIL import Image
|
14 |
+
|
15 |
+
|
16 |
+
# args
|
17 |
+
args = DotMap()
|
18 |
+
args.deploy = 'vanilla'
|
19 |
+
args.arch = 'dino_small_patch16'
|
20 |
+
args.device = 'cuda:7'
|
21 |
+
#args.resume = '/fast_scratch/hushell/fluidstack/FS125_few-shot-transformer/outputs/dinosmall_1e-4/best_converted.pth'
|
22 |
+
args.resume = 'https://huggingface.co/hushell/pmf_dinosmall_lr1e-4/resolve/main/best_converted.pth'
|
23 |
+
args.api_key = 'AIzaSyAFkOGnXhy-2ZB0imDvNNqf2rHb98vR_qY'
|
24 |
+
args.cx = '06d75168141bc47f1'
|
25 |
+
|
26 |
+
|
27 |
+
# model
|
28 |
+
device = torch.device(args.device)
|
29 |
+
model = get_model(args)
|
30 |
+
model.to(device)
|
31 |
+
#checkpoint = torch.load(args.resume, map_location='cpu')
|
32 |
+
checkpoint = torch.hub.load_state_dict_from_url(args.resume, map_location='cpu')
|
33 |
+
model.load_state_dict(checkpoint['model'], strict=True)
|
34 |
+
|
35 |
+
|
36 |
+
# image transforms
|
37 |
+
def test_transform():
|
38 |
+
def _convert_image_to_rgb(im):
|
39 |
+
return im.convert('RGB')
|
40 |
+
|
41 |
+
return transforms.Compose([
|
42 |
+
transforms.Resize(256),
|
43 |
+
transforms.CenterCrop(224),
|
44 |
+
_convert_image_to_rgb,
|
45 |
+
transforms.ToTensor(),
|
46 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
47 |
+
std=[0.229, 0.224, 0.225]),
|
48 |
+
])
|
49 |
+
|
50 |
+
preprocess = test_transform()
|
51 |
+
|
52 |
+
@torch.no_grad()
|
53 |
+
def denormalize(x, mean, std):
|
54 |
+
# 3, H, W
|
55 |
+
t = x.clone()
|
56 |
+
t.mul_(std).add_(mean)
|
57 |
+
return torch.clamp(t, 0, 1)
|
58 |
+
|
59 |
+
|
60 |
+
# Google image search
|
61 |
+
from google_images_search import GoogleImagesSearch
|
62 |
+
|
63 |
+
# define search params
|
64 |
+
# option for commonly used search param are shown below for easy reference.
|
65 |
+
# For param marked with '##':
|
66 |
+
# - Multiselect is currently not feasible. Choose ONE option only
|
67 |
+
# - This param can also be omitted from _search_params if you do not wish to define any value
|
68 |
+
_search_params = {
|
69 |
+
'q': '...',
|
70 |
+
'num': 10,
|
71 |
+
'fileType': 'png', #'jpg|gif|png',
|
72 |
+
'rights': 'cc_publicdomain', #'cc_publicdomain|cc_attribute|cc_sharealike|cc_noncommercial|cc_nonderived',
|
73 |
+
#'safe': 'active|high|medium|off|safeUndefined', ##
|
74 |
+
'imgType': 'photo', #'clipart|face|lineart|stock|photo|animated|imgTypeUndefined', ##
|
75 |
+
#'imgSize': 'huge|icon|large|medium|small|xlarge|xxlarge|imgSizeUndefined', ##
|
76 |
+
#'imgDominantColor': 'black|blue|brown|gray|green|orange|pink|purple|red|teal|white|yellow|imgDominantColorUndefined', ##
|
77 |
+
'imgColorType': 'color', #'color|gray|mono|trans|imgColorTypeUndefined' ##
|
78 |
+
}
|
79 |
+
|
80 |
+
|
81 |
+
# Gradio UI
|
82 |
+
def inference(query, labels, n_supp=10):
|
83 |
+
'''
|
84 |
+
query: PIL image
|
85 |
+
labels: list of class names
|
86 |
+
'''
|
87 |
+
labels = labels.split(',')
|
88 |
+
n_supp = int(n_supp)
|
89 |
+
|
90 |
+
#print(f'#rows={len(labels)}, #cols={n_supp}')
|
91 |
+
fig, axs = plt.subplots(len(labels), n_supp, figsize=(n_supp*4, len(labels)*4))
|
92 |
+
|
93 |
+
with torch.no_grad():
|
94 |
+
# query image
|
95 |
+
query = preprocess(query).unsqueeze(0).unsqueeze(0).to(device) # (1, 1, 3, H, W)
|
96 |
+
|
97 |
+
supp_x = []
|
98 |
+
supp_y = []
|
99 |
+
|
100 |
+
# search support images
|
101 |
+
for idx, y in enumerate(labels):
|
102 |
+
with GoogleImagesSearch(args.api_key, args.cx) as gis:
|
103 |
+
_search_params['q'] = y
|
104 |
+
_search_params['num'] = n_supp
|
105 |
+
gis.search(search_params=_search_params, custom_image_name='my_image')
|
106 |
+
gis._custom_image_name = 'my_image'
|
107 |
+
|
108 |
+
for j, x in enumerate(gis.results()):
|
109 |
+
#url = x.url
|
110 |
+
#x_im = Image.open(requests.get(url, stream=True).raw)
|
111 |
+
x.download('./')
|
112 |
+
x_im = Image.open(x.path)
|
113 |
+
|
114 |
+
# vis
|
115 |
+
axs[idx, j].imshow(x_im)
|
116 |
+
axs[idx, j].set_title(f'{y}{j}')
|
117 |
+
axs[idx, j].axis('off')
|
118 |
+
|
119 |
+
x_im = preprocess(x_im) # (3, H, W)
|
120 |
+
supp_x.append(x_im)
|
121 |
+
supp_y.append(idx)
|
122 |
+
|
123 |
+
print('Searching for support images is done.')
|
124 |
+
|
125 |
+
supp_x = torch.stack(supp_x, dim=0).unsqueeze(0).to(device) # (1, n_supp*n_labels, 3, H, W)
|
126 |
+
supp_y = torch.tensor(supp_y).long().unsqueeze(0).to(device) # (1, n_supp*n_labels)
|
127 |
+
|
128 |
+
with torch.cuda.amp.autocast(True):
|
129 |
+
output = model(supp_x, supp_y, query) # (1, 1, n_labels)
|
130 |
+
|
131 |
+
probs = output.softmax(dim=-1).detach().cpu().numpy()
|
132 |
+
|
133 |
+
return {k: float(v) for k, v in zip(labels, probs[0, 0])}, fig
|
134 |
+
|
135 |
+
|
136 |
+
# DEBUG
|
137 |
+
#query = Image.open('../labrador-puppy.jpg')
|
138 |
+
##labels = 'dog, cat'
|
139 |
+
#labels = 'girl, boy'
|
140 |
+
#output = inference(query, labels, n_supp=2)
|
141 |
+
#print(output)
|
142 |
+
|
143 |
+
|
144 |
+
gr.Interface(fn=inference,
|
145 |
+
inputs=[
|
146 |
+
gr.inputs.Image(label="Image to classify", type="pil"),
|
147 |
+
gr.inputs.Textbox(lines=1, label="Class hypotheses:", placeholder="Enter class names separated by ','",),
|
148 |
+
#gr.inputs.Number(default=1, label="Number of support examples from Google")
|
149 |
+
gr.inputs.Slider(minimum=2, maximum=10, step=1, label="Number of support examples from Google")
|
150 |
+
],
|
151 |
+
theme="grass",
|
152 |
+
outputs=[
|
153 |
+
gr.outputs.Label(label="Predicted class probabilities"),
|
154 |
+
gr.outputs.Image(type='plot', label="Support examples from Google image search"),
|
155 |
+
],
|
156 |
+
description="PMF few-shot learning with Google image search").launch()
|
models/__init__.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
#from timm.models import create_model
|
5 |
+
from .protonet import ProtoNet
|
6 |
+
from .deploy import ProtoNet_Finetune, ProtoNet_Auto_Finetune, ProtoNet_AdaTok, ProtoNet_AdaTok_EntMin
|
7 |
+
|
8 |
+
|
9 |
+
def get_backbone(args):
|
10 |
+
if args.arch == 'vit_base_patch16_224_in21k':
|
11 |
+
from .vit_google import VisionTransformer, CONFIGS
|
12 |
+
|
13 |
+
config = CONFIGS['ViT-B_16']
|
14 |
+
model = VisionTransformer(config, 224)
|
15 |
+
|
16 |
+
url = 'https://storage.googleapis.com/vit_models/imagenet21k/ViT-B_16.npz'
|
17 |
+
pretrained_weights = 'pretrained_ckpts/vit_base_patch16_224_in21k.npz'
|
18 |
+
|
19 |
+
if not os.path.exists(pretrained_weights):
|
20 |
+
try:
|
21 |
+
import wget
|
22 |
+
os.makedirs('pretrained_ckpts', exist_ok=True)
|
23 |
+
wget.download(url, pretrained_weights)
|
24 |
+
except:
|
25 |
+
print(f'Cannot download pretrained weights from {url}. Check if `pip install wget` works.')
|
26 |
+
|
27 |
+
model.load_from(np.load(pretrained_weights))
|
28 |
+
print('Pretrained weights found at {}'.format(pretrained_weights))
|
29 |
+
|
30 |
+
elif args.arch == 'dino_base_patch16':
|
31 |
+
from . import vision_transformer as vit
|
32 |
+
|
33 |
+
model = vit.__dict__['vit_base'](patch_size=16, num_classes=0)
|
34 |
+
url = "dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth"
|
35 |
+
state_dict = torch.hub.load_state_dict_from_url(url="https://dl.fbaipublicfiles.com/dino/" + url)
|
36 |
+
|
37 |
+
model.load_state_dict(state_dict, strict=True)
|
38 |
+
print('Pretrained weights found at {}'.format(url))
|
39 |
+
|
40 |
+
elif args.arch == 'deit_base_patch16':
|
41 |
+
from . import vision_transformer as vit
|
42 |
+
|
43 |
+
model = vit.__dict__['vit_base'](patch_size=16, num_classes=0)
|
44 |
+
url = "https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth"
|
45 |
+
state_dict = torch.hub.load_state_dict_from_url(url=url)["model"]
|
46 |
+
|
47 |
+
for k in ['head.weight', 'head.bias']:
|
48 |
+
if k in state_dict:
|
49 |
+
print(f"removing key {k} from pretrained checkpoint")
|
50 |
+
del state_dict[k]
|
51 |
+
|
52 |
+
model.load_state_dict(state_dict, strict=True)
|
53 |
+
print('Pretrained weights found at {}'.format(url))
|
54 |
+
|
55 |
+
elif args.arch == 'deit_small_patch16':
|
56 |
+
from . import vision_transformer as vit
|
57 |
+
|
58 |
+
model = vit.__dict__['vit_small'](patch_size=16, num_classes=0)
|
59 |
+
url = "https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth"
|
60 |
+
state_dict = torch.hub.load_state_dict_from_url(url=url)["model"]
|
61 |
+
|
62 |
+
for k in ['head.weight', 'head.bias']:
|
63 |
+
if k in state_dict:
|
64 |
+
print(f"removing key {k} from pretrained checkpoint")
|
65 |
+
del state_dict[k]
|
66 |
+
|
67 |
+
model.load_state_dict(state_dict, strict=True)
|
68 |
+
print('Pretrained weights found at {}'.format(url))
|
69 |
+
|
70 |
+
elif args.arch == 'dino_small_patch16':
|
71 |
+
from . import vision_transformer as vit
|
72 |
+
|
73 |
+
model = vit.__dict__['vit_small'](patch_size=16, num_classes=0)
|
74 |
+
|
75 |
+
if not args.no_pretrain:
|
76 |
+
url = "dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth"
|
77 |
+
state_dict = torch.hub.load_state_dict_from_url(url="https://dl.fbaipublicfiles.com/dino/" + url)
|
78 |
+
|
79 |
+
model.load_state_dict(state_dict, strict=True)
|
80 |
+
print('Pretrained weights found at {}'.format(url))
|
81 |
+
|
82 |
+
elif args.arch == 'beit_base_patch16_224_pt22k':
|
83 |
+
from .beit import default_pretrained_model
|
84 |
+
model = default_pretrained_model(args)
|
85 |
+
print('Pretrained BEiT loaded')
|
86 |
+
|
87 |
+
elif args.arch == 'clip_base_patch16_224':
|
88 |
+
from . import clip
|
89 |
+
model, _ = clip.load('ViT-B/16', 'cpu')
|
90 |
+
|
91 |
+
elif args.arch == 'clip_resnet50':
|
92 |
+
from . import clip
|
93 |
+
model, _ = clip.load('RN50', 'cpu')
|
94 |
+
|
95 |
+
elif args.arch == 'dino_resnet50':
|
96 |
+
from torchvision.models.resnet import resnet50
|
97 |
+
|
98 |
+
model = resnet50(pretrained=False)
|
99 |
+
model.fc = torch.nn.Identity()
|
100 |
+
|
101 |
+
if not args.no_pretrain:
|
102 |
+
state_dict = torch.hub.load_state_dict_from_url(
|
103 |
+
url="https://dl.fbaipublicfiles.com/dino/dino_resnet50_pretrain/dino_resnet50_pretrain.pth",
|
104 |
+
map_location="cpu",
|
105 |
+
)
|
106 |
+
model.load_state_dict(state_dict, strict=False)
|
107 |
+
|
108 |
+
elif args.arch == 'resnet50':
|
109 |
+
from torchvision.models.resnet import resnet50
|
110 |
+
|
111 |
+
pretrained = not args.no_pretrain
|
112 |
+
model = resnet50(pretrained=pretrained)
|
113 |
+
model.fc = torch.nn.Identity()
|
114 |
+
|
115 |
+
elif args.arch == 'resnet18':
|
116 |
+
from torchvision.models.resnet import resnet18
|
117 |
+
|
118 |
+
pretrained = not args.no_pretrain
|
119 |
+
model = resnet18(pretrained=pretrained)
|
120 |
+
model.fc = torch.nn.Identity()
|
121 |
+
|
122 |
+
elif args.arch == 'dino_xcit_medium_24_p16':
|
123 |
+
model = torch.hub.load('facebookresearch/xcit:main', 'xcit_medium_24_p16')
|
124 |
+
model.head = torch.nn.Identity()
|
125 |
+
state_dict = torch.hub.load_state_dict_from_url(
|
126 |
+
url="https://dl.fbaipublicfiles.com/dino/dino_xcit_medium_24_p16_pretrain/dino_xcit_medium_24_p16_pretrain.pth",
|
127 |
+
map_location="cpu",
|
128 |
+
)
|
129 |
+
model.load_state_dict(state_dict, strict=False)
|
130 |
+
|
131 |
+
elif args.arch == 'dino_xcit_medium_24_p8':
|
132 |
+
model = torch.hub.load('facebookresearch/dino:main', 'dino_xcit_medium_24_p8')
|
133 |
+
|
134 |
+
elif args.arch == 'simclrv2_resnet50':
|
135 |
+
import sys
|
136 |
+
sys.path.insert(
|
137 |
+
0,
|
138 |
+
'cog',
|
139 |
+
)
|
140 |
+
import model_utils
|
141 |
+
|
142 |
+
model_utils.MODELS_ROOT_DIR = 'cog/models'
|
143 |
+
ckpt_file = os.path.join(args.pretrained_checkpoint_path, 'pretrained_ckpts/simclrv2_resnet50.pth')
|
144 |
+
resnet, _ = model_utils.load_pretrained_backbone(args.arch, ckpt_file)
|
145 |
+
|
146 |
+
class Wrapper(torch.nn.Module):
|
147 |
+
def __init__(self, model):
|
148 |
+
super(Wrapper, self).__init__()
|
149 |
+
self.model = model
|
150 |
+
|
151 |
+
def forward(self, x):
|
152 |
+
return self.model(x, apply_fc=False)
|
153 |
+
|
154 |
+
model = Wrapper(resnet)
|
155 |
+
|
156 |
+
elif args.arch in ['mocov2_resnet50', 'swav_resnet50', 'barlow_resnet50']:
|
157 |
+
from torchvision.models.resnet import resnet50
|
158 |
+
|
159 |
+
model = resnet50(pretrained=False)
|
160 |
+
ckpt_file = os.path.join(args.pretrained_checkpoint_path, 'pretrained_ckpts_converted/{}.pth'.format(args.arch))
|
161 |
+
ckpt = torch.load(ckpt_file)
|
162 |
+
|
163 |
+
msg = model.load_state_dict(ckpt, strict=False)
|
164 |
+
assert set(msg.missing_keys) == {"fc.weight", "fc.bias"}
|
165 |
+
|
166 |
+
# remove the fully-connected layer
|
167 |
+
model.fc = torch.nn.Identity()
|
168 |
+
|
169 |
+
else:
|
170 |
+
raise ValueError(f'{args.arch} is not conisdered in the current code.')
|
171 |
+
|
172 |
+
return model
|
173 |
+
|
174 |
+
|
175 |
+
def get_model(args):
|
176 |
+
backbone = get_backbone(args)
|
177 |
+
|
178 |
+
if args.deploy == 'vanilla':
|
179 |
+
model = ProtoNet(backbone)
|
180 |
+
elif args.deploy == 'finetune':
|
181 |
+
model = ProtoNet_Finetune(backbone, args.ada_steps, args.ada_lr, args.aug_prob, args.aug_types)
|
182 |
+
elif args.deploy == 'finetune_autolr':
|
183 |
+
model = ProtoNet_Auto_Finetune(backbone, args.ada_steps, args.aug_prob, args.aug_types)
|
184 |
+
elif args.deploy == 'ada_tokens':
|
185 |
+
model = ProtoNet_AdaTok(backbone, args.num_adapters,
|
186 |
+
args.ada_steps, args.ada_lr)
|
187 |
+
elif args.deploy == 'ada_tokens_entmin':
|
188 |
+
model = ProtoNet_AdaTok_EntMin(backbone, args.num_adapters,
|
189 |
+
args.ada_steps, args.ada_lr)
|
190 |
+
else:
|
191 |
+
raise ValueError(f'deploy method {args.deploy} is not supported.')
