File size: 5,110 Bytes
3c77d98
 
 
 
 
 
 
7ba3a06
3c77d98
 
 
7ba3a06
 
 
 
3c77d98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ba3a06
 
 
 
3c77d98
 
 
 
 
 
 
 
 
 
 
 
7ba3a06
3c77d98
7ba3a06
 
 
 
 
3c77d98
 
 
 
 
 
 
 
 
 
 
 
7ba3a06
 
3c77d98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ba3a06
3c77d98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ba3a06
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import requests
import pandas as pd
from bs4 import BeautifulSoup

def extract_div_contents_from_url(url):
    response = requests.get(url)
    if response.status_code != 200:
        print(f"Error: Received status code {response.status_code} for URL: {url}")
        return pd.DataFrame(columns=['title', 'text_url', 'deletion_discussion', 'label', 'confirmation', 'discussion', 'verdict'])

    soup = BeautifulSoup(response.content, 'html.parser')
    div_classes = ['boilerplate afd vfd xfd-closed', 'boilerplate afd vfd xfd-closed archived mw-archivedtalk']
    divs = []
    for div_class in div_classes:
        divs.extend(soup.find_all('div', class_=div_class))
    url_fragment = url.split('#')[-1].replace('_', ' ')

    data = []
    for div in divs:
        try:
            title = None
            text_url = None

            # Extract title and text_url
            title_tag = div.find('a')
            if title_tag:
                title_span = div.find('span', {'data-mw-comment-start': True})
                if title_span:
                    title_anchor = title_span.find_next_sibling('a')
                    if title_anchor:
                        title = title_anchor.text
                        text_url = 'https://en.wikipedia.org' + title_anchor['href']
                else:
                    title = title_tag.text
                    text_url = 'https://en.wikipedia.org' + title_tag['href']

            if title == 'talk page' or title is None:
                heading_tag = div.find('div', class_='mw-heading mw-heading3')
                if heading_tag:
                    title_tag = heading_tag.find('a')
                    if title_tag:
                        title = title_tag.text
                        text_url = 'https://en.wikipedia.org' + title_tag['href']

            if not title:
                continue
            if title.lower() != url_fragment.lower():
                continue  
            deletion_discussion = div.prettify()

            # Extract label
            label = ''
            verdict_tag = div.find('p')
            if verdict_tag:
                label_b_tag = verdict_tag.find('b')
                if label_b_tag:
                    label = label_b_tag.text.strip()

            # Extract confirmation
            confirmation = ''
            discussion_tag = div.find('dd')
            if discussion_tag:
                discussion_tag_i = discussion_tag.find('i')
                if discussion_tag_i:
                    confirmation_b_tag = discussion_tag_i.find('b')
                    if confirmation_b_tag:
                        confirmation = confirmation_b_tag.text.strip()

            # Split deletion_discussion into discussion and verdict
            parts = deletion_discussion.split('<div class="mw-heading mw-heading3">')
            discussion = parts[0] if len(parts) > 0 else ''
            verdict = '<div class="mw-heading mw-heading3">' + parts[1] if len(parts) > 1 else ''

            data.append([title, text_url, deletion_discussion, label, confirmation, verdict, discussion])
        except Exception as e:
            print(f"Error processing div: {e}")
            continue

    df = pd.DataFrame(data, columns=['title', 'text_url', 'deletion_discussion', 'label', 'confirmation', 'verdict', 'discussion'])
    df = df[['title', 'discussion', 'verdict', 'label']]
    print(f"DataFrame created with {len(df)} rows")
    return df


def extract_post_links_text(discussion_html):
    split_point = '<span class="plainlinks">'
    if split_point in discussion_html:
        parts = discussion_html.split(split_point)
        if len(parts) > 1:
            return parts[1]
    return discussion_html

def process_discussion(df):
    df['discussion_cleaned'] = df['verdict'].apply(extract_post_links_text)
    return df

def html_to_plaintext(html_content):
    soup = BeautifulSoup(html_content, 'html.parser')
    for tag in soup.find_all(['p', 'li', 'dd', 'dl']):
        tag.insert_before('\n')
        tag.insert_after('\n')
    for br in soup.find_all('br'):
        br.replace_with('\n')

    text = soup.get_text(separator=' ', strip=True)
    text = '\n'.join([line.strip() for line in text.splitlines() if line.strip() != ''])

    return text
def process_html_to_plaintext(df):
    df['discussion_cleaned'] = df['discussion_cleaned'].apply(html_to_plaintext)
    df = df[['title', 'discussion_cleaned', 'label']]
    return df


import pysbd
def split_text_into_sentences(text):
    seg = pysbd.Segmenter(language="en", clean=False)
    sentences = seg.segment(text)
    return ' '.join(sentences[1:])
def process_split_text_into_sentences(df):
    df['discussion_cleaned'] = df['discussion_cleaned'].apply(split_text_into_sentences)
    return df

def process_data(url):
    df = extract_div_contents_from_url(url)
    df = process_discussion(df)
    df = process_html_to_plaintext(df)
    df = process_split_text_into_sentences(df)
    #if not empty
    if not df.empty:
        return df.at[0,'title']+ ' : '+df.at[0, 'discussion_cleaned']
    else:
        return 'Empty DataFrame'