File size: 13,191 Bytes
3aa0ca8
 
 
eebec00
 
a2e978b
30f09bf
 
f3df6f1
30f09bf
eebec00
3aa0ca8
f734c44
3aa0ca8
 
 
f734c44
bb8619e
 
 
3aa0ca8
eebec00
30f09bf
 
 
 
 
 
 
 
eebec00
 
 
01e0de2
eebec00
01e0de2
eebec00
 
3aa0ca8
 
 
 
 
 
 
 
 
01e0de2
3aa0ca8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb8619e
 
 
 
 
 
 
 
 
 
3aa0ca8
eebec00
3aa0ca8
 
 
 
 
 
802b807
 
bb8619e
 
3aa0ca8
eebec00
 
 
b6a0d59
eebec00
 
bb8619e
f734c44
bb8619e
eebec00
802b807
eebec00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aa0ca8
bb8619e
 
 
 
 
 
30f09bf
 
bb8619e
 
 
 
3aa0ca8
 
 
bb8619e
3aa0ca8
eebec00
 
15417c3
eebec00
3aa0ca8
15417c3
802b807
15417c3
eebec00
3aa0ca8
 
 
 
e5bd30a
802b807
e5bd30a
bb8619e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5bd30a
 
1a904df
f734c44
3aa0ca8
 
 
 
 
eebec00
 
 
 
 
bb8619e
 
 
 
 
 
eebec00
 
bb8619e
eebec00
3aa0ca8
 
 
 
bb8619e
eebec00
bb8619e
 
 
 
 
 
 
 
 
 
17c74fe
 
 
bb8619e
17c74fe
3aa0ca8
 
 
f734c44
bb8619e
3aa0ca8
 
 
bb8619e
 
 
 
 
 
 
 
3aa0ca8
bb8619e
3aa0ca8
 
 
 
 
 
 
 
17c74fe
 
3aa0ca8
 
 
 
 
eebec00
3aa0ca8
 
 
 
 
 
802b807
 
bb8619e
 
3aa0ca8
 
 
 
ac91a8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aa0ca8
01e0de2
bb8619e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import torch
import gradio as gr
from PIL import Image
import qrcode
from pathlib import Path
from multiprocessing import cpu_count
import requests
import io
import os
from PIL import Image

from diffusers import (
    StableDiffusionPipeline,
    StableDiffusionControlNetImg2ImgPipeline,
    ControlNetModel,
    DDIMScheduler,
    DPMSolverMultistepScheduler,
    DEISMultistepScheduler,
    HeunDiscreteScheduler,
    EulerDiscreteScheduler,
)

API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-2-1"
HF_TOKEN = os.environ.get("HF_TOKEN")

headers = {"Authorization": f"Bearer {HF_TOKEN}"}

def query(payload):
	response = requests.post(API_URL, headers=headers, json=payload)
	return response.content

qrcode_generator = qrcode.QRCode(
    version=1,
    error_correction=qrcode.ERROR_CORRECT_H,
    box_size=10,
    border=4,
)

controlnet = ControlNetModel.from_pretrained(
    "DionTimmer/controlnet_qrcode-control_v1p_sd15", torch_dtype=torch.float16
)

pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5",
    controlnet=controlnet,
    safety_checker=None,
    torch_dtype=torch.float16,
).to("cuda")
pipe.enable_xformers_memory_efficient_attention()


def resize_for_condition_image(input_image: Image.Image, resolution: int):
    input_image = input_image.convert("RGB")
    W, H = input_image.size
    k = float(resolution) / min(H, W)
    H *= k
    W *= k
    H = int(round(H / 64.0)) * 64
    W = int(round(W / 64.0)) * 64
    img = input_image.resize((W, H), resample=Image.LANCZOS)
    return img


SAMPLER_MAP = {
    "DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
    "DPM++ Karras": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True),
    "Heun": lambda config: HeunDiscreteScheduler.from_config(config),
    "Euler": lambda config: EulerDiscreteScheduler.from_config(config),
    "DDIM": lambda config: DDIMScheduler.from_config(config),
    "DEIS": lambda config: DEISMultistepScheduler.from_config(config),
}


def inference(
    qr_code_content: str,
    prompt: str,
    negative_prompt: str,
    guidance_scale: float = 10.0,
    controlnet_conditioning_scale: float = 2.0,
    strength: float = 0.8,
    seed: int = -1,
    init_image: Image.Image | None = None,
    qrcode_image: Image.Image | None = None,
    use_qr_code_as_init_image = True,
    sampler = "DPM++ Karras SDE",
):
    if prompt is None or prompt == "":
        raise gr.Error("Prompt is required")