|
192 |
+
return model
|
models/beit.py
ADDED
@@ -0,0 +1,598 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254)
|
3 |
+
# Github source: https://github.com/microsoft/unilm/tree/master/beit
|
4 |
+
# Copyright (c) 2021 Microsoft
|
5 |
+
# Licensed under The MIT License [see LICENSE for details]
|
6 |
+
# By Hangbo Bao
|
7 |
+
# Based on timm and DeiT code bases
|
8 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
|
9 |
+
# https://github.com/facebookresearch/deit/
|
10 |
+
# https://github.com/facebookresearch/dino
|
11 |
+
# --------------------------------------------------------'
|
12 |
+
import math
|
13 |
+
from functools import partial
|
14 |
+
from scipy import interpolate
|
15 |
+
|
16 |
+
import numpy as np
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
import torch.nn.functional as F
|
20 |
+
from timm.models.layers import drop_path, to_2tuple, trunc_normal_
|
21 |
+
#from timm.models.registry import register_model
|
22 |
+
|
23 |
+
|
24 |
+
def _cfg(url='', **kwargs):
|
25 |
+
return {
|
26 |
+
'url': url,
|
27 |
+
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
|
28 |
+
'crop_pct': .9, 'interpolation': 'bicubic',
|
29 |
+
'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5),
|
30 |
+
**kwargs
|
31 |
+
}
|
32 |
+
|
33 |
+
|
34 |
+
class DropPath(nn.Module):
|
35 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
36 |
+
"""
|
37 |
+
def __init__(self, drop_prob=None):
|
38 |
+
super(DropPath, self).__init__()
|
39 |
+
self.drop_prob = drop_prob
|
40 |
+
|
41 |
+
def forward(self, x):
|
42 |
+
return drop_path(x, self.drop_prob, self.training)
|
43 |
+
|
44 |
+
def extra_repr(self) -> str:
|
45 |
+
return 'p={}'.format(self.drop_prob)
|
46 |
+
|
47 |
+
|
48 |
+
class Mlp(nn.Module):
|
49 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
50 |
+
super().__init__()
|
51 |
+
out_features = out_features or in_features
|
52 |
+
hidden_features = hidden_features or in_features
|
53 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
54 |
+
self.act = act_layer()
|
55 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
56 |
+
self.drop = nn.Dropout(drop)
|
57 |
+
|
58 |
+
def forward(self, x):
|
59 |
+
x = self.fc1(x)
|
60 |
+
x = self.act(x)
|
61 |
+
# x = self.drop(x)
|
62 |
+
# commit this for the orignal BERT implement
|
63 |
+
x = self.fc2(x)
|
64 |
+
x = self.drop(x)
|
65 |
+
return x
|
66 |
+
|
67 |
+
|
68 |
+
class Attention(nn.Module):
|
69 |
+
def __init__(
|
70 |
+
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
|
71 |
+
proj_drop=0., window_size=None, attn_head_dim=None):
|
72 |
+
super().__init__()
|
73 |
+
self.num_heads = num_heads
|
74 |
+
head_dim = dim // num_heads
|
75 |
+
if attn_head_dim is not None:
|
76 |
+
head_dim = attn_head_dim
|
77 |
+
all_head_dim = head_dim * self.num_heads
|
78 |
+
self.scale = qk_scale or head_dim ** -0.5
|
79 |
+
|
80 |
+
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
|
81 |
+
if qkv_bias:
|
82 |
+
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
|
83 |
+
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
|
84 |
+
else:
|
85 |
+
self.q_bias = None
|
86 |
+
self.v_bias = None
|
87 |
+
|
88 |
+
if window_size:
|
89 |
+
self.window_size = window_size
|
90 |
+
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
91 |
+
self.relative_position_bias_table = nn.Parameter(
|
92 |
+
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
93 |
+
# cls to token & token 2 cls & cls to cls
|
94 |
+
|
95 |
+
# get pair-wise relative position index for each token inside the window
|
96 |
+
coords_h = torch.arange(window_size[0])
|
97 |
+
coords_w = torch.arange(window_size[1])
|
98 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
99 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
100 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
101 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
102 |
+
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
103 |
+
relative_coords[:, :, 1] += window_size[1] - 1
|
104 |
+
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
105 |
+
relative_position_index = \
|
106 |
+
torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype)
|
107 |
+
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
108 |
+
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
109 |
+
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
110 |
+
relative_position_index[0, 0] = self.num_relative_distance - 1
|
111 |
+
|
112 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
113 |
+
else:
|
114 |
+
self.window_size = None
|
115 |
+
self.relative_position_bias_table = None
|
116 |
+
self.relative_position_index = None
|
117 |
+
|
118 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
119 |
+
self.proj = nn.Linear(all_head_dim, dim)
|
120 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
121 |
+
|
122 |
+
def forward(self, x, rel_pos_bias=None):
|
123 |
+
B, N, C = x.shape
|
124 |
+
qkv_bias = None
|
125 |
+
if self.q_bias is not None:
|
126 |
+
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
|
127 |
+
# qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
128 |
+
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
129 |
+
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
130 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
131 |
+
|
132 |
+
q = q * self.scale
|
133 |
+
attn = (q @ k.transpose(-2, -1))
|
134 |
+
|
135 |
+
if self.relative_position_bias_table is not None:
|
136 |
+
relative_position_bias = \
|
137 |
+
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
138 |
+
self.window_size[0] * self.window_size[1] + 1,
|
139 |
+
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
|
140 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
141 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
142 |
+
|
143 |
+
if rel_pos_bias is not None:
|
144 |
+
attn = attn + rel_pos_bias
|
145 |
+
|
146 |
+
attn = attn.softmax(dim=-1)
|
147 |
+
attn = self.attn_drop(attn)
|
148 |
+
|
149 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
150 |
+
x = self.proj(x)
|
151 |
+
x = self.proj_drop(x)
|
152 |
+
return x
|
153 |
+
|
154 |
+
|
155 |
+
class Block(nn.Module):
|
156 |
+
|
157 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
158 |
+
drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
|
159 |
+
window_size=None, attn_head_dim=None):
|
160 |
+
super().__init__()
|
161 |
+
self.norm1 = norm_layer(dim)
|
162 |
+
self.attn = Attention(
|
163 |
+
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
164 |
+
attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim)
|
165 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
166 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
167 |
+
self.norm2 = norm_layer(dim)
|
168 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
169 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
170 |
+
|
171 |
+
if init_values > 0:
|
172 |
+
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
173 |
+
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
174 |
+
else:
|
175 |
+
self.gamma_1, self.gamma_2 = None, None
|
176 |
+
|
177 |
+
def forward(self, x, rel_pos_bias=None):
|
178 |
+
if self.gamma_1 is None:
|
179 |
+
x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
|
180 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
181 |
+
else:
|
182 |
+
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
|
183 |
+
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
184 |
+
return x
|
185 |
+
|
186 |
+
|
187 |
+
class PatchEmbed(nn.Module):
|
188 |
+
""" Image to Patch Embedding
|
189 |
+
"""
|
190 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
|
191 |
+
super().__init__()
|
192 |
+
img_size = to_2tuple(img_size)
|
193 |
+
patch_size = to_2tuple(patch_size)
|
194 |
+
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
|
195 |
+
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
|
196 |
+
self.img_size = img_size
|
197 |
+
self.patch_size = patch_size
|
198 |
+
self.num_patches = num_patches
|
199 |
+
|
200 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
201 |
+
|
202 |
+
def forward(self, x, **kwargs):
|
203 |
+
B, C, H, W = x.shape
|
204 |
+
# FIXME look at relaxing size constraints
|
205 |
+
assert H == self.img_size[0] and W == self.img_size[1], \
|
206 |
+
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
207 |
+
x = self.proj(x).flatten(2).transpose(1, 2)
|
208 |
+
return x
|
209 |
+
|
210 |
+
|
211 |
+
class RelativePositionBias(nn.Module):
|
212 |
+
|
213 |
+
def __init__(self, window_size, num_heads):
|
214 |
+
super().__init__()
|
215 |
+
self.window_size = window_size
|
216 |
+
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
217 |
+
self.relative_position_bias_table = nn.Parameter(
|
218 |
+
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
219 |
+
# cls to token & token 2 cls & cls to cls
|
220 |
+
|
221 |
+
# get pair-wise relative position index for each token inside the window
|
222 |
+
coords_h = torch.arange(window_size[0])
|
223 |
+
coords_w = torch.arange(window_size[1])
|
224 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
225 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
226 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
227 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
228 |
+
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
229 |
+
relative_coords[:, :, 1] += window_size[1] - 1
|
230 |
+
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
231 |
+
relative_position_index = \
|
232 |
+
torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
|
233 |
+
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
234 |
+
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
235 |
+
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
236 |
+
relative_position_index[0, 0] = self.num_relative_distance - 1
|
237 |
+
|
238 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
239 |
+
|
240 |
+
# trunc_normal_(self.relative_position_bias_table, std=.02)
|
241 |
+
|
242 |
+
def forward(self):
|
243 |
+
relative_position_bias = \
|
244 |
+
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
245 |
+
self.window_size[0] * self.window_size[1] + 1,
|
246 |
+
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
|
247 |
+
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
248 |
+
|
249 |
+
|
250 |
+
class VisionTransformer(nn.Module):
|
251 |
+
""" Vision Transformer with support for patch or hybrid CNN input stage
|
252 |
+
"""
|
253 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
|
254 |
+
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
|
255 |
+
drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None,
|
256 |
+
use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False,
|
257 |
+
use_mean_pooling=True, init_scale=0.001):
|
258 |
+
super().__init__()
|
259 |
+
self.num_classes = num_classes
|
260 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
261 |
+
|
262 |
+
self.patch_embed = PatchEmbed(
|
263 |
+
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
264 |
+
num_patches = self.patch_embed.num_patches
|
265 |
+
|
266 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
267 |
+
# self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
268 |
+
if use_abs_pos_emb:
|
269 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
270 |
+
else:
|
271 |
+
self.pos_embed = None
|
272 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
273 |
+
|
274 |
+
if use_shared_rel_pos_bias:
|
275 |
+
self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads)
|
276 |
+
else:
|
277 |
+
self.rel_pos_bias = None
|
278 |
+
|
279 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
280 |
+
self.use_rel_pos_bias = use_rel_pos_bias
|
281 |
+
self.blocks = nn.ModuleList([
|
282 |
+
Block(
|
283 |
+
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
284 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
|
285 |
+
init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None)
|
286 |
+
for i in range(depth)])
|
287 |
+
self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim)
|
288 |
+
self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None
|
289 |
+
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
290 |
+
|
291 |
+
if self.pos_embed is not None:
|
292 |
+
trunc_normal_(self.pos_embed, std=.02)
|
293 |
+
trunc_normal_(self.cls_token, std=.02)
|
294 |
+
# trunc_normal_(self.mask_token, std=.02)
|
295 |
+
self.apply(self._init_weights)
|
296 |
+
self.fix_init_weight()
|
297 |
+
|
298 |
+
if num_classes > 0:
|
299 |
+
trunc_normal_(self.head.weight, std=.02)
|
300 |
+
self.head.weight.data.mul_(init_scale)
|
301 |
+
self.head.bias.data.mul_(init_scale)
|
302 |
+
|
303 |
+
def fix_init_weight(self):
|
304 |
+
def rescale(param, layer_id):
|
305 |
+
param.div_(math.sqrt(2.0 * layer_id))
|
306 |
+
|
307 |
+
for layer_id, layer in enumerate(self.blocks):
|
308 |
+
rescale(layer.attn.proj.weight.data, layer_id + 1)
|
309 |
+
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
|
310 |
+
|
311 |
+
def _init_weights(self, m):
|
312 |
+
if isinstance(m, nn.Linear):
|
313 |
+
trunc_normal_(m.weight, std=.02)
|
314 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
315 |
+
nn.init.constant_(m.bias, 0)
|
316 |
+
elif isinstance(m, nn.LayerNorm):
|
317 |
+
nn.init.constant_(m.bias, 0)
|
318 |
+
nn.init.constant_(m.weight, 1.0)
|
319 |
+
|
320 |
+
def get_num_layers(self):
|
321 |
+
return len(self.blocks)
|
322 |
+
|
323 |
+
@torch.jit.ignore
|
324 |
+
def no_weight_decay(self):
|
325 |
+
return {'pos_embed', 'cls_token'}
|
326 |
+
|
327 |
+
def get_classifier(self):
|
328 |
+
return self.head
|
329 |
+
|
330 |
+
def reset_classifier(self, num_classes, global_pool=''):
|
331 |
+
self.num_classes = num_classes
|
332 |
+
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
333 |
+
|
334 |
+
def forward_features(self, x):
|
335 |
+
x = self.patch_embed(x)
|
336 |
+
batch_size, seq_len, _ = x.size()
|
337 |
+
|
338 |
+
cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
339 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
340 |
+
if self.pos_embed is not None:
|
341 |
+
x = x + self.pos_embed
|
342 |
+
x = self.pos_drop(x)
|
343 |
+
|
344 |
+
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
|
345 |
+
for blk in self.blocks:
|
346 |
+
x = blk(x, rel_pos_bias=rel_pos_bias)
|
347 |
+
|
348 |
+
x = self.norm(x)
|
349 |
+
if self.fc_norm is not None:
|
350 |
+
t = x[:, 1:, :]
|
351 |
+
return self.fc_norm(t.mean(1))
|
352 |
+
else:
|
353 |
+
return x[:, 0]
|
354 |
+
|
355 |
+
def forward(self, x):
|
356 |
+
x = self.forward_features(x)
|
357 |
+
x = self.head(x)
|
358 |
+
return x
|
359 |
+
|
360 |
+
|
361 |
+
#@register_model
|
362 |
+
def beit_base_patch16_224(pretrained=False, **kwargs):
|
363 |
+
model = VisionTransformer(
|
364 |
+
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
|
365 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
366 |
+
model.default_cfg = _cfg()
|
367 |
+
return model
|
368 |
+
|
369 |
+
|
370 |
+
#@register_model
|
371 |
+
def beit_base_patch16_384(pretrained=False, **kwargs):
|
372 |
+
model = VisionTransformer(
|
373 |
+
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
|
374 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
375 |
+
model.default_cfg = _cfg()
|
376 |
+
return model
|
377 |
+
|
378 |
+
|
379 |
+
#@register_model
|
380 |
+
def beit_large_patch16_224(pretrained=False, **kwargs):
|
381 |
+
model = VisionTransformer(
|
382 |
+
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
383 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
384 |
+
model.default_cfg = _cfg()
|
385 |
+
return model
|
386 |
+
|
387 |
+
|
388 |
+
#@register_model
|
389 |
+
def beit_large_patch16_384(pretrained=False, **kwargs):
|
390 |
+
model = VisionTransformer(
|
391 |
+
img_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
392 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
393 |
+
model.default_cfg = _cfg()
|
394 |
+
return model
|
395 |
+
|
396 |
+
|
397 |
+
#@register_model
|
398 |
+
def beit_large_patch16_512(pretrained=False, **kwargs):
|
399 |
+
model = VisionTransformer(
|
400 |
+
img_size=512, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
401 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
402 |
+
model.default_cfg = _cfg()
|
403 |
+
return model
|
404 |
+
|
405 |
+
|
406 |
+
def load_state_dict(model, state_dict, prefix='', ignore_missing="relative_position_index"):
|
407 |
+
missing_keys = []
|
408 |
+
unexpected_keys = []
|
409 |
+
error_msgs = []
|
410 |
+
# copy state_dict so _load_from_state_dict can modify it
|
411 |
+
metadata = getattr(state_dict, '_metadata', None)
|
412 |
+
state_dict = state_dict.copy()
|
413 |
+
if metadata is not None:
|
414 |
+
state_dict._metadata = metadata
|
415 |
+
|
416 |
+
def _load(module, prefix=''):
|
417 |
+
local_metadata = {} if metadata is None else metadata.get(
|
418 |
+
prefix[:-1], {})
|
419 |
+
module._load_from_state_dict(
|
420 |
+
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
|
421 |
+
for name, child in module._modules.items():
|
422 |
+
if child is not None:
|
423 |
+
_load(child, prefix + name + '.')
