Spaces:
Running
on
Zero
Running
on
Zero
patrickvonplaten
commited on
Commit
·
30f09bf
1
Parent(s):
ac91a8f
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,9 @@ from PIL import Image
|
|
4 |
import qrcode
|
5 |
from pathlib import Path
|
6 |
from multiprocessing import cpu_count
|
7 |
-
|
|
|
|
|
8 |
|
9 |
from diffusers import (
|
10 |
StableDiffusionPipeline,
|
@@ -17,7 +19,14 @@ from diffusers import (
|
|
17 |
EulerDiscreteScheduler,
|
18 |
)
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
qrcode_generator = qrcode.QRCode(
|
23 |
version=1,
|
@@ -39,16 +48,6 @@ pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
|
39 |
pipe.enable_xformers_memory_efficient_attention()
|
40 |
|
41 |
|
42 |
-
sd_pipe = StableDiffusionPipeline.from_pretrained(
|
43 |
-
"stabilityai/stable-diffusion-2-1",
|
44 |
-
torch_dtype=torch.float16,
|
45 |
-
safety_checker=None,
|
46 |
-
)
|
47 |
-
sd_pipe.to("cuda")
|
48 |
-
sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
|
49 |
-
sd_pipe.enable_xformers_memory_efficient_attention()
|
50 |
-
|
51 |
-
|
52 |
def resize_for_condition_image(input_image: Image.Image, resolution: int):
|
53 |
input_image = input_image.convert("RGB")
|
54 |
W, H = input_image.size
|
@@ -117,15 +116,8 @@ def inference(
|
|
117 |
elif init_image is None or init_image.size == (1, 1):
|
118 |
print("Generating random image from prompt using Stable Diffusion")
|
119 |
# generate image from prompt
|
120 |
-
|
121 |
-
|
122 |
-
negative_prompt=negative_prompt,
|
123 |
-
generator=generator,
|
124 |
-
num_inference_steps=25,
|
125 |
-
num_images_per_prompt=1,
|
126 |
-
) # type: ignore
|
127 |
-
|
128 |
-
init_image = out.images[0]
|
129 |
else:
|
130 |
print("Using provided init image")
|
131 |
init_image = resize_for_condition_image(init_image, 768)
|
|
|
4 |
import qrcode
|
5 |
from pathlib import Path
|
6 |
from multiprocessing import cpu_count
|
7 |
+
import requests
|
8 |
+
import io
|
9 |
+
from PIL import Image
|
10 |
|
11 |
from diffusers import (
|
12 |
StableDiffusionPipeline,
|
|
|
19 |
EulerDiscreteScheduler,
|
20 |
)
|
21 |
|
22 |
+
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-2-1"
|
23 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
24 |
+
|
25 |
+
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
|
26 |
+
|
27 |
+
def query(payload):
|
28 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
29 |
+
return response.content
|
30 |
|
31 |
qrcode_generator = qrcode.QRCode(
|
32 |
version=1,
|
|
|
48 |
pipe.enable_xformers_memory_efficient_attention()
|
49 |
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
def resize_for_condition_image(input_image: Image.Image, resolution: int):
|
52 |
input_image = input_image.convert("RGB")
|
53 |
W, H = input_image.size
|
|
|
116 |
elif init_image is None or init_image.size == (1, 1):
|
117 |
print("Generating random image from prompt using Stable Diffusion")
|
118 |
# generate image from prompt
|
119 |
+
image_bytes = query({"inputs": prompt})
|
120 |
+
init_image = Image.open(io.BytesIO(image_bytes))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
else:
|
122 |
print("Using provided init image")
|
123 |
init_image = resize_for_condition_image(init_image, 768)
|