    if qrcode_image is None and qr_code_content == "":
        raise gr.Error("QR Code Image or QR Code Content is required")

    pipe.scheduler = SAMPLER_MAP[sampler](pipe.scheduler.config)

    generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()

    if qr_code_content != "" or qrcode_image.size == (1, 1):
        print("Generating QR Code from content")
        qr = qrcode.QRCode(
            version=1,
            error_correction=qrcode.constants.ERROR_CORRECT_H,
            box_size=10,
            border=4,
        )
        qr.add_data(qr_code_content)
        qr.make(fit=True)

        qrcode_image = qr.make_image(fill_color="black", back_color="white")
        qrcode_image = resize_for_condition_image(qrcode_image, 768)
    else:
        print("Using QR Code Image")
        qrcode_image = resize_for_condition_image(qrcode_image, 768)

    # hack due to gradio examples
    if use_qr_code_as_init_image:
        init_image = qrcode_image
    elif init_image is None or init_image.size == (1, 1):
        print("Generating random image from prompt using Stable Diffusion")
        # generate image from prompt
        image_bytes = query({"inputs": prompt})
        init_image = Image.open(io.BytesIO(image_bytes))
    else:
        print("Using provided init image")
        init_image = resize_for_condition_image(init_image, 768)

    out = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        image=qrcode_image,
        control_image=qrcode_image,  # type: ignore
        width=768,  # type: ignore
        height=768,  # type: ignore
        guidance_scale=float(guidance_scale),
        controlnet_conditioning_scale=float(controlnet_conditioning_scale),  # type: ignore
        generator=generator,
        strength=float(strength),
        num_inference_steps=40,
    )
    return out.images[0]  # type: ignore


with gr.Blocks() as blocks:
    gr.Markdown(
        """
# QR Code AI Art Generator

## 💡 How to generate beautiful QR codes

There are two modes to generate beautiful QR codes:

1. **Blend-in mode**. Use the QR code image as the initial image **and** the control image. 
When using the QR code as both the init and control image, you can get QR Codes that blend in **very** naturally with your provided prompt.
The strength parameter defines how much noise is added to your QR code and the noisy QR code is then guided towards both your prompt and the QR code image via Controlnet.
Make sure to leave the radio *Use QR code as init image* checked and use a high strength value (between 0.8 and 0.95) and choose a lower conditioning scale (between 0.7 and 1.3).
This mode arguably achieves the asthetically most appealing images, but also requires more tuning of the controlnet conditioning scale and the strength value. If the generated image 
looks way to much like the original QR code, make sure to gently increase the *strength* value and reduce the *conditioning* scale. Also check out the examples below.

2. **Condition-only mode**. Use the QR code image **only** as the control image and denoise from a provided initial image.
When providing an initial image or letting SD 2.1 generate the initial image, you have much more freedom to decide how the generated QR code can look like depending on your provided image.
This mode allows you to stongly steer the generated QR code into a style, landscape, motive that you provided before-hand. This mode tends to generate QR codes that 
are less *"blend-in"* with the QR code itself. Make sure to choose high controlnet conditioning scales between 2.0 and 3.0 and lower strength values between 0.5 and 0.7. Also check examples below.

model: https://huggingface.co/DionTimmer/controlnet_qrcode-control_v1p_sd15

<a href="https://huggingface.co/spaces/huggingface-projects/QR-code-AI-art-generator?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
<img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> for no queue on your own hardware.</p>
                """
    )

    with gr.Row():
        with gr.Column():
            qr_code_content = gr.Textbox(
                label="QR Code Content",
                info="QR Code Content or URL",
                value="",
            )
            with gr.Accordion(label="QR Code Image (Optional)", open=False):
                qr_code_image = gr.Image(
                    label="QR Code Image (Optional). Leave blank to automatically generate QR code",
                    type="pil",
                )

            prompt = gr.Textbox(
                label="Prompt",
                info="Prompt that guides the generation towards",
            )
            negative_prompt = gr.Textbox(
                label="Negative Prompt",
                value="ugly, disfigured, low quality, blurry, nsfw",
            )
            use_qr_code_as_init_image = gr.Checkbox(label="Use QR code as init image", value=True, interactive=True, info="Whether init image should be QR code. Unclick to pass init image or generate init image with Stable Diffusion 2.1")