|
424 |
+
|
425 |
+
_load(model, prefix=prefix)
|
426 |
+
|
427 |
+
warn_missing_keys = []
|
428 |
+
ignore_missing_keys = []
|
429 |
+
for key in missing_keys:
|
430 |
+
keep_flag = True
|
431 |
+
for ignore_key in ignore_missing.split('|'):
|
432 |
+
if ignore_key in key:
|
433 |
+
keep_flag = False
|
434 |
+
break
|
435 |
+
if keep_flag:
|
436 |
+
warn_missing_keys.append(key)
|
437 |
+
else:
|
438 |
+
ignore_missing_keys.append(key)
|
439 |
+
|
440 |
+
missing_keys = warn_missing_keys
|
441 |
+
|
442 |
+
if len(missing_keys) > 0:
|
443 |
+
print("Weights of {} not initialized from pretrained model: {}".format(
|
444 |
+
model.__class__.__name__, missing_keys))
|
445 |
+
if len(unexpected_keys) > 0:
|
446 |
+
print("Weights from pretrained model not used in {}: {}".format(
|
447 |
+
model.__class__.__name__, unexpected_keys))
|
448 |
+
if len(ignore_missing_keys) > 0:
|
449 |
+
print("Ignored weights of {} not initialized from pretrained model: {}".format(
|
450 |
+
model.__class__.__name__, ignore_missing_keys))
|
451 |
+
if len(error_msgs) > 0:
|
452 |
+
print('\n'.join(error_msgs))
|
453 |
+
|
454 |
+
|
455 |
+
def default_pretrained_model(args):
|
456 |
+
model = beit_base_patch16_224(
|
457 |
+
pretrained=False,
|
458 |
+
img_size=args.image_size,
|
459 |
+
num_classes=0,
|
460 |
+
drop_rate=0.,
|
461 |
+
drop_path_rate=0.1,
|
462 |
+
attn_drop_rate=0.,
|
463 |
+
#drop_block_rate=None,
|
464 |
+
use_mean_pooling=True,
|
465 |
+
init_scale=0.001,
|
466 |
+
use_rel_pos_bias=True,
|
467 |
+
use_abs_pos_emb=False,
|
468 |
+
init_values=0.1,
|
469 |
+
)
|
470 |
+
|
471 |
+
#url = 'https://unilm.blob.core.windows.net/beit/beit_base_patch16_224_pt22k.pth'
|
472 |
+
url = 'https://unilm.blob.core.windows.net/beit/beit_base_patch16_224_pt22k_ft22k.pth'
|
473 |
+
|
474 |
+
checkpoint = torch.hub.load_state_dict_from_url(
|
475 |
+
url, map_location='cpu', check_hash=True)
|
476 |
+
print('Pretrained weights found at {}'.format(url))
|
477 |
+
|
478 |
+
# select key
|
479 |
+
checkpoint_model = None
|
480 |
+
for model_key in ['model', 'module']:
|
481 |
+
if model_key in checkpoint:
|
482 |
+
checkpoint_model = checkpoint[model_key]
|
483 |
+
print("Load state_dict by model_key = %s" % model_key)
|
484 |
+
break
|
485 |
+
if checkpoint_model is None:
|
486 |
+
checkpoint_model = checkpoint
|
487 |
+
|
488 |
+
# remove head
|
489 |
+
state_dict = model.state_dict()
|
490 |
+
for k in ['head.weight', 'head.bias']:
|
491 |
+
#if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
|
492 |
+
if k in checkpoint_model:
|
493 |
+
print(f"Removing key {k} from pretrained checkpoint")
|
494 |
+
del checkpoint_model[k]
|
495 |
+
|
496 |
+
# resize rel_pos_bias
|
497 |
+
if model.use_rel_pos_bias and "rel_pos_bias.relative_position_bias_table" in checkpoint_model:
|
498 |
+
print("Expand the shared relative position embedding to each transformer block. ")
|
499 |
+
num_layers = model.get_num_layers()
|
500 |
+
rel_pos_bias = checkpoint_model["rel_pos_bias.relative_position_bias_table"]
|
501 |
+
for i in range(num_layers):
|
502 |
+
checkpoint_model["blocks.%d.attn.relative_position_bias_table" % i] = rel_pos_bias.clone()
|
503 |
+
|
504 |
+
checkpoint_model.pop("rel_pos_bias.relative_position_bias_table")
|
505 |
+
|
506 |
+
all_keys = list(checkpoint_model.keys())
|
507 |
+
for key in all_keys:
|
508 |
+
if "relative_position_index" in key:
|
509 |
+
checkpoint_model.pop(key)
|
510 |
+
|
511 |
+
if "relative_position_bias_table" in key:
|
512 |
+
rel_pos_bias = checkpoint_model[key]
|
513 |
+
src_num_pos, num_attn_heads = rel_pos_bias.size()
|
514 |
+
dst_num_pos, _ = model.state_dict()[key].size()
|
515 |
+
dst_patch_shape = model.patch_embed.patch_shape
|
516 |
+
if dst_patch_shape[0] != dst_patch_shape[1]:
|
517 |
+
raise NotImplementedError()
|
518 |
+
num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * (dst_patch_shape[1] * 2 - 1)
|
519 |
+
src_size = int((src_num_pos - num_extra_tokens) ** 0.5)
|
520 |
+
dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5)
|
521 |
+
if src_size != dst_size:
|
522 |
+
print("Position interpolate for %s from %dx%d to %dx%d" % (
|
523 |
+
key, src_size, src_size, dst_size, dst_size))
|
524 |
+
extra_tokens = rel_pos_bias[-num_extra_tokens:, :]
|
525 |
+
rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :]
|
526 |
+
|
527 |
+
def geometric_progression(a, r, n):
|
528 |
+
return a * (1.0 - r ** n) / (1.0 - r)
|
529 |
+
|
530 |
+
left, right = 1.01, 1.5
|
531 |
+
while right - left > 1e-6:
|
532 |
+
q = (left + right) / 2.0
|
533 |
+
gp = geometric_progression(1, q, src_size // 2)
|
534 |
+
if gp > dst_size // 2:
|
535 |
+
right = q
|
536 |
+
else:
|
537 |
+
left = q
|
538 |
+
|
539 |
+
# if q > 1.090307:
|
540 |
+
# q = 1.090307
|
541 |
+
|
542 |
+
dis = []
|
543 |
+
cur = 1
|
544 |
+
for i in range(src_size // 2):
|
545 |
+
dis.append(cur)
|
546 |
+
cur += q ** (i + 1)
|
547 |
+
|
548 |
+
r_ids = [-_ for _ in reversed(dis)]
|
549 |
+
|
550 |
+
x = r_ids + [0] + dis
|
551 |
+
y = r_ids + [0] + dis
|
552 |
+
|
553 |
+
t = dst_size // 2.0
|
554 |
+
dx = np.arange(-t, t + 0.1, 1.0)
|
555 |
+
dy = np.arange(-t, t + 0.1, 1.0)
|
556 |
+
|
557 |
+
print("Original positions = %s" % str(x))
|
558 |
+
print("Target positions = %s" % str(dx))
|
559 |
+
|
560 |
+
all_rel_pos_bias = []
|
561 |
+
|
562 |
+
for i in range(num_attn_heads):
|
563 |
+
z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy()
|
564 |
+
f = interpolate.interp2d(x, y, z, kind='cubic')
|
565 |
+
all_rel_pos_bias.append(
|
566 |
+
torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device))
|
567 |
+
|
568 |
+
rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1)
|
569 |
+
|
570 |
+
new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0)
|
571 |
+
checkpoint_model[key] = new_rel_pos_bias
|
572 |
+
|
573 |
+
# interpolate position embedding
|
574 |
+
if 'pos_embed' in checkpoint_model:
|
575 |
+
pos_embed_checkpoint = checkpoint_model['pos_embed']
|
576 |
+
embedding_size = pos_embed_checkpoint.shape[-1]
|
577 |
+
num_patches = model.patch_embed.num_patches
|
578 |
+
num_extra_tokens = model.pos_embed.shape[-2] - num_patches
|
579 |
+
# height (== width) for the checkpoint position embedding
|
580 |
+
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
|
581 |
+
# height (== width) for the new position embedding
|
582 |
+
new_size = int(num_patches ** 0.5)
|
583 |
+
# class_token and dist_token are kept unchanged
|
584 |
+
if orig_size != new_size:
|
585 |
+
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
|
586 |
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
587 |
+
# only the position tokens are interpolated
|
588 |
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
589 |
+
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
590 |
+
pos_tokens = torch.nn.functional.interpolate(
|
591 |
+
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
592 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
593 |
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
594 |
+
checkpoint_model['pos_embed'] = new_pos_embed
|
595 |
+
|
596 |
+
load_state_dict(model, checkpoint_model)
|
597 |
+
return model
|
598 |
+
|
models/clip/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .clip import *
|
models/clip/bpe_simple_vocab_16e6.txt.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a
|
3 |
+
size 1356917
|
models/clip/clip.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import os
|
3 |
+
import urllib
|
4 |
+
import warnings
|
5 |
+
from typing import Any, Union, List
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from PIL import Image
|
9 |
+
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
+
from .model import build_model, build_vision_model
|
13 |
+
from .simple_tokenizer import SimpleTokenizer as _Tokenizer
|
14 |
+
|
15 |
+
try:
|
16 |
+
from torchvision.transforms import InterpolationMode
|
17 |
+
BICUBIC = InterpolationMode.BICUBIC
|
18 |
+
except ImportError:
|
19 |
+
BICUBIC = Image.BICUBIC
|
20 |
+
|
21 |
+
|
22 |
+
if torch.__version__.split(".") < ["1", "7", "1"]:
|
23 |
+
warnings.warn("PyTorch version 1.7.1 or higher is recommended")
|
24 |
+
|
25 |
+
|
26 |
+
__all__ = ["available_models", "load", "tokenize"]
|
27 |
+
_tokenizer = _Tokenizer()
|
28 |
+
|
29 |
+
_MODELS = {
|
30 |
+
"RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
|
31 |
+
"RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
|
32 |
+
"RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
|
33 |
+
"RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
|
34 |
+
"ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
|
35 |
+
"ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
|
36 |
+
}
|
37 |
+
|
38 |
+
|
39 |
+
def _download(url: str, root: str):
|
40 |
+
os.makedirs(root, exist_ok=True)
|
41 |
+
filename = os.path.basename(url)
|
42 |
+
|
43 |
+
expected_sha256 = url.split("/")[-2]
|
44 |
+
download_target = os.path.join(root, filename)
|
45 |
+
|
46 |
+
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
47 |
+
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
48 |
+
|
49 |
+
if os.path.isfile(download_target):
|
50 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
|
51 |
+
return download_target
|
52 |
+
else:
|
53 |
+
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
|
54 |
+
|
55 |
+
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
56 |
+
with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop:
|
57 |
+
while True:
|
58 |
+
buffer = source.read(8192)
|
59 |
+
if not buffer:
|
60 |
+
break
|
61 |
+
|
62 |
+
output.write(buffer)
|
63 |
+
loop.update(len(buffer))
|
64 |
+
|
65 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
|
66 |
+
raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match")
|
67 |
+
|
68 |
+
return download_target
|
69 |
+
|
70 |
+
|
71 |
+
def _convert_image_to_rgb(image):
|
72 |
+
return image.convert("RGB")
|
73 |
+
|
74 |
+
|
75 |
+
def _transform(n_px):
|
76 |
+
return Compose([
|
77 |
+
Resize(n_px, interpolation=BICUBIC),
|
78 |
+
CenterCrop(n_px),
|
79 |
+
_convert_image_to_rgb,
|
80 |
+
ToTensor(),
|
81 |
+
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
82 |
+
])
|
83 |
+
|
84 |
+
|
85 |
+
def available_models() -> List[str]:
|
86 |
+
"""Returns the names of available CLIP models"""
|
87 |
+
return list(_MODELS.keys())
|
88 |
+
|
89 |
+
|
90 |
+
def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit: bool = False, download_root: str = None):
|
91 |
+
"""Load a CLIP model
|
92 |
+
|
93 |
+
Parameters
|
94 |
+
----------
|
95 |
+
name : str
|
96 |
+
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
|
97 |
+
|
98 |
+
device : Union[str, torch.device]
|
99 |
+
The device to put the loaded model
|
100 |
+
|
101 |
+
jit : bool
|
102 |
+
Whether to load the optimized JIT model or more hackable non-JIT model (default).
|
103 |
+
|
104 |
+
download_root: str
|
105 |
+
path to download the model files; by default, it uses "~/.cache/clip"
|
106 |
+
|
107 |
+
Returns
|
108 |
+
-------
|
109 |
+
model : torch.nn.Module
|
110 |
+
The CLIP model
|
111 |
+
|
112 |
+
preprocess : Callable[[PIL.Image], torch.Tensor]
|
113 |
+
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
|
114 |
+
"""
|
115 |
+
if name in _MODELS:
|
116 |
+
model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip"))
|
117 |
+
elif os.path.isfile(name):
|
118 |
+
model_path = name
|
119 |
+
else:
|
120 |
+
raise RuntimeError(f"Model {name} not found; available models = {available_models()}")
|
121 |
+
|
122 |
+
try:
|
123 |
+
# loading JIT archive
|
124 |
+
model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval()
|
125 |
+
state_dict = None
|
126 |
+
except RuntimeError:
|
127 |
+
# loading saved state dict
|
128 |
+
if jit:
|
129 |
+
warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
|
130 |
+
jit = False
|
131 |
+
state_dict = torch.load(model_path, map_location="cpu")
|
132 |
+
|
133 |
+
if not jit:
|
134 |
+
#model = build_model(state_dict or model.state_dict()).to(device)
|
135 |
+
model = build_vision_model(state_dict or model.state_dict()).to(device)
|
136 |
+
if str(device) == "cpu":
|
137 |
+
model.float()
|
138 |
+
return model, _transform(model.visual.input_resolution)
|
139 |
+
|
140 |
+
# patch the device names
|
141 |
+
device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
|
142 |
+
device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
|
143 |
+
|
144 |
+
def patch_device(module):
|
145 |
+
try:
|
146 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
147 |
+
except RuntimeError:
|
148 |
+
graphs = []
|
149 |
+
|
150 |
+
if hasattr(module, "forward1"):
|
151 |
+
graphs.append(module.forward1.graph)
|
152 |
+
|
153 |
+
for graph in graphs:
|
154 |
+
for node in graph.findAllNodes("prim::Constant"):
|
155 |
+
if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"):
|
156 |
+
node.copyAttributes(device_node)
|
157 |
+
|
158 |
+
model.apply(patch_device)
|
159 |
+
patch_device(model.encode_image)
|
160 |
+
patch_device(model.encode_text)
|
161 |
+
|
162 |
+
# patch dtype to float32 on CPU
|
163 |
+
if str(device) == "cpu":
|
164 |
+
float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
|
165 |
+
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
|
166 |
+
float_node = float_input.node()
|
167 |
+
|
168 |
+
def patch_float(module):
|
169 |
+
try:
|
170 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
171 |
+
except RuntimeError:
|
172 |
+
graphs = []
|
173 |
+
|
174 |
+
if hasattr(module, "forward1"):
|
175 |
+
graphs.append(module.forward1.graph)
|
176 |
+
|
177 |
+
for graph in graphs:
|
178 |
+
for node in graph.findAllNodes("aten::to"):
|
179 |
+
inputs = list(node.inputs())
|
180 |
+
for i in [1, 2]: # dtype can be the second or third argument to aten::to()
|
181 |
+
if inputs[i].node()["value"] == 5:
|
182 |
+
inputs[i].node().copyAttributes(float_node)
|
183 |
+
|
184 |
+
model.apply(patch_float)
|
185 |
+
patch_float(model.encode_image)
|
186 |
+
patch_float(model.encode_text)
|
187 |
+
|
188 |
+
model.float()
|
189 |
+
|
190 |
+
return model, _transform(model.input_resolution.item())
|
191 |
+
|
192 |
+
|
193 |
+
def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> torch.LongTensor:
|
194 |
+
"""
|
195 |
+
Returns the tokenized representation of given input string(s)
|
196 |
+
|
197 |
+
Parameters
|
198 |
+
----------
|
199 |
+
texts : Union[str, List[str]]
|
200 |
+
An input string or a list of input strings to tokenize
|
201 |
+
|
202 |
+
context_length : int
|
203 |
+
The context length to use; all CLIP models use 77 as the context length
|
204 |
+
|
205 |
+
truncate: bool
|
206 |
+
Whether to truncate the text in case its encoding is longer than the context length
|
207 |
+
|
208 |
+
Returns
|
209 |
+
-------
|
210 |
+
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
|
211 |
+
"""
|
212 |
+
if isinstance(texts, str):
|
213 |
+
texts = [texts]
|
214 |
+
|
215 |
+
sot_token = _tokenizer.encoder["<|startoftext|>"]
|
216 |
+
eot_token = _tokenizer.encoder["<|endoftext|>"]
|
217 |
+
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
|
218 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
219 |
+
|
220 |
+
for i, tokens in enumerate(all_tokens):
|
221 |
+
if len(tokens) > context_length:
|
222 |
+
if truncate:
|
223 |
+
tokens = tokens[:context_length]
|
224 |
+
tokens[-1] = eot_token
|
225 |
+
else:
|
226 |
+
raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
|
227 |
+
result[i, :len(tokens)] = torch.tensor(tokens)
|
228 |
+
|
229 |
+
return result
|
models/clip/model.py
ADDED
@@ -0,0 +1,577 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
from typing import Tuple, Union
|
3 |
+
|
4 |
+
import math
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from torch import nn
|
9 |
+
|
10 |
+
|
11 |
+
class Bottleneck(nn.Module):
|
12 |
+
expansion = 4
|
13 |
+
|
14 |
+
def __init__(self, inplanes, planes, stride=1):
|
15 |
+
super().__init__()
|
16 |
+
|
17 |
+
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
|
18 |
+
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
|
19 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
20 |
+
|
21 |
+
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
|
22 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
23 |
+
|
24 |
+
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
|
25 |
+
|
26 |
+
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
|
27 |
+
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
28 |
+
|
29 |
+
self.relu = nn.ReLU(inplace=True)
|
30 |
+
self.downsample = None
|
31 |
+
self.stride = stride
|
32 |
+
|
33 |
+
if stride > 1 or inplanes != planes * Bottleneck.expansion:
|
34 |
+
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
|
35 |
+
self.downsample = nn.Sequential(OrderedDict([
|
36 |
+
("-1", nn.AvgPool2d(stride)),
|
37 |
+
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
|
38 |
+
("1", nn.BatchNorm2d(planes * self.expansion))
|
39 |
+
]))
|
40 |
+
|
41 |
+
def forward(self, x: torch.Tensor):
|
42 |
+
identity = x
|
43 |
+
|
44 |
+
out = self.relu(self.bn1(self.conv1(x)))
|
45 |
+
out = self.relu(self.bn2(self.conv2(out)))
|
46 |
+
out = self.avgpool(out)
|
47 |
+
out = self.bn3(self.conv3(out))
|
48 |
+
|
49 |
+
if self.downsample is not None:
|
50 |
+
identity = self.downsample(x)
|
51 |
+
|
52 |
+
out += identity
|
53 |
+
out = self.relu(out)
|
54 |
+
return out
|
55 |
+
|
56 |
+
|
57 |
+
class AttentionPool2d(nn.Module):
|
58 |
+
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
|
59 |
+
super().__init__()
|
60 |
+
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
|
61 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
62 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
63 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
64 |
+
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
65 |
+
self.num_heads = num_heads
|
66 |
+
|
67 |
+
def interpolate_pos_encoding(self, x, h0, w0):
|
68 |
+
assert w0 == h0, f'{self} only support square images!'
|
69 |
+
pos_embed = self.positional_embedding.unsqueeze(1).to(x.dtype)
|
70 |
+
npatch = x.shape[0] - 1
|
71 |
+
N = pos_embed.shape[0] - 1
|
72 |
+
if npatch == N:
|
73 |
+
return pos_embed
|
74 |
+
class_pos_embed = pos_embed[0]
|
75 |
+
patch_pos_embed = pos_embed[1:]
|
76 |
+
dim = x.shape[-1]
|
77 |
+
# we add a small number to avoid floating point error in the interpolation
|
78 |
+
# see discussion at https://github.com/facebookresearch/dino/issues/8
|
79 |
+
w0, h0 = w0 + 0.1, h0 + 0.1
|
80 |
+
patch_pos_embed = nn.functional.interpolate(
|
81 |
+
patch_pos_embed.reshape(int(math.sqrt(N)), int(math.sqrt(N)), 1, dim).permute(2, 3, 0, 1),
|
82 |
+
scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)),
|
83 |
+
mode='bicubic',
|
84 |
+
align_corners=False,
|
85 |
+
recompute_scale_factor=False
|
86 |
+
)
|
87 |
+
assert int(w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1]
|
88 |
+
patch_pos_embed = patch_pos_embed.permute(2, 3, 0, 1).view(-1, 1, dim)
|
89 |
+
return torch.cat((class_pos_embed.unsqueeze(1), patch_pos_embed), dim=0)
|
90 |
+
|
91 |
+
def forward(self, x):
|
92 |
+
B, C, H, W = x.shape
|
93 |
+
|
94 |
+
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
|
95 |
+
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
96 |
+
x = x + self.interpolate_pos_encoding(x, H, W) # (HW+1)NC
|
97 |
+
x, _ = F.multi_head_attention_forward(
|
98 |
+
query=x, key=x, value=x,
|
99 |
+
embed_dim_to_check=x.shape[-1],
|
100 |
+
num_heads=self.num_heads,
|
101 |
+
q_proj_weight=self.q_proj.weight,
|
102 |
+
k_proj_weight=self.k_proj.weight,
|
103 |
+
v_proj_weight=self.v_proj.weight,
|
104 |
+
in_proj_weight=None,
|
105 |
+
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
106 |
+
bias_k=None,
|
107 |
+
bias_v=None,
|
108 |
+
add_zero_attn=False,
|
109 |
+
dropout_p=0,
|
110 |
+
out_proj_weight=self.c_proj.weight,
|
111 |
+
out_proj_bias=self.c_proj.bias,
|
112 |
+
use_separate_proj_weight=True,
|
113 |
+
training=self.training,
|
114 |
+
need_weights=False
|
115 |
+
)
|
116 |
+
|
117 |
+
return x[0]
|
118 |
+
|
119 |
+
|
120 |
+
class ModifiedResNet(nn.Module):
|
121 |
+
"""
|
122 |
+
A ResNet class that is similar to torchvision's but contains the following changes:
|
123 |
+
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
|
124 |
+
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
|
125 |
+
- The final pooling layer is a QKV attention instead of an average pool
|
126 |
+
"""
|
127 |
+
|
128 |
+
def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
|
129 |
+
super().__init__()
|
130 |
+
self.output_dim = output_dim
|
131 |
+
self.input_resolution = input_resolution
|
132 |
+
|
133 |
+
# the 3-layer stem
|
134 |
+
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
|
135 |
+
self.bn1 = nn.BatchNorm2d(width // 2)
|
136 |
+
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
|
137 |
+
self.bn2 = nn.BatchNorm2d(width // 2)
|
138 |
+
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
|
139 |
+
self.bn3 = nn.BatchNorm2d(width)
|
140 |
+
self.avgpool = nn.AvgPool2d(2)
|
141 |
+
self.relu = nn.ReLU(inplace=True)
|
142 |
+
|
143 |
+
# residual layers
|
144 |
+
self._inplanes = width # this is a *mutable* variable used during construction
|
145 |
+
self.layer1 = self._make_layer(width, layers[0])
|
146 |
+
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
|
147 |
+
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
|
148 |
+
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
|
149 |
+
|
150 |
+
embed_dim = width * 32 # the ResNet feature dimension
|
151 |
+
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
|
152 |
+
#self.gap = nn.AdaptiveAvgPool2d((1, 1))
|
153 |
+
|
154 |
+
def _make_layer(self, planes, blocks, stride=1):
|
155 |
+
layers = [Bottleneck(self._inplanes, planes, stride)]
|
156 |
+
|
157 |
+
self._inplanes = planes * Bottleneck.expansion
|
158 |
+
for _ in range(1, blocks):
|
159 |
+
layers.append(Bottleneck(self._inplanes, planes))
|
160 |
+
|
161 |
+
return nn.Sequential(*layers)
|
162 |
+
|
163 |
+
def forward(self, x):
|
164 |
+
def stem(x):
|
165 |
+
for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]:
|
166 |
+
x = self.relu(bn(conv(x)))
|
167 |
+
x = self.avgpool(x)
|
168 |
+
return x
|
169 |
+
|
170 |
+
x = x.type(self.conv1.weight.dtype)
|
171 |
+
x = stem(x)
|
172 |
+
x = self.layer1(x)
|
173 |
+
x = self.layer2(x)
|
174 |
+
x = self.layer3(x)
|
175 |
+
x = self.layer4(x)
|
176 |
+
x = self.attnpool(x)
|
177 |
+
#x = self.gap(x)
|
178 |
+
|
179 |
+
return x
|
180 |
+
|
181 |
+
|
182 |
+
class LayerNorm(nn.LayerNorm):
|
183 |
+
"""Subclass torch's LayerNorm to handle fp16."""
|
184 |
+
|
185 |
+
def forward(self, x: torch.Tensor):
|
186 |
+
orig_type = x.dtype
|
187 |
+
ret = super().forward(x.type(torch.float32))
|
188 |
+
return ret.type(orig_type)
|
189 |
+
|
190 |
+
|
191 |
+
class QuickGELU(nn.Module):
|
192 |
+
def forward(self, x: torch.Tensor):
|
193 |
+
return x * torch.sigmoid(1.702 * x)
|
194 |
+
|
195 |
+
|
196 |
+
class ResidualAttentionBlock(nn.Module):
|
197 |
+
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
|
198 |
+
super().__init__()
|
199 |
+
|
200 |
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
201 |
+
self.ln_1 = LayerNorm(d_model)
|
202 |
+
self.mlp = nn.Sequential(OrderedDict([
|
203 |
+
("c_fc", nn.Linear(d_model, d_model * 4)),
|
204 |
+
("gelu", QuickGELU()),
|
205 |
+
("c_proj", nn.Linear(d_model * 4, d_model))
|
206 |
+
]))
|
207 |
+
self.ln_2 = LayerNorm(d_model)
|
208 |
+
self.attn_mask = attn_mask
|
209 |
+
|
210 |
+
def attention(self, x: torch.Tensor):
|
211 |
+
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
|
212 |
+
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
|
213 |
+
|
214 |
+
def forward(self, x: torch.Tensor):
|
215 |
+
x = x + self.attention(self.ln_1(x))
|
216 |
+
x = x + self.mlp(self.ln_2(x))
|
217 |
+
return x
|
218 |
+
|
219 |
+
|
220 |
+
class Transformer(nn.Module):
|
221 |
+
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
|
222 |
+
super().__init__()
|
223 |
+
self.width = width
|
224 |
+
self.layers = layers
|
225 |
+
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
|
226 |
+
|
227 |
+
def forward(self, x: torch.Tensor):
|
228 |
+
return self.resblocks(x)
|
229 |
+
|
230 |
+
|
231 |
+
class VisionTransformer(nn.Module):
|
232 |
+
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int):
|
233 |
+
super().__init__()
|
234 |
+
self.input_resolution = input_resolution
|
235 |
+
self.output_dim = output_dim
|
236 |
+
self.patch_size = patch_size
|
237 |
+
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
|
238 |
+
|
239 |
+
scale = width ** -0.5
|
240 |
+
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
241 |
+
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
|
242 |
+
self.ln_pre = LayerNorm(width)
|
243 |
+
|
244 |
+
self.transformer = Transformer(width, layers, heads)
|
245 |
+
|
246 |
+
self.ln_post = LayerNorm(width)
|
247 |
+
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
|
248 |
+
|
249 |
+
def interpolate_pos_encoding(self, x, h, w):
|
250 |
+
pos_embed = self.positional_embedding.unsqueeze(0).to(x.dtype)
|
251 |
+
npatch = x.shape[1] - 1
|
252 |
+
N = pos_embed.shape[1] - 1
|
253 |
+
if npatch == N and w == h:
|
254 |
+
return pos_embed
|
255 |
+
class_pos_embed = pos_embed[:, 0]
|
256 |
+
patch_pos_embed = pos_embed[:, 1:]
|
257 |
+
dim = x.shape[-1]
|
258 |
+
w0 = w // self.patch_size
|
259 |
+
h0 = h // self.patch_size
|
260 |
+
# we add a small number to avoid floating point error in the interpolation
|
261 |
+
# see discussion at https://github.com/facebookresearch/dino/issues/8
|
262 |
+
w0, h0 = w0 + 0.1, h0 + 0.1
|
263 |
+
patch_pos_embed = nn.functional.interpolate(
|
264 |
+
patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2),
|
265 |
+
scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)),
|
266 |
+
mode='bicubic',
|
267 |
+
align_corners=False,
|
268 |
+
recompute_scale_factor=False
|
269 |
+
)
|
270 |
+
assert int(w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1]
|
271 |
+
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
272 |
+
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
|
273 |
+
|
274 |
+
def forward(self, x: torch.Tensor):
|
275 |
+
B, C, H, W = x.shape
|
276 |
+
|
277 |
+
x = self.conv1(x) # shape = [*, width, grid, grid]
|
278 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
279 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
280 |
+
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
281 |
+
x = x + self.interpolate_pos_encoding(x, H, W)
|
282 |
+
x = self.ln_pre(x)
|
283 |
+
|
284 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
285 |
+
x = self.transformer(x)
|
286 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
287 |
+
|
288 |
+
x = self.ln_post(x[:, 0, :])
|
289 |
+
|
290 |
+
if self.proj is not None:
|
291 |
+
x = x @ self.proj
|
292 |
+
|
293 |
+
return x
|
294 |
+
|
295 |
+
|
296 |
+
class VisionBackbone(nn.Module):
|
297 |
+
def __init__(self,
|
298 |
+
embed_dim: int,
|
299 |
+
# vision
|
300 |
+
image_resolution: int,
|
301 |
+
vision_layers: Union[Tuple[int, int, int, int], int],
|
302 |
+
vision_width: int,
|
303 |
+
vision_patch_size: int,
|
304 |
+
):
|
305 |
+
super().__init__()
|
306 |
+
|
307 |
+
if isinstance(vision_layers, (tuple, list)):
|
308 |
+
vision_heads = vision_width * 32 // 64
|
309 |
+
self.visual = ModifiedResNet(
|
310 |
+
layers=vision_layers,
|
311 |
+
output_dim=embed_dim,
|
312 |
+
heads=vision_heads,
|
313 |
+
input_resolution=image_resolution,
|
314 |
+
width=vision_width
|
315 |
+
)
|
316 |
+
else:
|
317 |
+
vision_heads = vision_width // 64
|
318 |
+
self.visual = VisionTransformer(
|
319 |
+
input_resolution=image_resolution,
|
320 |
+
patch_size=vision_patch_size,
|
321 |
+
width=vision_width,
|
322 |
+
layers=vision_layers,
|
323 |
+
heads=vision_heads,
|
324 |
+
output_dim=embed_dim
|
325 |
+
)
|
326 |
+
|
327 |
+
#self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
328 |
+
|
329 |
+
self.initialize_parameters()
|
330 |
+
|
331 |
+
def initialize_parameters(self):
|
332 |
+
if isinstance(self.visual, ModifiedResNet):
|
333 |
+
if self.visual.attnpool is not None:
|
334 |
+
std = self.visual.attnpool.c_proj.in_features ** -0.5
|
335 |
+
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
|
336 |
+
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
|
337 |
+
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
|
338 |
+
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
|
339 |
+
|
340 |
+
for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
|
341 |
+
for name, param in resnet_block.named_parameters():
|
342 |
+
if name.endswith("bn3.weight"):
|
343 |
+
nn.init.zeros_(param)
|
344 |
+
|
345 |
+
@property
|
346 |
+
def dtype(self):
|
347 |
+
return self.visual.conv1.weight.dtype
|
348 |
+
|
349 |
+
def forward(self, image):
|
350 |
+
return self.visual(image.type(self.dtype))
|
351 |
+
|
352 |
+
|
353 |
+
class CLIP(nn.Module):
|
354 |
+
def __init__(self,
|
355 |
+
embed_dim: int,
|
356 |
+
# vision
|
357 |
+
image_resolution: int,
|
358 |
+
vision_layers: Union[Tuple[int, int, int, int], int],
|
359 |
+
vision_width: int,
|
360 |
+
vision_patch_size: int,
|
361 |
+
# text
|
362 |
+
context_length: int,
|
363 |
+
vocab_size: int,
|
364 |
+
transformer_width: int,
|
365 |
+
transformer_heads: int,
|
366 |
+
transformer_layers: int
|
367 |
+
):
|
368 |
+
super().__init__()
|
369 |
+
|
370 |
+
self.context_length = context_length
|
371 |
+
|
372 |
+
if isinstance(vision_layers, (tuple, list)):
|
373 |
+
vision_heads = vision_width * 32 // 64
|
374 |
+
self.visual = ModifiedResNet(
|
375 |
+
layers=vision_layers,
|
376 |
+
output_dim=embed_dim,
|
377 |
+
heads=vision_heads,
|
378 |
+
input_resolution=image_resolution,
|
379 |
+
width=vision_width
|
380 |
+
)
|
381 |
+
else:
|
382 |
+
vision_heads = vision_width // 64
|
383 |
+
self.visual = VisionTransformer(
|
384 |
+
input_resolution=image_resolution,
|
385 |
+
patch_size=vision_patch_size,
|
386 |
+
width=vision_width,
|
387 |
+
layers=vision_layers,
|
388 |
+
heads=vision_heads,
|
389 |
+
output_dim=embed_dim
|
390 |
+
)
|
391 |
+
|
392 |
+
self.transformer = Transformer(
|
393 |
+
width=transformer_width,
|
394 |
+
layers=transformer_layers,
|
395 |
+
heads=transformer_heads,
|
396 |
+
attn_mask=self.build_attention_mask()
|
397 |
+
)
|
398 |
+
|
399 |
+
self.vocab_size = vocab_size
|
400 |
+
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
|
401 |
+
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
|
402 |
+
self.ln_final = LayerNorm(transformer_width)
|
403 |
+
|
404 |
+
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
|
405 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
406 |
+
|
407 |
+
self.initialize_parameters()
|
408 |
+
|
409 |
+
def initialize_parameters(self):
|
410 |
+
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
411 |
+
nn.init.normal_(self.positional_embedding, std=0.01)
|
412 |
+
|
413 |
+
if isinstance(self.visual, ModifiedResNet):
|
414 |
+
if self.visual.attnpool is not None:
|
415 |
+
std = self.visual.attnpool.c_proj.in_features ** -0.5
|
416 |
+
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
|
417 |
+
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
|
418 |
+
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
|
419 |
+
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
|
420 |
+
|
421 |
+
for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
|
422 |
+
for name, param in resnet_block.named_parameters():
|
423 |
+
if name.endswith("bn3.weight"):
|
424 |
+
nn.init.zeros_(param)
|
425 |
+
|
426 |
+
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
|
427 |
+
attn_std = self.transformer.width ** -0.5
|
428 |
+
fc_std = (2 * self.transformer.width) ** -0.5
|
429 |
+
for block in self.transformer.resblocks:
|
430 |
+
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
431 |
+
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
432 |
+
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
433 |
+
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
434 |
+
|
435 |
+
if self.text_projection is not None:
|
436 |
+
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
|
437 |
+
|
438 |
+
def build_attention_mask(self):
|
439 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
440 |
+
# pytorch uses additive attention mask; fill with -inf
|
441 |
+
mask = torch.empty(self.context_length, self.context_length)
|
442 |
+
mask.fill_(float("-inf"))
|
443 |
+
mask.triu_(1) # zero out the lower diagonal
|
444 |
+
return mask
|
445 |
+
|
446 |
+
@property
|
447 |
+
def dtype(self):
|
448 |
+
return self.visual.conv1.weight.dtype
|
449 |
+
|
450 |
+
def encode_image(self, image):
|
451 |
+
return self.visual(image.type(self.dtype))
|
452 |
+
|
453 |
+
def encode_text(self, text):
|
454 |
+
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
|
455 |
+
|
456 |
+
x = x + self.positional_embedding.type(self.dtype)
|
457 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
458 |
+
x = self.transformer(x)
|
459 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
460 |
+
x = self.ln_final(x).type(self.dtype)
|
461 |
+
|
462 |
+
# x.shape = [batch_size, n_ctx, transformer.width]
|
463 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
464 |
+
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
465 |
+
|
466 |
+
return x
|
467 |
+
|
468 |
+
def forward(self, image, text):
|
469 |
+
image_features = self.encode_image(image)
|
470 |
+
text_features = self.encode_text(text)
|
471 |
+
|
472 |
+
# normalized features
|
473 |
+
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
474 |
+
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
|
475 |
+
|
476 |
+
# cosine similarity as logits
|
477 |
+
logit_scale = self.logit_scale.exp()
|
478 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
479 |
+
logits_per_text = logits_per_image.t()
|
480 |
+
|
481 |
+
# shape = [global_batch_size, global_batch_size]
|
482 |
+
return logits_per_image, logits_per_text
|
483 |
+
|
484 |
+
|
485 |
+
def convert_weights(model: nn.Module):
|
486 |
+
"""Convert applicable model parameters to fp16"""
|
487 |
+
|
488 |
+
def _convert_weights_to_fp16(l):
|
489 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
490 |
+
l.weight.data = l.weight.data.half()
|
491 |
+
if l.bias is not None:
|
492 |
+
l.bias.data = l.bias.data.half()
|
493 |
+
|
494 |
+
if isinstance(l, nn.MultiheadAttention):
|
495 |
+
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
|
496 |
+
tensor = getattr(l, attr)
|
497 |
+
if tensor is not None:
|
498 |
+
tensor.data = tensor.data.half()
|
499 |
+
|
500 |
+
for name in ["text_projection", "proj"]:
|
501 |
+
if hasattr(l, name):
|
502 |
+
attr = getattr(l, name)
|
503 |
+
if attr is not None:
|
504 |
+
attr.data = attr.data.half()
|
505 |
+
|
506 |
+
model.apply(_convert_weights_to_fp16)
|
507 |
+
|
508 |
+
|
509 |
+
def build_model(state_dict: dict):
|
510 |
+
vit = "visual.proj" in state_dict
|
511 |
+
|
512 |
+
if vit:
|
513 |
+
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
514 |
+
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
515 |
+
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
516 |
+
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
517 |
+
image_resolution = vision_patch_size * grid_size
|
518 |
+
else:
|
519 |
+
counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
|
520 |
+
vision_layers = tuple(counts)
|
521 |
+
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
522 |
+
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
|
523 |
+
vision_patch_size = None
|
524 |
+
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
|
525 |
+
image_resolution = output_width * 32
|
526 |
+
|
527 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
528 |
+
context_length = state_dict["positional_embedding"].shape[0]
|
529 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
530 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
531 |
+
transformer_heads = transformer_width // 64
|
532 |
+
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
|
533 |
+
|
534 |
+
model = CLIP(
|
535 |
+
embed_dim,
|
536 |
+
image_resolution, vision_layers, vision_width, vision_patch_size,
|
537 |
+
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers
|
538 |
+
)
|
539 |
+
|
540 |
+
for key in ["input_resolution", "context_length", "vocab_size"]:
|
541 |
+
if key in state_dict:
|
542 |
+
del state_dict[key]
|
543 |
+
|
544 |
+
convert_weights(model)
|
545 |
+
model.load_state_dict(state_dict)
|
546 |
+
return model.eval()
|
547 |
+
|
548 |
+
|
549 |
+
def build_vision_model(state_dict: dict):
|
550 |
+
vit = "visual.proj" in state_dict
|
551 |
+
|
552 |
+
if vit:
|
553 |
+
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
554 |
+
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
555 |
+
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
556 |
+
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
557 |
+
image_resolution = vision_patch_size * grid_size
|
558 |
+
else:
|
559 |
+
counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
|
560 |
+
vision_layers = tuple(counts)
|
561 |
+
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
562 |
+
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
|
563 |
+
vision_patch_size = None
|
564 |
+
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
|
565 |
+
image_resolution = output_width * 32
|
566 |
+
|
567 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
568 |
+
|
569 |
+
model = VisionBackbone(
|
570 |
+
embed_dim,
|
571 |
+
image_resolution, vision_layers, vision_width, vision_patch_size,
|
572 |
+
)
|
573 |
+
|
574 |
+
convert_weights(model)
|
575 |
+
msg = model.load_state_dict(state_dict, strict=False)
|
576 |
+
print(f'clip.build_vision_model: pretrained weights loaded with message: {msg}')
|
577 |
+
return model.eval()
|
models/clip/simple_tokenizer.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gzip
|
2 |
+
import html
|
3 |
+
import os
|
4 |
+
from functools import lru_cache
|
5 |
+
|
6 |
+
import ftfy
|
7 |
+
import regex as re
|
8 |
+
|
9 |
+
|
10 |
+
@lru_cache()
|
11 |
+
def default_bpe():
|
12 |
+
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
|
13 |
+
|
14 |
+
|
15 |
+
@lru_cache()
|
16 |
+
def bytes_to_unicode():
|
17 |
+
"""
|
18 |
+
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
19 |
+
The reversible bpe codes work on unicode strings.
|
20 |
+
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
21 |
+
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
22 |
+
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
23 |
+
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
24 |
+
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
25 |
+
"""
|
26 |
+
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
27 |
+
cs = bs[:]
|
28 |
+
n = 0
|
29 |
+
for b in range(2**8):
|
30 |
+
if b not in bs:
|
31 |
+
bs.append(b)
|
32 |
+
cs.append(2**8+n)
|
33 |
+
n += 1
|
34 |
+
cs = [chr(n) for n in cs]
|
35 |
+
return dict(zip(bs, cs))
|
36 |
+
|
37 |
+
|
38 |
+
def get_pairs(word):
|
39 |
+
"""Return set of symbol pairs in a word.