            with gr.Accordion(label="Init Images (Optional)", open=False, visible=False) as init_image_acc:
                init_image = gr.Image(label="Init Image (Optional). Leave blank to generate image with SD 2.1", type="pil")

            def change_view(qr_code_as_image: bool):
                if not qr_code_as_image:
                    return {init_image_acc: gr.update(visible=True)}
                else:
                    return {init_image_acc: gr.update(visible=False)}

            use_qr_code_as_init_image.change(change_view, inputs=[use_qr_code_as_init_image], outputs=[init_image_acc])

            with gr.Accordion(
                label="Params: The generated QR Code functionality is largely influenced by the parameters detailed below",
                open=True,
            ):
                controlnet_conditioning_scale = gr.Slider(
                    minimum=0.0,
                    maximum=5.0,
                    step=0.01,
                    value=1.1,
                    label="Controlnet Conditioning Scale",
                )
                strength = gr.Slider(
                    minimum=0.0, maximum=1.0, step=0.01, value=0.9, label="Strength"
                )
                guidance_scale = gr.Slider(
                    minimum=0.0,
                    maximum=50.0,
                    step=0.25,
                    value=7.5,
                    label="Guidance Scale",
                )
                sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="DPM++ Karras SDE")
                seed = gr.Slider(
                    minimum=-1,
                    maximum=9999999999,
                    step=1,
                    value=2313123,
                    label="Seed",
                    randomize=True,
                )
            with gr.Row():
                run_btn = gr.Button("Run")
        with gr.Column():
            result_image = gr.Image(label="Result Image")
    run_btn.click(
        inference,
        inputs=[
            qr_code_content,
            prompt,
            negative_prompt,
            guidance_scale,
            controlnet_conditioning_scale,
            strength,
            seed,
            init_image,
            qr_code_image,
            use_qr_code_as_init_image,
            sampler,
        ],
        outputs=[result_image],
    )

    # gr.Examples(
    #     examples=[
    #         [
    #             "https://huggingface.co/",
    #             "A sky view of a colorful lakes and rivers flowing through the desert",
    #             "ugly, disfigured, low quality, blurry, nsfw",
    #             7.5,
    #             1.3,
    #             0.9,
    #             5392011833,
    #             None,
    #             None,
    #             True,
    #             "DPM++ Karras SDE",
    #         ],
    #         [
    #             "https://huggingface.co/spaces/huggingface-projects/QR-code-AI-art-generator",
    #             "billboard amidst the bustling skyline of New York City, with iconic landmarks subtly featured in the background.",
    #             "ugly, disfigured, low quality, blurry, nsfw",
    #             13.37,
    #             2.81,
    #             0.68,
    #             2313123,
    #             "./examples/hack.png",
    #             "./examples/hack.png",
    #             False,
    #             "DDIM",
    #         ],
    #         [
    #             "https://huggingface.co/spaces/huggingface-projects/QR-code-AI-art-generator",
    #             "beautiful sunset in San Francisco with Golden Gate bridge in the background",
    #             "ugly, disfigured, low quality, blurry, nsfw",
    #             11.01,
    #             2.61,
    #             0.66,
    #             1423585430,
    #             "./examples/hack.png",
    #             "./examples/hack.png",
    #             False,
    #             "DDIM",
    #         ],
    #         [
    #             "https://huggingface.co",
    #             "A flying cat over a jungle",
    #             "ugly, disfigured, low quality, blurry, nsfw",
    #             13,
    #             2.81,
    #             0.66,
    #             2702246671,
    #             "./examples/hack.png",
    #             "./examples/hack.png",
    #             False,
    #             "DDIM",
    #         ],
    #         [
    #             "",
    #             "crisp QR code prominently displayed on a billboard amidst the bustling skyline of New York City, with iconic landmarks subtly featured in the background.",
    #             "ugly, disfigured, low quality, blurry, nsfw",
    #             10.0,
    #             2.0,
    #             0.8,
    #             2313123,
    #             "./examples/init.jpeg",
    #             "./examples/qrcode.png",
    #             False,
    #             "DDIM",
    #         ],
    #     ],
    #     fn=inference,
    #     inputs=[
    #         qr_code_content,
    #         prompt,
    #         negative_prompt,
    #         guidance_scale,
    #         controlnet_conditioning_scale,
    #         strength,
    #         seed,
    #         init_image,
    #         qr_code_image,
    #         use_qr_code_as_init_image,
    #         sampler,
    #     ],
    #     outputs=[result_image],
    #     cache_examples=True,
    #  )

blocks.queue(concurrency_count=1, max_size=20)
blocks.launch(share=True)