|
40 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
41 |
+
"""
|
42 |
+
pairs = set()
|
43 |
+
prev_char = word[0]
|
44 |
+
for char in word[1:]:
|
45 |
+
pairs.add((prev_char, char))
|
46 |
+
prev_char = char
|
47 |
+
return pairs
|
48 |
+
|
49 |
+
|
50 |
+
def basic_clean(text):
|
51 |
+
text = ftfy.fix_text(text)
|
52 |
+
text = html.unescape(html.unescape(text))
|
53 |
+
return text.strip()
|
54 |
+
|
55 |
+
|
56 |
+
def whitespace_clean(text):
|
57 |
+
text = re.sub(r'\s+', ' ', text)
|
58 |
+
text = text.strip()
|
59 |
+
return text
|
60 |
+
|
61 |
+
|
62 |
+
class SimpleTokenizer(object):
|
63 |
+
def __init__(self, bpe_path: str = default_bpe()):
|
64 |
+
self.byte_encoder = bytes_to_unicode()
|
65 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
66 |
+
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
|
67 |
+
merges = merges[1:49152-256-2+1]
|
68 |
+
merges = [tuple(merge.split()) for merge in merges]
|
69 |
+
vocab = list(bytes_to_unicode().values())
|
70 |
+
vocab = vocab + [v+'</w>' for v in vocab]
|
71 |
+
for merge in merges:
|
72 |
+
vocab.append(''.join(merge))
|
73 |
+
vocab.extend(['<|startoftext|>', '<|endoftext|>'])
|
74 |
+
self.encoder = dict(zip(vocab, range(len(vocab))))
|
75 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
76 |
+
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
77 |
+
self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'}
|
78 |
+
self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
|
79 |
+
|
80 |
+
def bpe(self, token):
|
81 |
+
if token in self.cache:
|
82 |
+
return self.cache[token]
|
83 |
+
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
|
84 |
+
pairs = get_pairs(word)
|
85 |
+
|
86 |
+
if not pairs:
|
87 |
+
return token+'</w>'
|
88 |
+
|
89 |
+
while True:
|
90 |
+
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
91 |
+
if bigram not in self.bpe_ranks:
|
92 |
+
break
|
93 |
+
first, second = bigram
|
94 |
+
new_word = []
|
95 |
+
i = 0
|
96 |
+
while i < len(word):
|
97 |
+
try:
|
98 |
+
j = word.index(first, i)
|
99 |
+
new_word.extend(word[i:j])
|
100 |
+
i = j
|
101 |
+
except:
|
102 |
+
new_word.extend(word[i:])
|
103 |
+
break
|
104 |
+
|
105 |
+
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
106 |
+
new_word.append(first+second)
|
107 |
+
i += 2
|
108 |
+
else:
|
109 |
+
new_word.append(word[i])
|
110 |
+
i += 1
|
111 |
+
new_word = tuple(new_word)
|
112 |
+
word = new_word
|
113 |
+
if len(word) == 1:
|
114 |
+
break
|
115 |
+
else:
|
116 |
+
pairs = get_pairs(word)
|
117 |
+
word = ' '.join(word)
|
118 |
+
self.cache[token] = word
|
119 |
+
return word
|
120 |
+
|
121 |
+
def encode(self, text):
|
122 |
+
bpe_tokens = []
|
123 |
+
text = whitespace_clean(basic_clean(text)).lower()
|
124 |
+
for token in re.findall(self.pat, text):
|
125 |
+
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
|
126 |
+
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
|
127 |
+
return bpe_tokens
|
128 |
+
|
129 |
+
def decode(self, tokens):
|
130 |
+
text = ''.join([self.decoder[token] for token in tokens])
|
131 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
|
132 |
+
return text
|
models/deploy.py
ADDED
@@ -0,0 +1,389 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import torch.distributed as dist
|
6 |
+
from copy import deepcopy
|
7 |
+
from tqdm import tqdm
|
8 |
+
from timm.utils import accuracy
|
9 |
+
from .protonet import ProtoNet
|
10 |
+
from .utils import trunc_normal_, DiffAugment
|
11 |
+
|
12 |
+
|
13 |
+
def is_dist_avail_and_initialized():
|
14 |
+
if not dist.is_available():
|
15 |
+
return False
|
16 |
+
if not dist.is_initialized():
|
17 |
+
return False
|
18 |
+
return True
|
19 |
+
|
20 |
+
|
21 |
+
def get_rank():
|
22 |
+
if not is_dist_avail_and_initialized():
|
23 |
+
return 0
|
24 |
+
return dist.get_rank()
|
25 |
+
|
26 |
+
|
27 |
+
def is_main_process():
|
28 |
+
return get_rank() == 0
|
29 |
+
|
30 |
+
|
31 |
+
@torch.jit.script
|
32 |
+
def entropy_loss(x):
|
33 |
+
return torch.sum(-F.softmax(x, 1) * F.log_softmax(x, 1), 1).mean()
|
34 |
+
|
35 |
+
|
36 |
+
def unique_indices(x):
|
37 |
+
"""
|
38 |
+
Ref: https://github.com/rusty1s/pytorch_unique
|
39 |
+
"""
|
40 |
+
unique, inverse = torch.unique(x, sorted=True, return_inverse=True)
|
41 |
+
perm = torch.arange(inverse.size(0), dtype=inverse.dtype, device=inverse.device)
|
42 |
+
inverse, perm = inverse.flip([0]), perm.flip([0])
|
43 |
+
perm = inverse.new_empty(unique.size(0)).scatter_(0, inverse, perm)
|
44 |
+
return unique, perm
|
45 |
+
|
46 |
+
|
47 |
+
class ProtoNet_Auto_Finetune(ProtoNet):
|
48 |
+
def __init__(self, backbone, num_iters=50, aug_prob=0.9,
|
49 |
+
aug_types=['color', 'translation'], lr_lst=[0.01, 0.001, 0.0001]):
|
50 |
+
super().__init__(backbone)
|
51 |
+
self.num_iters = num_iters
|
52 |
+
self.lr_lst = lr_lst
|
53 |
+
self.aug_types = aug_types
|
54 |
+
self.aug_prob = aug_prob
|
55 |
+
|
56 |
+
state_dict = backbone.state_dict()
|
57 |
+
self.backbone_state = deepcopy(state_dict)
|
58 |
+
|
59 |
+
def forward(self, supp_x, supp_y, qry_x):
|
60 |
+
"""
|
61 |
+
supp_x.shape = [B, nSupp, C, H, W]
|
62 |
+
supp_y.shape = [B, nSupp]
|
63 |
+
qry_x.shape = [B, nQry, C, H, W]
|
64 |
+
"""
|
65 |
+
B, nSupp, C, H, W = supp_x.shape
|
66 |
+
num_classes = supp_y.max() + 1 # NOTE: assume B==1
|
67 |
+
device = qry_x.device
|
68 |
+
|
69 |
+
criterion = nn.CrossEntropyLoss()
|
70 |
+
supp_x = supp_x.view(-1, C, H, W)
|
71 |
+
qry_x = qry_x.view(-1, C, H, W)
|
72 |
+
supp_y_1hot = F.one_hot(supp_y, num_classes).transpose(1, 2) # B, nC, nSupp
|
73 |
+
supp_y = supp_y.view(-1)
|
74 |
+
|
75 |
+
def single_step(z, mode=True, x=None, y=None, y_1hot=None):
|
76 |
+
'''
|
77 |
+
z = Aug(supp_x) or qry_x
|
78 |
+
global vars: supp_x, supp_y, supp_y_1hot
|
79 |
+
'''
|
80 |
+
with torch.set_grad_enabled(mode):
|
81 |
+
# recalculate prototypes from supp_x with updated backbone
|
82 |
+
proto_f = self.backbone.forward(x).unsqueeze(0)
|
83 |
+
|
84 |
+
if y_1hot is None:
|
85 |
+
prototypes = proto_f
|
86 |
+
else:
|
87 |
+
prototypes = torch.bmm(y_1hot.float(), proto_f) # B, nC, d
|
88 |
+
prototypes = prototypes / y_1hot.sum(dim=2, keepdim=True) # NOTE: may div 0
|
89 |
+
|
90 |
+
# compute feature for z
|
91 |
+
feat = self.backbone.forward(z)
|
92 |
+
feat = feat.view(B, z.shape[0], -1) # B, nQry, d
|
93 |
+
|
94 |
+
# classification
|
95 |
+
logits = self.cos_classifier(prototypes, feat) # B, nQry, nC
|
96 |
+
loss = None
|
97 |
+
|
98 |
+
if mode: # if enable grad, compute loss
|
99 |
+
loss = criterion(logits.view(len(y), -1), y)
|
100 |
+
|
101 |
+
return logits, loss
|
102 |
+
|
103 |
+
# load trained weights
|
104 |
+
self.backbone.load_state_dict(self.backbone_state, strict=True)
|
105 |
+
|
106 |
+
#zz = DiffAugment(supp_x, ["color", "offset", "offset_h", "offset_v", "translation", "cutout"], 1., detach=True)
|
107 |
+
proto_y, proto_i = unique_indices(supp_y)
|
108 |
+
proto_x = supp_x[proto_i]
|
109 |
+
zz_i = np.setdiff1d(range(len(supp_x)), proto_i.cpu().numpy())
|
110 |
+
zz_x = supp_x[zz_i]
|
111 |
+
zz_y = supp_y[zz_i]
|
112 |
+
|
113 |
+
best_lr = 0
|
114 |
+
max_acc1 = 0
|
115 |
+
|
116 |
+
if len(zz_y) > 0:
|
117 |
+
# eval non-finetuned weights (lr=0)
|
118 |
+
logits, _ = single_step(zz_x, False, x=proto_x)
|
119 |
+
max_acc1 = accuracy(logits.view(len(zz_y), -1), zz_y, topk=(1,))[0]
|
120 |
+
print(f'## *lr = 0: acc1 = {max_acc1}\n')
|
121 |
+
|
122 |
+
for lr in self.lr_lst:
|
123 |
+
# create optimizer
|
124 |
+
opt = torch.optim.Adam(self.backbone.parameters(),
|
125 |
+
lr=lr,
|
126 |
+
betas=(0.9, 0.999),
|
127 |
+
weight_decay=0.)
|
128 |
+
|
129 |
+
# main loop
|
130 |
+
_num_iters = 50
|
131 |
+
pbar = tqdm(range(_num_iters)) if is_main_process() else range(_num_iters)
|
132 |
+
for i in pbar:
|
133 |
+
opt.zero_grad()
|
134 |
+
z = DiffAugment(proto_x, self.aug_types, self.aug_prob, detach=True)
|
135 |
+
_, loss = single_step(z, True, x=proto_x, y=proto_y)
|
136 |
+
loss.backward()
|
137 |
+
opt.step()
|
138 |
+
if is_main_process():
|
139 |
+
pbar.set_description(f' << lr = {lr}: loss = {loss.item()}')
|
140 |
+
|
141 |
+
logits, _ = single_step(zz_x, False, x=proto_x)
|
142 |
+
acc1 = accuracy(logits.view(len(zz_y), -1), zz_y, topk=(1,))[0]
|
143 |
+
print(f'## *lr = {lr}: acc1 = {acc1}\n')
|
144 |
+
|
145 |
+
if acc1 > max_acc1:
|
146 |
+
max_acc1 = acc1
|
147 |
+
best_lr = lr
|
148 |
+
|
149 |
+
# reset backbone state
|
150 |
+
self.backbone.load_state_dict(self.backbone_state, strict=True)
|
151 |
+
|
152 |
+
print(f'***Best lr = {best_lr} with acc1 = {max_acc1}.\nStart final loop...\n')
|
153 |
+
|
154 |
+
# create optimizer
|
155 |
+
opt = torch.optim.Adam(self.backbone.parameters(),
|
156 |
+
lr=best_lr,
|
157 |
+
betas=(0.9, 0.999),
|
158 |
+
weight_decay=0.)
|
159 |
+
|
160 |
+
# main loop
|
161 |
+
pbar = tqdm(range(self.num_iters)) if is_main_process() else range(self.num_iters)
|
162 |
+
for i in pbar:
|
163 |
+
opt.zero_grad()
|
164 |
+
z = DiffAugment(supp_x, self.aug_types, self.aug_prob, detach=True)
|
165 |
+
_, loss = single_step(z, True, x=supp_x, y=supp_y, y_1hot=supp_y_1hot)
|
166 |
+
loss.backward()
|
167 |
+
opt.step()
|
168 |
+
if is_main_process():
|
169 |
+
pbar.set_description(f' >> lr = {best_lr}: loss = {loss.item()}')
|
170 |
+
|
171 |
+
logits, _ = single_step(qry_x, False, x=supp_x, y_1hot=supp_y_1hot) # supp_x has to pair with y_1hot
|
172 |
+
|
173 |
+
return logits
|
174 |
+
|
175 |
+
|
176 |
+
class ProtoNet_Finetune(ProtoNet):
|
177 |
+
def __init__(self, backbone, num_iters=50, lr=5e-2, aug_prob=0.9,
|
178 |
+
aug_types=['color', 'translation']):
|
179 |
+
super().__init__(backbone)
|
180 |
+
self.num_iters = num_iters
|
181 |
+
self.lr = lr
|
182 |
+
self.aug_types = aug_types
|
183 |
+
self.aug_prob = aug_prob
|
184 |
+
|
185 |
+
def load_state_dict(self, state_dict, strict=True):
|
186 |
+
super().load_state_dict(state_dict, strict)
|
187 |
+
|
188 |
+
state_dict = self.backbone.state_dict()
|
189 |
+
self.backbone_state = deepcopy(state_dict)
|
190 |
+
|
191 |
+
def forward(self, supp_x, supp_y, x):
|
192 |
+
"""
|
193 |
+
supp_x.shape = [B, nSupp, C, H, W]
|
194 |
+
supp_y.shape = [B, nSupp]
|
195 |
+
x.shape = [B, nQry, C, H, W]
|
196 |
+
"""
|
197 |
+
# reset backbone state
|
198 |
+
self.backbone.load_state_dict(self.backbone_state, strict=True)
|
199 |
+
|
200 |
+
if self.lr == 0:
|
201 |
+
return super().forward(supp_x, supp_y, x)
|
202 |
+
|
203 |
+
B, nSupp, C, H, W = supp_x.shape
|
204 |
+
num_classes = supp_y.max() + 1 # NOTE: assume B==1
|
205 |
+
device = x.device
|
206 |
+
|
207 |
+
criterion = nn.CrossEntropyLoss()
|
208 |
+
supp_x = supp_x.view(-1, C, H, W)
|
209 |
+
x = x.view(-1, C, H, W)
|
210 |
+
supp_y_1hot = F.one_hot(supp_y, num_classes).transpose(1, 2) # B, nC, nSupp
|
211 |
+
supp_y = supp_y.view(-1)
|
212 |
+
|
213 |
+
# create optimizer
|
214 |
+
opt = torch.optim.Adam(self.backbone.parameters(),
|
215 |
+
lr=self.lr,
|
216 |
+
betas=(0.9, 0.999),
|
217 |
+
weight_decay=0.)
|
218 |
+
|
219 |
+
def single_step(z, mode=True):
|
220 |
+
'''
|
221 |
+
z = Aug(supp_x) or x
|
222 |
+
'''
|
223 |
+
with torch.set_grad_enabled(mode):
|
224 |
+
# recalculate prototypes from supp_x with updated backbone
|
225 |
+
supp_f = self.backbone.forward(supp_x)
|
226 |
+
supp_f = supp_f.view(B, nSupp, -1)
|
227 |
+
prototypes = torch.bmm(supp_y_1hot.float(), supp_f) # B, nC, d
|
228 |
+
prototypes = prototypes / supp_y_1hot.sum(dim=2, keepdim=True) # NOTE: may div 0
|
229 |
+
|
230 |
+
# compute feature for z
|
231 |
+
feat = self.backbone.forward(z)
|
232 |
+
feat = feat.view(B, z.shape[0], -1) # B, nQry, d
|
233 |
+
|
234 |
+
# classification
|
235 |
+
logits = self.cos_classifier(prototypes, feat) # B, nQry, nC
|
236 |
+
loss = None
|
237 |
+
|
238 |
+
if mode: # if enable grad, compute loss
|
239 |
+
loss = criterion(logits.view(B*nSupp, -1), supp_y)
|
240 |
+
|
241 |
+
return logits, loss
|
242 |
+
|
243 |
+
# main loop
|
244 |
+
pbar = tqdm(range(self.num_iters)) if is_main_process() else range(self.num_iters)
|
245 |
+
for i in pbar:
|
246 |
+
opt.zero_grad()
|
247 |
+
z = DiffAugment(supp_x, self.aug_types, self.aug_prob, detach=True)
|
248 |
+
_, loss = single_step(z, True)
|
249 |
+
loss.backward()
|
250 |
+
opt.step()
|
251 |
+
if is_main_process():
|
252 |
+
pbar.set_description(f'lr{self.lr}, nSupp{nSupp}, nQry{x.shape[0]}: loss = {loss.item()}')
|
253 |
+
|
254 |
+
logits, _ = single_step(x, False)
|
255 |
+
return logits
|
256 |
+
|
257 |
+
|
258 |
+
class ProtoNet_AdaTok(ProtoNet):
|
259 |
+
def __init__(self, backbone, num_adapters=1, num_iters=50, lr=5e-2, momentum=0.9, weight_decay=0.):
|
260 |
+
super().__init__(backbone)
|
261 |
+
self.num_adapters = num_adapters
|
262 |
+
self.num_iters = num_iters
|
263 |
+
self.lr = lr
|
264 |
+
self.momentum = momentum
|
265 |
+
self.weight_decay = weight_decay
|
266 |
+
|
267 |
+
def forward(self, supp_x, supp_y, x):
|
268 |
+
"""
|
269 |
+
supp_x.shape = [B, nSupp, C, H, W]
|
270 |
+
supp_y.shape = [B, nSupp]
|
271 |
+
x.shape = [B, nQry, C, H, W]
|
272 |
+
"""
|
273 |
+
B, nSupp, C, H, W = supp_x.shape
|
274 |
+
nQry = x.shape[1]
|
275 |
+
num_classes = supp_y.max() + 1 # NOTE: assume B==1
|
276 |
+
device = x.device
|
277 |
+
|
278 |
+
criterion = nn.CrossEntropyLoss()
|
279 |
+
supp_x = supp_x.view(-1, C, H, W)
|
280 |
+
x = x.view(-1, C, H, W)
|
281 |
+
supp_y_1hot = F.one_hot(supp_y, num_classes).transpose(1, 2) # B, nC, nSupp
|
282 |
+
supp_y = supp_y.view(-1)
|
283 |
+
|
284 |
+
# prepare adapter tokens
|
285 |
+
ada_tokens = torch.zeros(1, self.num_adapters, self.backbone.embed_dim, device=device)
|
286 |
+
trunc_normal_(ada_tokens, std=.02)
|
287 |
+
ada_tokens = ada_tokens.detach().requires_grad_()
|
288 |
+
#optimizer = torch.optim.SGD([ada_tokens],
|
289 |
+
optimizer = torch.optim.Adadelta([ada_tokens],
|
290 |
+
lr=self.lr,
|
291 |
+
#momentum=self.momentum,
|
292 |
+
weight_decay=self.weight_decay)
|
293 |
+
|
294 |
+
def single_step(mode=True):
|
295 |
+
with torch.set_grad_enabled(mode):
|
296 |
+
supp_f = self.backbone.forward(supp_x, ada_tokens)
|
297 |
+
supp_f = supp_f.view(B, nSupp, -1)
|
298 |
+
|
299 |
+
# B, nC, nSupp x B, nSupp, d = B, nC, d
|
300 |
+
prototypes = torch.bmm(supp_y_1hot.float(), supp_f)
|
301 |
+
prototypes = prototypes / supp_y_1hot.sum(dim=2, keepdim=True) # NOTE: may div 0
|
302 |
+
|
303 |
+
if mode == False: # no grad
|
304 |
+
feat = self.backbone.forward(x, ada_tokens)
|
305 |
+
feat = feat.view(B, nQry, -1) # B, nQry, d
|
306 |
+
|
307 |
+
logits = self.cos_classifier(prototypes, feat) # B, nQry, nC
|
308 |
+
loss = None
|
309 |
+
else:
|
310 |
+
with torch.enable_grad():
|
311 |
+
logits = self.cos_classifier(prototypes, supp_f) # B, nQry, nC
|
312 |
+
loss = criterion(logits.view(B*nSupp, -1), supp_y)
|
313 |
+
|
314 |
+
return logits, loss
|
315 |
+
|
316 |
+
pbar = tqdm(range(self.num_iters)) if is_main_process() else range(self.num_iters)
|
317 |
+
for i in pbar:
|
318 |
+
optimizer.zero_grad()
|
319 |
+
_, loss = single_step(True)
|
320 |
+
loss.backward()
|
321 |
+
optimizer.step()
|
322 |
+
if is_main_process():
|
323 |
+
pbar.set_description(f'loss = {loss.item()}')
|
324 |
+
|
325 |
+
logits, _ = single_step(False)
|
326 |
+
return logits
|
327 |
+
|
328 |
+
|
329 |
+
class ProtoNet_AdaTok_EntMin(ProtoNet):
|
330 |
+
def __init__(self, backbone, num_adapters=1, num_iters=50, lr=5e-3, momentum=0.9, weight_decay=0.):
|
331 |
+
super().__init__(backbone)
|
332 |
+
self.num_adapters = num_adapters
|
333 |
+
self.num_iters = num_iters
|
334 |
+
self.lr = lr
|
335 |
+
self.momentum = momentum
|
336 |
+
self.weight_decay = weight_decay
|
337 |
+
|
338 |
+
def forward(self, supp_x, supp_y, x):
|
339 |
+
"""
|
340 |
+
supp_x.shape = [B, nSupp, C, H, W]
|
341 |
+
supp_y.shape = [B, nSupp]
|
342 |
+
x.shape = [B, nQry, C, H, W]
|
343 |
+
"""
|
344 |
+
B, nSupp, C, H, W = supp_x.shape
|
345 |
+
num_classes = supp_y.max() + 1 # NOTE: assume B==1
|
346 |
+
device = x.device
|
347 |
+
|
348 |
+
criterion = entropy_loss
|
349 |
+
supp_x = supp_x.view(-1, C, H, W)
|
350 |
+
x = x.view(-1, C, H, W)
|
351 |
+
supp_y_1hot = F.one_hot(supp_y, num_classes).transpose(1, 2) # B, nC, nSupp
|
352 |
+
|
353 |
+
# adapter tokens
|
354 |
+
ada_tokens = torch.zeros(1, self.num_adapters, self.backbone.embed_dim, device=device)
|
355 |
+
trunc_normal_(ada_tokens, std=.02)
|
356 |
+
ada_tokens = ada_tokens.detach().requires_grad_()
|
357 |
+
optimizer = torch.optim.SGD([ada_tokens],
|
358 |
+
lr=self.lr,
|
359 |
+
momentum=self.momentum,
|
360 |
+
weight_decay=self.weight_decay)
|
361 |
+
|
362 |
+
def single_step(mode=True):
|
363 |
+
with torch.set_grad_enabled(mode):
|
364 |
+
supp_f = self.backbone.forward(supp_x, ada_tokens)
|
365 |
+
supp_f = supp_f.view(B, nSupp, -1)
|
366 |
+
|
367 |
+
# B, nC, nSupp x B, nSupp, d = B, nC, d
|
368 |
+
prototypes = torch.bmm(supp_y_1hot.float(), supp_f)
|
369 |
+
prototypes = prototypes / supp_y_1hot.sum(dim=2, keepdim=True) # NOTE: may div 0
|
370 |
+
|
371 |
+
feat = self.backbone.forward(x, ada_tokens)
|
372 |
+
feat = feat.view(B, x.shape[1], -1) # B, nQry, d
|
373 |
+
|
374 |
+
logits = self.cos_classifier(prototypes, feat) # B, nQry, nC
|
375 |
+
loss = criterion(logits.view(-1, num_classes))
|
376 |
+
|
377 |
+
return logits, loss
|
378 |
+
|
379 |
+
pbar = tqdm(range(self.num_iters)) if is_main_process() else range(self.num_iters)
|
380 |
+
for i in pbar:
|
381 |
+
optimizer.zero_grad()
|
382 |
+
_, loss = single_step(True)
|
383 |
+
loss.backward()
|
384 |
+
optimizer.step()
|
385 |
+
if is_main_process():
|
386 |
+
pbar.set_description(f'loss = {loss.item()}')
|
387 |
+
|
388 |
+
logits, _ = single_step(False)
|
389 |
+
return logits
|
models/protonet.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
|
6 |
+
class ProtoNet(nn.Module):
|
7 |
+
def __init__(self, backbone):
|
8 |
+
super().__init__()
|
9 |
+
|
10 |
+
# bias & scale of cosine classifier
|
11 |
+
self.bias = nn.Parameter(torch.FloatTensor(1).fill_(0), requires_grad=True)
|
12 |
+
self.scale_cls = nn.Parameter(torch.FloatTensor(1).fill_(10), requires_grad=True)
|
13 |
+
|
14 |
+
# backbone
|
15 |
+
self.backbone = backbone
|
16 |
+
|
17 |
+
def cos_classifier(self, w, f):
|
18 |
+
"""
|
19 |
+
w.shape = B, nC, d
|
20 |
+
f.shape = B, M, d
|
21 |
+
"""
|
22 |
+
f = F.normalize(f, p=2, dim=f.dim()-1, eps=1e-12)
|
23 |
+
w = F.normalize(w, p=2, dim=w.dim()-1, eps=1e-12)
|
24 |
+
|
25 |
+
cls_scores = f @ w.transpose(1, 2) # B, M, nC
|
26 |
+
cls_scores = self.scale_cls * (cls_scores + self.bias)
|
27 |
+
return cls_scores
|
28 |
+
|
29 |
+
def forward(self, supp_x, supp_y, x):
|
30 |
+
"""
|
31 |
+
supp_x.shape = [B, nSupp, C, H, W]
|
32 |
+
supp_y.shape = [B, nSupp]
|
33 |
+
x.shape = [B, nQry, C, H, W]
|
34 |
+
"""
|
35 |
+
num_classes = supp_y.max() + 1 # NOTE: assume B==1
|
36 |
+
|
37 |
+
B, nSupp, C, H, W = supp_x.shape
|
38 |
+
supp_f = self.backbone.forward(supp_x.view(-1, C, H, W))
|
39 |
+
supp_f = supp_f.view(B, nSupp, -1)
|
40 |
+
|
41 |
+
supp_y_1hot = F.one_hot(supp_y, num_classes).transpose(1, 2) # B, nC, nSupp
|
42 |
+
|
43 |
+
# B, nC, nSupp x B, nSupp, d = B, nC, d
|
44 |
+
prototypes = torch.bmm(supp_y_1hot.float(), supp_f)
|
45 |
+
prototypes = prototypes / supp_y_1hot.sum(dim=2, keepdim=True) # NOTE: may div 0 if some classes got 0 images
|
46 |
+
|
47 |
+
feat = self.backbone.forward(x.view(-1, C, H, W))
|
48 |
+
feat = feat.view(B, x.shape[1], -1) # B, nQry, d
|
49 |
+
|
50 |
+
logits = self.cos_classifier(prototypes, feat) # B, nQry, nC
|
51 |
+
return logits
|
models/resnet_v2.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 Google LLC
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# Lint as: python3
|
16 |
+
"""Bottleneck ResNet v2 with GroupNorm and Weight Standardization."""
|
17 |
+
import math
|
18 |
+
|
19 |
+
from os.path import join as pjoin
|
20 |
+
|
21 |
+
from collections import OrderedDict # pylint: disable=g-importing-member
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch.nn as nn
|
25 |
+
import torch.nn.functional as F
|
26 |
+
|
27 |
+
|
28 |
+
def np2th(weights, conv=False):
|
29 |
+
"""Possibly convert HWIO to OIHW."""
|
30 |
+
if conv:
|
31 |
+
weights = weights.transpose([3, 2, 0, 1])
|
32 |
+
return torch.from_numpy(weights)
|
33 |
+
|
34 |
+
|
35 |
+
class StdConv2d(nn.Conv2d):
|
36 |
+
|
37 |
+
def forward(self, x):
|
38 |
+
w = self.weight
|
39 |
+
v, m = torch.var_mean(w, dim=[1, 2, 3], keepdim=True, unbiased=False)
|
40 |
+
w = (w - m) / torch.sqrt(v + 1e-5)
|
41 |
+
return F.conv2d(x, w, self.bias, self.stride, self.padding,
|
42 |
+
self.dilation, self.groups)
|
43 |
+
|
44 |
+
|
45 |
+
def conv3x3(cin, cout, stride=1, groups=1, bias=False):
|
46 |
+
return StdConv2d(cin, cout, kernel_size=3, stride=stride,
|
47 |
+
padding=1, bias=bias, groups=groups)
|
48 |
+
|
49 |
+
|
50 |
+
def conv1x1(cin, cout, stride=1, bias=False):
|
51 |
+
return StdConv2d(cin, cout, kernel_size=1, stride=stride,
|
52 |
+
padding=0, bias=bias)
|
53 |
+
|
54 |
+
|
55 |
+
class PreActBottleneck(nn.Module):
|
56 |
+
"""Pre-activation (v2) bottleneck block.
|
57 |
+
"""
|
58 |
+
|
59 |
+
def __init__(self, cin, cout=None, cmid=None, stride=1):
|
60 |
+
super().__init__()
|
61 |
+
cout = cout or cin
|
62 |
+
cmid = cmid or cout//4
|
63 |
+
|
64 |
+
self.gn1 = nn.GroupNorm(32, cmid, eps=1e-6)
|
65 |
+
self.conv1 = conv1x1(cin, cmid, bias=False)
|
66 |
+
self.gn2 = nn.GroupNorm(32, cmid, eps=1e-6)
|
67 |
+
self.conv2 = conv3x3(cmid, cmid, stride, bias=False) # Original code has it on conv1!!
|
68 |
+
self.gn3 = nn.GroupNorm(32, cout, eps=1e-6)
|
69 |
+
self.conv3 = conv1x1(cmid, cout, bias=False)
|
70 |
+
self.relu = nn.ReLU(inplace=True)
|
71 |
+
|
72 |
+
if (stride != 1 or cin != cout):
|
73 |
+
# Projection also with pre-activation according to paper.
|
74 |
+
self.downsample = conv1x1(cin, cout, stride, bias=False)
|
75 |
+
self.gn_proj = nn.GroupNorm(cout, cout)
|
76 |
+
|
77 |
+
def forward(self, x):
|
78 |
+
|
79 |
+
# Residual branch
|
80 |
+
residual = x
|
81 |
+
if hasattr(self, 'downsample'):
|
82 |
+
residual = self.downsample(x)
|
83 |
+
residual = self.gn_proj(residual)
|
84 |
+
|
85 |
+
# Unit's branch
|
86 |
+
y = self.relu(self.gn1(self.conv1(x)))
|
87 |
+
y = self.relu(self.gn2(self.conv2(y)))
|
88 |
+
y = self.gn3(self.conv3(y))
|
89 |
+
|
90 |
+
y = self.relu(residual + y)
|
91 |
+
return y
|
92 |
+
|
93 |
+
def load_from(self, weights, n_block, n_unit):
|
94 |
+
conv1_weight = np2th(weights[pjoin(n_block, n_unit, "conv1/kernel")], conv=True)
|
95 |
+
conv2_weight = np2th(weights[pjoin(n_block, n_unit, "conv2/kernel")], conv=True)
|
96 |
+
conv3_weight = np2th(weights[pjoin(n_block, n_unit, "conv3/kernel")], conv=True)
|
97 |
+
|
98 |
+
gn1_weight = np2th(weights[pjoin(n_block, n_unit, "gn1/scale")])
|
99 |
+
gn1_bias = np2th(weights[pjoin(n_block, n_unit, "gn1/bias")])
|
100 |
+
|
101 |
+
gn2_weight = np2th(weights[pjoin(n_block, n_unit, "gn2/scale")])
|
102 |
+
gn2_bias = np2th(weights[pjoin(n_block, n_unit, "gn2/bias")])
|
103 |
+
|
104 |
+
gn3_weight = np2th(weights[pjoin(n_block, n_unit, "gn3/scale")])
|
105 |
+
gn3_bias = np2th(weights[pjoin(n_block, n_unit, "gn3/bias")])
|
106 |
+
|
107 |
+
self.conv1.weight.copy_(conv1_weight)
|
108 |
+
self.conv2.weight.copy_(conv2_weight)
|
109 |
+
self.conv3.weight.copy_(conv3_weight)
|
110 |
+
|
111 |
+
self.gn1.weight.copy_(gn1_weight.view(-1))
|
112 |
+
self.gn1.bias.copy_(gn1_bias.view(-1))
|
113 |
+
|
114 |
+
self.gn2.weight.copy_(gn2_weight.view(-1))
|
115 |
+
self.gn2.bias.copy_(gn2_bias.view(-1))
|
116 |
+
|
117 |
+
self.gn3.weight.copy_(gn3_weight.view(-1))
|
118 |
+
self.gn3.bias.copy_(gn3_bias.view(-1))
|
119 |
+
|
120 |
+
if hasattr(self, 'downsample'):
|
121 |
+
proj_conv_weight = np2th(weights[pjoin(n_block, n_unit, "conv_proj/kernel")], conv=True)
|
122 |
+
proj_gn_weight = np2th(weights[pjoin(n_block, n_unit, "gn_proj/scale")])
|
123 |
+
proj_gn_bias = np2th(weights[pjoin(n_block, n_unit, "gn_proj/bias")])
|
124 |
+
|
125 |
+
self.downsample.weight.copy_(proj_conv_weight)
|
126 |
+
self.gn_proj.weight.copy_(proj_gn_weight.view(-1))
|
127 |
+
self.gn_proj.bias.copy_(proj_gn_bias.view(-1))
|
128 |
+
|
129 |
+
class ResNetV2(nn.Module):
|
130 |
+
"""Implementation of Pre-activation (v2) ResNet mode."""
|
131 |
+
|
132 |
+
def __init__(self, block_units, width_factor):
|
133 |
+
super().__init__()
|
134 |
+
width = int(64 * width_factor)
|
135 |
+
self.width = width
|
136 |
+
|
137 |
+
# The following will be unreadable if we split lines.
|
138 |
+
# pylint: disable=line-too-long
|
139 |
+
self.root = nn.Sequential(OrderedDict([
|
140 |
+
('conv', StdConv2d(3, width, kernel_size=7, stride=2, bias=False, padding=3)),
|
141 |
+
('gn', nn.GroupNorm(32, width, eps=1e-6)),
|
142 |
+
('relu', nn.ReLU(inplace=True)),
|
143 |
+
('pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=0))
|
144 |
+
]))
|
145 |
+
|
146 |
+
self.body = nn.Sequential(OrderedDict([
|
147 |
+
('block1', nn.Sequential(OrderedDict(
|
148 |
+
[('unit1', PreActBottleneck(cin=width, cout=width*4, cmid=width))] +
|
149 |
+
[(f'unit{i:d}', PreActBottleneck(cin=width*4, cout=width*4, cmid=width)) for i in range(2, block_units[0] + 1)],
|
150 |
+
))),
|
151 |
+
('block2', nn.Sequential(OrderedDict(
|
152 |
+
[('unit1', PreActBottleneck(cin=width*4, cout=width*8, cmid=width*2, stride=2))] +
|
153 |
+
[(f'unit{i:d}', PreActBottleneck(cin=width*8, cout=width*8, cmid=width*2)) for i in range(2, block_units[1] + 1)],
|
154 |
+
))),
|
155 |
+
('block3', nn.Sequential(OrderedDict(
|
156 |
+
[('unit1', PreActBottleneck(cin=width*8, cout=width*16, cmid=width*4, stride=2))] +
|
157 |
+
[(f'unit{i:d}', PreActBottleneck(cin=width*16, cout=width*16, cmid=width*4)) for i in range(2, block_units[2] + 1)],
|
158 |
+
))),
|
159 |
+
]))
|
160 |
+
|
161 |
+
def forward(self, x):
|
162 |
+
x = self.root(x)
|
163 |
+
x = self.body(x)
|
164 |
+
return x
|
models/utils.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import warnings
|
4 |
+
import ml_collections
|
5 |
+
import random
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
|
9 |
+
def DiffAugment(x, types=[], prob = 0.5, detach=True):
|
10 |
+
"""
|
11 |
+
x.shape = B, C, H, W
|
12 |
+
"""
|
13 |
+
if random.random() < prob:
|
14 |
+
with torch.set_grad_enabled(not detach):
|
15 |
+
x = random_hflip(x, prob=0.5)
|
16 |
+
for p in types:
|
17 |
+
for f in AUGMENT_FNS[p]:
|
18 |
+
x = f(x)
|
19 |
+
x = x.contiguous()
|
20 |
+
return x
|
21 |
+
|
22 |
+
|
23 |
+
def random_hflip(tensor, prob):
|
24 |
+
if prob > random.random():
|
25 |
+
return tensor
|
26 |
+
return torch.flip(tensor, dims=(3,))
|
27 |
+
|
28 |
+
def rand_brightness(x):
|
29 |
+
x = x + (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) - 0.5)
|
30 |
+
return x
|
31 |
+
|
32 |
+
def rand_saturation(x):
|
33 |
+
x_mean = x.mean(dim=1, keepdim=True)
|
34 |
+
x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) * 2) + x_mean
|
35 |
+
return x
|
36 |
+
|
37 |
+
def rand_contrast(x):
|
38 |
+
x_mean = x.mean(dim=[1, 2, 3], keepdim=True)
|
39 |
+
x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) + 0.5) + x_mean
|
40 |
+
return x
|
41 |
+
|
42 |
+
def rand_translation(x, ratio=0.125):
|
43 |
+
shift_x, shift_y = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5)
|
44 |
+
translation_x = torch.randint(-shift_x, shift_x + 1, size=[x.size(0), 1, 1], device=x.device)
|
45 |
+
translation_y = torch.randint(-shift_y, shift_y + 1, size=[x.size(0), 1, 1], device=x.device)
|
46 |
+
grid_batch, grid_x, grid_y = torch.meshgrid(
|
47 |
+
torch.arange(x.size(0), dtype=torch.long, device=x.device),
|
48 |
+
torch.arange(x.size(2), dtype=torch.long, device=x.device),
|
49 |
+
torch.arange(x.size(3), dtype=torch.long, device=x.device),
|
50 |
+
)
|
51 |
+
grid_x = torch.clamp(grid_x + translation_x + 1, 0, x.size(2) + 1)
|
52 |
+
grid_y = torch.clamp(grid_y + translation_y + 1, 0, x.size(3) + 1)
|
53 |
+
x_pad = F.pad(x, [1, 1, 1, 1, 0, 0, 0, 0])
|
54 |
+
x = x_pad.permute(0, 2, 3, 1).contiguous()[grid_batch, grid_x, grid_y].permute(0, 3, 1, 2)
|
55 |
+
return x
|
56 |
+
|
57 |
+
def rand_offset(x, ratio=1, ratio_h=1, ratio_v=1):
|
58 |
+
w, h = x.size(2), x.size(3)
|
59 |
+
|
60 |
+
imgs = []
|
61 |
+
for img in x.unbind(dim = 0):
|
62 |
+
max_h = int(w * ratio * ratio_h)
|
63 |
+
max_v = int(h * ratio * ratio_v)
|
64 |
+
|
65 |
+
value_h = random.randint(0, max_h) * 2 - max_h
|
66 |
+
value_v = random.randint(0, max_v) * 2 - max_v
|
67 |
+
|
68 |
+
if abs(value_h) > 0:
|
69 |
+
img = torch.roll(img, value_h, 2)
|
70 |
+
|
71 |
+
if abs(value_v) > 0:
|
72 |
+
img = torch.roll(img, value_v, 1)
|
73 |
+
|
74 |
+
imgs.append(img)
|
75 |
+
|
76 |
+
return torch.stack(imgs)
|
77 |
+
|
78 |
+
def rand_offset_h(x, ratio=1):
|
79 |
+
return rand_offset(x, ratio=1, ratio_h=ratio, ratio_v=0)
|
80 |
+
|
81 |
+
def rand_offset_v(x, ratio=1):
|
82 |
+
return rand_offset(x, ratio=1, ratio_h=0, ratio_v=ratio)
|
83 |
+
|
84 |
+
def rand_cutout(x, ratio=0.5):
|
85 |
+
cutout_size = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5)
|
86 |
+
offset_x = torch.randint(0, x.size(2) + (1 - cutout_size[0] % 2), size=[x.size(0), 1, 1], device=x.device)
|
87 |
+
offset_y = torch.randint(0, x.size(3) + (1 - cutout_size[1] % 2), size=[x.size(0), 1, 1], device=x.device)
|
88 |
+
grid_batch, grid_x, grid_y = torch.meshgrid(
|
89 |
+
torch.arange(x.size(0), dtype=torch.long, device=x.device),
|
90 |
+
torch.arange(cutout_size[0], dtype=torch.long, device=x.device),
|
91 |
+
torch.arange(cutout_size[1], dtype=torch.long, device=x.device),
|
92 |
+
)
|
93 |
+
grid_x = torch.clamp(grid_x + offset_x - cutout_size[0] // 2, min=0, max=x.size(2) - 1)
|
94 |
+
grid_y = torch.clamp(grid_y + offset_y - cutout_size[1] // 2, min=0, max=x.size(3) - 1)
|
95 |
+
mask = torch.ones(x.size(0), x.size(2), x.size(3), dtype=x.dtype, device=x.device)
|
96 |
+
mask[grid_batch, grid_x, grid_y] = 0
|
97 |
+
x = x * mask.unsqueeze(1)
|
98 |
+
return x
|
99 |
+
|
100 |
+
|
101 |
+
AUGMENT_FNS = {
|
102 |
+
'color': [rand_brightness, rand_saturation, rand_contrast],
|
103 |
+
'offset': [rand_offset],
|
104 |
+
'offset_h': [rand_offset_h],
|
105 |
+
'offset_v': [rand_offset_v],
|
106 |
+
'translation': [rand_translation],
|
107 |
+
'cutout': [rand_cutout],
|
108 |
+
}
|
109 |
+
|
110 |
+
|
111 |
+
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
|
112 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
113 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
114 |
+
def norm_cdf(x):
|
115 |
+
# Computes standard normal cumulative distribution function
|
116 |
+
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
117 |
+
|
118 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
119 |
+
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
120 |
+
"The distribution of values may be incorrect.",
|
121 |
+
stacklevel=2)
|
122 |
+
|
123 |
+
with torch.no_grad():
|
124 |
+
# Values are generated by using a truncated uniform distribution and
|
125 |
+
# then using the inverse CDF for the normal distribution.
|
126 |
+
# Get upper and lower cdf values
|
127 |
+
l = norm_cdf((a - mean) / std)
|
128 |
+
u = norm_cdf((b - mean) / std)
|
129 |
+
|
130 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
131 |
+
# [2l-1, 2u-1].
|
132 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
133 |
+
|
134 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
135 |
+
# standard normal
|
136 |
+
tensor.erfinv_()
|
137 |
+
|
138 |
+
# Transform to proper mean, std
|
139 |
+
tensor.mul_(std * math.sqrt(2.))
|
140 |
+
tensor.add_(mean)
|
141 |
+
|
142 |
+
# Clamp to ensure it's in the proper range
|
143 |
+
tensor.clamp_(min=a, max=b)
|
144 |
+
return tensor
|
145 |
+
|
146 |
+
|
147 |
+
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
148 |
+
# type: (Tensor, float, float, float, float) -> Tensor
|
149 |
+
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|
150 |
+
|
151 |
+
|
152 |
+
def get_testing():
|
153 |
+
"""Returns a minimal configuration for testing."""
|
154 |
+
config = ml_collections.ConfigDict()
|
155 |
+
config.patches = ml_collections.ConfigDict({'size': (16, 16)})
|
156 |
+
config.hidden_size = 1
|
157 |
+
config.transformer = ml_collections.ConfigDict()
|
158 |
+
config.transformer.mlp_dim = 1
|
159 |
+
config.transformer.num_heads = 1
|
160 |
+
config.transformer.num_layers = 1
|
161 |
+
config.transformer.attention_dropout_rate = 0.0
|
162 |
+
config.transformer.dropout_rate = 0.1
|
163 |
+
config.classifier = 'token'
|
164 |
+
config.representation_size = None
|
165 |
+
return config
|
166 |
+
|
167 |
+
|
168 |
+
def get_b16_config():
|
169 |
+
"""Returns the ViT-B/16 configuration."""
|
170 |
+
config = ml_collections.ConfigDict()
|
171 |
+
config.patches = ml_collections.ConfigDict({'size': (16, 16)})
|
172 |
+
config.hidden_size = 768
|
173 |
+
config.transformer = ml_collections.ConfigDict()
|
174 |
+
config.transformer.mlp_dim = 3072
|
175 |
+
config.transformer.num_heads = 12
|
176 |
+
config.transformer.num_layers = 12
|
177 |
+
config.transformer.attention_dropout_rate = 0.0
|
178 |
+
config.transformer.dropout_rate = 0.1
|
179 |
+
config.classifier = 'token'
|
180 |
+
config.representation_size = None
|
181 |
+
return config
|
182 |
+
|
183 |
+
|
184 |
+
def get_r50_b16_config():
|
185 |
+
"""Returns the Resnet50 + ViT-B/16 configuration."""
|
186 |
+
config = get_b16_config()
|
187 |
+
del config.patches.size
|
188 |
+
config.patches.grid = (14, 14)
|
189 |
+
config.resnet = ml_collections.ConfigDict()
|
190 |
+
config.resnet.num_layers = (3, 4, 9)
|
191 |
+
config.resnet.width_factor = 1
|
192 |
+
return config
|
193 |
+
|
194 |
+
|
195 |
+
def get_b32_config():
|
196 |
+
"""Returns the ViT-B/32 configuration."""
|
197 |
+
config = get_b16_config()
|
198 |
+
config.patches.size = (32, 32)
|
199 |
+
return config
|
200 |
+
|
201 |
+
|
202 |
+
def get_l16_config():
|
203 |
+
"""Returns the ViT-L/16 configuration."""
|
204 |
+
config = ml_collections.ConfigDict()
|
205 |
+
config.patches = ml_collections.ConfigDict({'size': (16, 16)})
|
206 |
+
config.hidden_size = 1024
|
207 |
+
config.transformer = ml_collections.ConfigDict()
|
208 |
+
config.transformer.mlp_dim = 4096
|
209 |
+
config.transformer.num_heads = 16
|
210 |
+
config.transformer.num_layers = 24
|
211 |
+
config.transformer.attention_dropout_rate = 0.0
|
212 |
+
config.transformer.dropout_rate = 0.1
|
213 |
+
config.classifier = 'token'
|
214 |
+
config.representation_size = None
|
215 |
+
return config
|
216 |
+
|
217 |
+
|
218 |
+
def get_l32_config():
|
219 |
+
"""Returns the ViT-L/32 configuration."""
|
220 |
+
config = get_l16_config()
|
221 |
+
config.patches.size = (32, 32)
|
222 |
+
return config
|
223 |
+
|
224 |
+
|
225 |
+
def get_h14_config():
|
226 |
+
"""Returns the ViT-L/16 configuration."""
|
227 |
+
config = ml_collections.ConfigDict()
|
228 |
+
config.patches = ml_collections.ConfigDict({'size': (14, 14)})
|
229 |
+
config.hidden_size = 1280
|
230 |
+
config.transformer = ml_collections.ConfigDict()
|
231 |
+
config.transformer.mlp_dim = 5120
|
232 |
+
config.transformer.num_heads = 16
|
233 |
+
config.transformer.num_layers = 32
|
234 |
+
config.transformer.attention_dropout_rate = 0.0
|
235 |
+
config.transformer.dropout_rate = 0.1
|
236 |
+
config.classifier = 'token'
|
237 |
+
config.representation_size = None
|
238 |
+
return config
|
models/vision_transformer.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
import math
|
5 |
+
from functools import partial
|
6 |
+
from .utils import trunc_normal_
|
7 |
+
|
8 |
+
|
9 |
+
def drop_path(x, drop_prob: float = 0., training: bool = False):
|
10 |
+
if drop_prob == 0. or not training:
|
11 |
+
return x
|
12 |
+
keep_prob = 1 - drop_prob
|
13 |
+
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
14 |
+
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
|
15 |
+
random_tensor.floor_() # binarize
|
16 |
+
output = x.div(keep_prob) * random_tensor
|
17 |
+
return output
|
18 |
+
|
19 |
+
|
20 |
+
class DropPath(nn.Module):
|
21 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
22 |
+
"""
|
23 |
+
def __init__(self, drop_prob=None):
|
24 |
+
super(DropPath, self).__init__()
|
25 |
+
self.drop_prob = drop_prob
|
26 |
+
|
27 |
+
def forward(self, x):
|
28 |
+
return drop_path(x, self.drop_prob, self.training)
|
29 |
+
|
30 |
+
|
31 |
+
class Mlp(nn.Module):
|
32 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
33 |
+
super().__init__()
|
34 |
+
out_features = out_features or in_features
|
35 |
+
hidden_features = hidden_features or in_features
|
36 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
37 |
+
self.act = act_layer()
|
38 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
39 |
+
self.drop = nn.Dropout(drop)
|
40 |
+
|
41 |
+
def forward(self, x):
|
42 |
+
x = self.fc1(x)
|
43 |
+
x = self.act(x)
|
44 |
+
x = self.drop(x)
|
45 |
+
x = self.fc2(x)
|
46 |
+
x = self.drop(x)
|
47 |
+
return x
|
48 |
+
|
49 |
+
|
50 |
+
class Attention(nn.Module):
|
51 |
+
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
|
52 |
+
super().__init__()
|
53 |
+
self.num_heads = num_heads
|
54 |
+
head_dim = dim // num_heads
|
55 |
+
self.scale = qk_scale or head_dim ** -0.5
|
56 |
+
|
57 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
58 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
59 |
+
self.proj = nn.Linear(dim, dim)
|
60 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
61 |
+
|
62 |
+
def forward(self, x):
|
63 |
+
B, N, C = x.shape
|
64 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
65 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
66 |
+
|
67 |
+
attn = (q @ k.transpose(-2, -1)) * self.scale
|
68 |
+
attn = attn.softmax(dim=-1)
|
69 |
+
attn = self.attn_drop(attn)
|
70 |
+
|
71 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
72 |
+
x = self.proj(x)
|
73 |
+
x = self.proj_drop(x)
|
74 |
+
return x, attn
|
75 |
+
|
76 |
+
|
77 |
+
class Block(nn.Module):
|
78 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
79 |
+
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
80 |
+
super().__init__()
|
81 |
+
self.norm1 = norm_layer(dim)
|
82 |
+
self.attn = Attention(
|
83 |
+
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
84 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
85 |
+
self.norm2 = norm_layer(dim)
|
86 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
87 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
88 |
+
|
89 |
+
def forward(self, x, return_attention=False):
|
90 |
+
y, attn = self.attn(self.norm1(x))
|
91 |
+
if return_attention:
|
92 |
+
return attn
|
93 |
+
x = x + self.drop_path(y)
|
94 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
95 |
+
return x
|
96 |
+
|
97 |
+
|
98 |
+
class PatchEmbed(nn.Module):
|
99 |
+
""" Image to Patch Embedding
|
100 |
+
"""
|
101 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
|
102 |
+
super().__init__()
|
103 |
+
num_patches = (img_size // patch_size) * (img_size // patch_size)
|
104 |
+
self.img_size = img_size
|
105 |
+
self.patch_size = patch_size
|
106 |
+
self.num_patches = num_patches
|
107 |
+
|
108 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
109 |
+
|
110 |
+
def forward(self, x):
|
111 |
+
B, C, H, W = x.shape
|
112 |
+
x = self.proj(x).flatten(2).transpose(1, 2)
|
113 |
+
return x
|
114 |
+
|
115 |
+
|
116 |
+
class VisionTransformer(nn.Module):
|
117 |
+
""" Vision Transformer """
|
118 |
+
def __init__(self, img_size=[224], patch_size=16, in_chans=3, num_classes=0, embed_dim=768, depth=12,
|
119 |
+
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
|
120 |
+
drop_path_rate=0., norm_layer=nn.LayerNorm, **kwargs):
|
121 |
+
super().__init__()
|
122 |
+
self.num_features = self.embed_dim = embed_dim
|
123 |
+
|
124 |
+
self.patch_embed = PatchEmbed(
|
125 |
+
img_size=img_size[0], patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
126 |
+
num_patches = self.patch_embed.num_patches
|
127 |
+
|
128 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
129 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
130 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
131 |
+
|
132 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
133 |
+
self.blocks = nn.ModuleList([
|
134 |
+
Block(
|
135 |
+
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
136 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
|
137 |
+
for i in range(depth)])
|
138 |
+
self.norm = norm_layer(embed_dim)
|
139 |
+
|
140 |
+
# Classifier head
|
141 |
+
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
142 |
+
|
143 |
+
trunc_normal_(self.pos_embed, std=.02)
|
144 |
+
trunc_normal_(self.cls_token, std=.02)
|
145 |
+
self.apply(self._init_weights)
|
146 |
+
|
147 |
+
def _init_weights(self, m):
|
148 |
+
if isinstance(m, nn.Linear):
|
149 |
+
trunc_normal_(m.weight, std=.02)
|
150 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
151 |
+
nn.init.constant_(m.bias, 0)
|
152 |
+
elif isinstance(m, nn.LayerNorm):
|
153 |
+
nn.init.constant_(m.bias, 0)
|
154 |
+
nn.init.constant_(m.weight, 1.0)
|
155 |
+
|
156 |
+
def interpolate_pos_encoding(self, x, w, h):
|
157 |
+
npatch = x.shape[1] - 1
|
158 |
+
N = self.pos_embed.shape[1] - 1
|
159 |
+
if npatch == N and w == h:
|
160 |
+
return self.pos_embed
|
161 |
+
class_pos_embed = self.pos_embed[:, 0]
|
162 |
+
patch_pos_embed = self.pos_embed[:, 1:]
|
163 |
+
dim = x.shape[-1]
|
164 |
+
w0 = w // self.patch_embed.patch_size
|
165 |
+
h0 = h // self.patch_embed.patch_size
|
166 |
+
# we add a small number to avoid floating point error in the interpolation
|
167 |
+
# see discussion at https://github.com/facebookresearch/dino/issues/8
|
168 |
+
w0, h0 = w0 + 0.1, h0 + 0.1
|
169 |
+
patch_pos_embed = nn.functional.interpolate(
|
170 |
+
patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2),
|
171 |
+
scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)),
|
172 |
+
mode='bicubic',
|
173 |
+
align_corners=False,
|
174 |
+
recompute_scale_factor=False
|
175 |
+
)
|
176 |
+
assert int(w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1]
|
177 |
+
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
178 |
+
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
|
179 |
+
|
180 |
+
def prepare_tokens(self, x, ada_token=None):
|
181 |
+
B, nc, w, h = x.shape
|
182 |
+
x = self.patch_embed(x) # patch linear embedding
|
183 |
+
|
184 |
+
# add the [CLS] token to the embed patch tokens
|
185 |
+
cls_tokens = self.cls_token.expand(B, -1, -1)
|
186 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
187 |
+
|
188 |
+
# add positional encoding to each token
|
189 |
+
x = x + self.interpolate_pos_encoding(x, w, h)
|
190 |
+
|
191 |
+
if ada_token is not None:
|
192 |
+
ada_tokens = ada_token.expand(B, -1, -1) # B, p, d
|
193 |
+
x = torch.cat((x, ada_tokens), dim=1)
|
194 |
+
|
195 |
+
return self.pos_drop(x)
|
196 |
+
|
197 |
+
def forward(self, x, ada_token=None, use_patches=False):
|
198 |
+
x = self.prepare_tokens(x, ada_token)
|
199 |
+
for blk in self.blocks:
|
200 |
+
x = blk(x)
|
201 |
+
x = self.norm(x)
|
202 |
+
|
203 |
+
if use_patches:
|
204 |
+
return x[:, 1:]
|
205 |
+
else:
|
206 |
+
return x[:, 0]
|
207 |
+
|
208 |
+
def get_last_selfattention(self, x):
|
209 |
+
x = self.prepare_tokens(x)
|
210 |
+
for i, blk in enumerate(self.blocks):
|
211 |
+
if i < len(self.blocks) - 1:
|
212 |
+
x = blk(x)
|
213 |
+
else:
|
214 |
+
# return attention of the last block
|
215 |
+
return blk(x, return_attention=True)
|
216 |
+
|
217 |
+
def get_intermediate_layers(self, x, n=1):
|
218 |
+
x = self.prepare_tokens(x)
|
219 |
+
# we return the output tokens from the `n` last blocks
|
220 |
+
output = []
|
221 |
+
for i, blk in enumerate(self.blocks):
|
222 |
+
x = blk(x)
|
223 |
+
if len(self.blocks) - i <= n:
|
224 |
+
output.append(self.norm(x))
|
225 |
+
return output
|
226 |
+
|
227 |
+
|
228 |
+
def vit_tiny(patch_size=16, **kwargs):
|
229 |
+
model = VisionTransformer(
|
230 |
+
patch_size=patch_size, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4,
|
231 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
232 |
+
return model
|
233 |
+
|
234 |
+
|
235 |
+
def vit_small(patch_size=16, **kwargs):
|
236 |
+
model = VisionTransformer(
|
237 |
+
patch_size=patch_size, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4,
|
238 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
239 |
+
return model
|
240 |
+
|
241 |
+
|
242 |
+
def vit_base(patch_size=16, **kwargs):
|
243 |
+
model = VisionTransformer(
|
244 |
+
patch_size=patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
|
245 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
|
246 |
+
return model
|
models/vit_google.py
ADDED
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import logging
|
3 |
+
import math
|
4 |
+
|
5 |
+
from os.path import join as pjoin
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
from torch.nn import Dropout, Softmax, Linear, Conv2d, LayerNorm
|
12 |
+
from torch.nn.modules.utils import _pair
|
13 |
+
from scipy import ndimage
|
14 |
+
|
15 |
+
from .utils import get_b16_config
|
16 |
+
from .resnet_v2 import ResNetV2
|
17 |
+
|
18 |
+
|
19 |
+
CONFIGS = {
|
20 |
+
'ViT-B_16': get_b16_config(),
|
21 |
+
#'ViT-B_32': get_b32_config(),
|
22 |
+
#'ViT-L_16': get_l16_config(),
|
23 |
+
#'ViT-L_32': get_l32_config(),
|
24 |
+
#'ViT-H_14': get_h14_config(),
|
25 |
+
#'R50-ViT-B_16': get_r50_b16_config(),
|
26 |
+
#'testing': configs.get_testing(),
|
27 |
+
}
|
28 |
+
|
29 |
+
ATTENTION_Q = "MultiHeadDotProductAttention_1/query"
|
30 |
+
ATTENTION_K = "MultiHeadDotProductAttention_1/key"
|
31 |
+
ATTENTION_V = "MultiHeadDotProductAttention_1/value"
|
32 |
+
ATTENTION_OUT = "MultiHeadDotProductAttention_1/out"
|
33 |
+
FC_0 = "MlpBlock_3/Dense_0"
|
34 |
+
FC_1 = "MlpBlock_3/Dense_1"
|
35 |
+
ATTENTION_NORM = "LayerNorm_0"
|
36 |
+
MLP_NORM = "LayerNorm_2"
|
37 |
+
|
38 |
+
|
39 |
+
def np2th(weights, conv=False):
|
40 |
+
"""Possibly convert HWIO to OIHW."""
|
41 |
+
if conv:
|
42 |
+
weights = weights.transpose([3, 2, 0, 1])
|
43 |
+
return torch.from_numpy(weights)
|
44 |
+
|
45 |
+
|
46 |
+
def swish(x):
|
47 |
+
return x * torch.sigmoid(x)
|
48 |
+
|
49 |
+
|
50 |
+
ACT2FN = {"gelu": torch.nn.functional.gelu, "relu": torch.nn.functional.relu, "swish": swish}
|
51 |
+
|
52 |
+
|
53 |
+
class Attention(nn.Module):
|
54 |
+
def __init__(self, config, vis):
|
55 |
+
super(Attention, self).__init__()
|
56 |
+
self.vis = vis
|
57 |
+
self.num_attention_heads = config.transformer["num_heads"]
|
58 |
+
self.attention_head_size = int(config.hidden_size / self.num_attention_heads)
|
59 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
60 |
+
|
61 |
+
self.query = Linear(config.hidden_size, self.all_head_size)
|
62 |
+
self.key = Linear(config.hidden_size, self.all_head_size)
|
63 |
+
self.value = Linear(config.hidden_size, self.all_head_size)
|
64 |
+
|
65 |
+
self.out = Linear(config.hidden_size, config.hidden_size)
|
66 |
+
self.attn_dropout = Dropout(config.transformer["attention_dropout_rate"])
|
67 |
+
self.proj_dropout = Dropout(config.transformer["attention_dropout_rate"])
|
68 |
+
|
69 |
+
self.softmax = Softmax(dim=-1)
|
70 |
+
|
71 |
+
def transpose_for_scores(self, x):
|
72 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
73 |
+
x = x.view(*new_x_shape)
|
74 |
+
return x.permute(0, 2, 1, 3)
|
75 |
+
|
76 |
+
def forward(self, hidden_states):
|
77 |
+
mixed_query_layer = self.query(hidden_states)
|
78 |
+
mixed_key_layer = self.key(hidden_states)
|
79 |
+
mixed_value_layer = self.value(hidden_states)
|
80 |
+
|
81 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
82 |
+
key_layer = self.transpose_for_scores(mixed_key_layer)
|
83 |
+
value_layer = self.transpose_for_scores(mixed_value_layer)
|
84 |
+
|
85 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
86 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
87 |
+
attention_probs = self.softmax(attention_scores)
|
88 |
+
weights = attention_probs if self.vis else None
|
89 |
+
attention_probs = self.attn_dropout(attention_probs)
|
90 |
+
|
91 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
92 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
93 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
94 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
95 |
+
attention_output = self.out(context_layer)
|
96 |
+
attention_output = self.proj_dropout(attention_output)
|
97 |
+
return attention_output, weights
|
98 |
+
|
99 |
+
|
100 |
+
class Mlp(nn.Module):
|
101 |
+
def __init__(self, config):
|
102 |
+
super(Mlp, self).__init__()
|
103 |
+
self.fc1 = Linear(config.hidden_size, config.transformer["mlp_dim"])
|
104 |
+
self.fc2 = Linear(config.transformer["mlp_dim"], config.hidden_size)
|
105 |
+
self.act_fn = ACT2FN["gelu"]
|
106 |
+
self.dropout = Dropout(config.transformer["dropout_rate"])
|
107 |
+
|
108 |
+
self._init_weights()
|
109 |
+
|
110 |
+
def _init_weights(self):
|
111 |
+
nn.init.xavier_uniform_(self.fc1.weight)
|
112 |
+
nn.init.xavier_uniform_(self.fc2.weight)
|
113 |
+
nn.init.normal_(self.fc1.bias, std=1e-6)
|
114 |
+
nn.init.normal_(self.fc2.bias, std=1e-6)
|
115 |
+
|
116 |
+
def forward(self, x):
|
117 |
+
x = self.fc1(x)
|
118 |
+
x = self.act_fn(x)
|
119 |
+
x = self.dropout(x)
|
120 |
+
x = self.fc2(x)
|
121 |
+
x = self.dropout(x)
|
122 |
+
return x
|
123 |
+
|
124 |
+
|
125 |
+
class Embeddings(nn.Module):
|
126 |
+
"""Construct the embeddings from patch, position embeddings.
|
127 |
+
"""
|
128 |
+
def __init__(self, config, img_size, in_channels=3):
|
129 |
+
super(Embeddings, self).__init__()
|
130 |
+
self.hybrid = None
|
131 |
+
img_size = _pair(img_size)
|
132 |
+
|
133 |
+
if config.patches.get("grid") is not None:
|
134 |
+
grid_size = config.patches["grid"]
|
135 |
+
patch_size = (img_size[0] // 16 // grid_size[0], img_size[1] // 16 // grid_size[1])
|
136 |
+
n_patches = (img_size[0] // 16) * (img_size[1] // 16)
|
137 |
+
self.hybrid = True
|
138 |
+
else:
|
139 |
+
patch_size = _pair(config.patches["size"])
|
140 |
+
n_patches = (img_size[0] // patch_size[0]) * (img_size[1] // patch_size[1])
|
141 |
+
self.hybrid = False
|
142 |
+
|
143 |
+
if self.hybrid:
|
144 |
+
self.hybrid_model = ResNetV2(block_units=config.resnet.num_layers,
|
145 |
+
width_factor=config.resnet.width_factor)
|
146 |
+
in_channels = self.hybrid_model.width * 16
|
147 |
+
self.patch_size = patch_size
|
148 |
+
self.patch_embeddings = Conv2d(in_channels=in_channels,
|
149 |
+
out_channels=config.hidden_size,
|
150 |
+
kernel_size=patch_size,
|
151 |
+
stride=patch_size)
|
152 |
+
self.position_embeddings = nn.Parameter(torch.zeros(1, n_patches+1, config.hidden_size))
|
153 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
154 |
+
|
155 |
+
self.dropout = Dropout(config.transformer["dropout_rate"])
|
156 |
+
|
157 |
+
def interpolate_pos_encoding(self, x, h, w):
|
158 |
+
npatch = x.shape[1] - 1
|
159 |
+
N = self.position_embeddings.shape[1] - 1
|
160 |
+
if npatch == N and w == h:
|
161 |
+
return self.position_embeddings
|
162 |
+
class_pos_embed = self.position_embeddings[:, 0]
|
163 |
+
patch_pos_embed = self.position_embeddings[:, 1:]
|
164 |
+
dim = x.shape[-1]
|
165 |
+
w0 = w // self.patch_size[0]
|
166 |
+
h0 = h // self.patch_size[1]
|
167 |
+
# we add a small number to avoid floating point error in the interpolation
|
168 |
+
# see discussion at https://github.com/facebookresearch/dino/issues/8
|
169 |
+
w0, h0 = w0 + 0.1, h0 + 0.1
|
170 |
+
patch_pos_embed = nn.functional.interpolate(
|
171 |
+
patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2),
|
172 |
+
scale_factor=(h0 / math.sqrt(N), w0 / math.sqrt(N)),
|
173 |
+
mode='bicubic',
|
174 |
+
align_corners=False,
|
175 |
+
recompute_scale_factor=False
|
176 |
+
)
|
177 |
+
assert int(h0) == patch_pos_embed.shape[-2] and int(w0) == patch_pos_embed.shape[-1]
|
178 |
+
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
179 |
+
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
|
180 |
+
|
181 |
+
def forward(self, x):
|
182 |
+
B, nc, h, w = x.shape
|
183 |
+
cls_tokens = self.cls_token.expand(B, -1, -1)
|
184 |
+
|
185 |
+
if self.hybrid:
|
186 |
+
x = self.hybrid_model(x)
|
187 |
+
|
188 |
+
# Linear embedding
|
189 |
+
x = self.patch_embeddings(x)
|
190 |
+
|
191 |
+
# add the [CLS] token to the embed patch tokens
|
192 |
+
x = x.flatten(2)
|
193 |
+
x = x.transpose(-1, -2)
|
194 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
195 |
+
|
196 |
+
# add positional encoding to each token
|
197 |
+
embeddings = x + self.interpolate_pos_encoding(x, h, w)
|
198 |
+
embeddings = self.dropout(embeddings)
|
199 |
+
return embeddings
|
200 |
+
|
201 |
+
|
202 |
+
class Block(nn.Module):
|
203 |
+
def __init__(self, config, vis):
|
204 |
+
super(Block, self).__init__()
|
205 |
+
self.hidden_size = config.hidden_size
|
206 |
+
self.attention_norm = LayerNorm(config.hidden_size, eps=1e-6)
|
207 |
+
self.ffn_norm = LayerNorm(config.hidden_size, eps=1e-6)
|
208 |
+
self.ffn = Mlp(config)
|
209 |
+
self.attn = Attention(config, vis)
|
210 |
+
|
211 |
+
def forward(self, x):
|
212 |
+
h = x
|
213 |
+
x = self.attention_norm(x)
|
214 |
+
x, weights = self.attn(x)
|
215 |
+
x = x + h
|
216 |
+
|
217 |
+
h = x
|
218 |
+
x = self.ffn_norm(x)
|
219 |
+
x = self.ffn(x)
|
220 |
+
x = x + h
|
221 |
+
return x, weights
|
222 |
+
|
223 |
+
def load_from(self, weights, n_block):
|
224 |
+
ROOT = f"Transformer/encoderblock_{n_block}"
|
225 |
+
with torch.no_grad():
|
226 |
+
query_weight = np2th(weights[pjoin(ROOT, ATTENTION_Q, "kernel")]).view(self.hidden_size, self.hidden_size).t()
|
227 |
+
key_weight = np2th(weights[pjoin(ROOT, ATTENTION_K, "kernel")]).view(self.hidden_size, self.hidden_size).t()
|
228 |
+
value_weight = np2th(weights[pjoin(ROOT, ATTENTION_V, "kernel")]).view(self.hidden_size, self.hidden_size).t()
|
229 |
+
out_weight = np2th(weights[pjoin(ROOT, ATTENTION_OUT, "kernel")]).view(self.hidden_size, self.hidden_size).t()
|
230 |
+
|
231 |
+
query_bias = np2th(weights[pjoin(ROOT, ATTENTION_Q, "bias")]).view(-1)
|
232 |
+
key_bias = np2th(weights[pjoin(ROOT, ATTENTION_K, "bias")]).view(-1)
|
233 |
+
value_bias = np2th(weights[pjoin(ROOT, ATTENTION_V, "bias")]).view(-1)
|
234 |
+
out_bias = np2th(weights[pjoin(ROOT, ATTENTION_OUT, "bias")]).view(-1)
|
235 |
+
|
236 |
+
self.attn.query.weight.copy_(query_weight)
|
237 |
+
self.attn.key.weight.copy_(key_weight)
|
238 |
+
self.attn.value.weight.copy_(value_weight)
|
239 |
+
self.attn.out.weight.copy_(out_weight)
|
240 |
+
self.attn.query.bias.copy_(query_bias)
|
241 |
+
self.attn.key.bias.copy_(key_bias)
|
242 |
+
self.attn.value.bias.copy_(value_bias)
|
243 |
+
self.attn.out.bias.copy_(out_bias)
|
244 |
+
|
245 |
+
mlp_weight_0 = np2th(weights[pjoin(ROOT, FC_0, "kernel")]).t()
|
246 |
+
mlp_weight_1 = np2th(weights[pjoin(ROOT, FC_1, "kernel")]).t()
|
247 |
+
mlp_bias_0 = np2th(weights[pjoin(ROOT, FC_0, "bias")]).t()
|
248 |
+
mlp_bias_1 = np2th(weights[pjoin(ROOT, FC_1, "bias")]).t()
|
249 |
+
|
250 |
+
self.ffn.fc1.weight.copy_(mlp_weight_0)
|
251 |
+
self.ffn.fc2.weight.copy_(mlp_weight_1)
|
252 |
+
self.ffn.fc1.bias.copy_(mlp_bias_0)
|
253 |
+
self.ffn.fc2.bias.copy_(mlp_bias_1)
|
254 |
+
|
255 |
+
self.attention_norm.weight.copy_(np2th(weights[pjoin(ROOT, ATTENTION_NORM, "scale")]))
|
256 |
+
self.attention_norm.bias.copy_(np2th(weights[pjoin(ROOT, ATTENTION_NORM, "bias")]))
|
257 |
+
self.ffn_norm.weight.copy_(np2th(weights[pjoin(ROOT, MLP_NORM, "scale")]))
|
258 |
+
self.ffn_norm.bias.copy_(np2th(weights[pjoin(ROOT, MLP_NORM, "bias")]))
|
259 |
+
|
260 |
+
|
261 |
+
class Encoder(nn.Module):
|
262 |
+
def __init__(self, config, vis):
|
263 |
+
super(Encoder, self).__init__()
|
264 |
+
self.vis = vis
|
265 |
+
self.layer = nn.ModuleList()
|
266 |
+
self.encoder_norm = LayerNorm(config.hidden_size, eps=1e-6)
|
267 |
+
for _ in range(config.transformer["num_layers"]):
|
268 |
+
layer = Block(config, vis)
|
269 |
+
self.layer.append(copy.deepcopy(layer))
|
270 |
+
|
271 |
+
def forward(self, hidden_states):
|
272 |
+
attn_weights = []
|
273 |
+
for layer_block in self.layer:
|
274 |
+
hidden_states, weights = layer_block(hidden_states)
|
275 |
+
if self.vis:
|
276 |
+
attn_weights.append(weights)
|
277 |
+
encoded = self.encoder_norm(hidden_states)
|
278 |
+
return encoded, attn_weights
|
279 |
+
|
280 |
+
|
281 |
+
class Transformer(nn.Module):
|
282 |
+
def __init__(self, config, img_size, vis):
|
283 |
+
super(Transformer, self).__init__()
|
284 |
+
self.embeddings = Embeddings(config, img_size=img_size)
|
285 |
+
self.encoder = Encoder(config, vis)
|
286 |
+
|
287 |
+
def forward(self, input_ids):
|
288 |
+
embedding_output = self.embeddings(input_ids)
|
289 |
+
encoded, attn_weights = self.encoder(embedding_output)
|
290 |
+
return encoded, attn_weights
|
291 |
+
|
292 |
+
|
293 |
+
class VisionTransformer(nn.Module):
|
294 |
+
def __init__(self, config, img_size=224, vis=False):
|
295 |
+
super(VisionTransformer, self).__init__()
|
296 |
+
#self.num_classes = num_classes
|
297 |
+
#self.classifier = config.classifier
|
298 |
+
self.embed_dim = config.hidden_size
|
299 |
+
|
300 |
+
self.transformer = Transformer(config, img_size, vis)
|
301 |
+
#self.head = Linear(config.hidden_size, num_classes)
|
302 |
+
|
303 |
+
def forward(self, x, labels=None, use_patches=False):
|
304 |
+
x, attn_weights = self.transformer(x)
|
305 |
+
#logits = self.head(x[:, 0])
|
306 |
+
|
307 |
+
#if labels is not None:
|
308 |
+
# loss_fct = CrossEntropyLoss()
|
309 |
+
# loss = loss_fct(logits.view(-1, self.num_classes), labels.view(-1))
|
310 |
+
# return loss
|
311 |
+
#else:
|
312 |
+
# return logits, attn_weights
|
313 |
+
|
314 |
+
if use_patches:
|
315 |
+
return x[:, 1:]
|
316 |
+
else:
|
317 |
+
return x[:, 0]
|
318 |
+
|
319 |
+
def load_from(self, weights):
|
320 |
+
with torch.no_grad():
|
321 |
+
#if self.zero_head:
|
322 |
+
# nn.init.zeros_(self.head.weight)
|
323 |
+
# nn.init.zeros_(self.head.bias)
|
324 |
+
#else:
|
325 |
+
# self.head.weight.copy_(np2th(weights["head/kernel"]).t())
|
326 |
+
# self.head.bias.copy_(np2th(weights["head/bias"]).t())
|
327 |
+
|
328 |
+
self.transformer.embeddings.patch_embeddings.weight.copy_(np2th(weights["embedding/kernel"], conv=True))
|
329 |
+
self.transformer.embeddings.patch_embeddings.bias.copy_(np2th(weights["embedding/bias"]))
|
330 |
+
self.transformer.embeddings.cls_token.copy_(np2th(weights["cls"]))
|
331 |
+
self.transformer.encoder.encoder_norm.weight.copy_(np2th(weights["Transformer/encoder_norm/scale"]))
|
332 |
+
self.transformer.encoder.encoder_norm.bias.copy_(np2th(weights["Transformer/encoder_norm/bias"]))
|
333 |
+
|
334 |
+
posemb = np2th(weights["Transformer/posembed_input/pos_embedding"])
|
335 |
+
posemb_new = self.transformer.embeddings.position_embeddings
|
336 |
+
if posemb.size() == posemb_new.size():
|
337 |
+
self.transformer.embeddings.position_embeddings.copy_(posemb)
|
338 |
+
else:
|
339 |
+
print("load_pretrained: resized variant: %s to %s" % (posemb.size(), posemb_new.size()))
|
340 |
+
ntok_new = posemb_new.size(1)
|
341 |
+
|
342 |
+
if self.classifier == "token":
|
343 |
+
posemb_tok, posemb_grid = posemb[:, :1], posemb[0, 1:]
|
344 |
+
ntok_new -= 1
|
345 |
+
else:
|
346 |
+
posemb_tok, posemb_grid = posemb[:, :0], posemb[0]
|
347 |
+
|
348 |
+
gs_old = int(np.sqrt(len(posemb_grid)))
|
349 |
+
gs_new = int(np.sqrt(ntok_new))
|
350 |
+
print('load_pretrained: grid-size from %s to %s' % (gs_old, gs_new))
|
351 |
+
posemb_grid = posemb_grid.reshape(gs_old, gs_old, -1)
|
352 |
+
|
353 |
+
zoom = (gs_new / gs_old, gs_new / gs_old, 1)
|
354 |
+
posemb_grid = ndimage.zoom(posemb_grid, zoom, order=1)
|
355 |
+
posemb_grid = posemb_grid.reshape(1, gs_new * gs_new, -1)
|
356 |
+
posemb = np.concatenate([posemb_tok, posemb_grid], axis=1)
|
357 |
+
self.transformer.embeddings.position_embeddings.copy_(np2th(posemb))
|
358 |
+
|
359 |
+
for bname, block in self.transformer.encoder.named_children():
|
360 |
+
for uname, unit in block.named_children():
|
361 |
+
unit.load_from(weights, n_block=uname)
|
362 |
+
|
363 |
+
if self.transformer.embeddings.hybrid:
|
364 |
+
self.transformer.embeddings.hybrid_model.root.conv.weight.copy_(np2th(weights["conv_root/kernel"], conv=True))
|
365 |
+
gn_weight = np2th(weights["gn_root/scale"]).view(-1)
|
366 |
+
gn_bias = np2th(weights["gn_root/bias"]).view(-1)
|
367 |
+
self.transformer.embeddings.hybrid_model.root.gn.weight.copy_(gn_weight)
|
368 |
+
self.transformer.embeddings.hybrid_model.root.gn.bias.copy_(gn_bias)
|
369 |
+
|
370 |
+
for bname, block in self.transformer.embeddings.hybrid_model.body.named_children():
|
371 |
+
for uname, unit in block.named_children():
|
372 |
+
unit.load_from(weights, n_block=bname, n_unit=uname)
|