hsuvaskakoty commited on
Commit
7ba3a06
1 Parent(s): 3c77d98

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +11 -18
  2. data_prep.py +20 -17
  3. model_predict.py +64 -9
app.py CHANGED
@@ -2,40 +2,33 @@ import data_prep
2
  import model_predict
3
  import gradio as gr
4
 
5
- # Dictionary of model names and corresponding display names
6
  model_dict = {
7
- "bert-base": "research-dump/bert-base-uncased_deletion_multiclass_complete_Final",
8
- "bert-large": "research-dump/bert-large-uncased_deletion_multiclass_complete_final",
9
- "roberta-base": "research-dump/roberta-base_deletion_multiclass_complete_final"
 
10
  }
11
 
12
  def process_url(url, model_key):
13
- # Get the actual model path from the model_dict
14
  model_name = model_dict[model_key]
15
-
16
- # Process the text from the URL
17
  processed_text = data_prep.process_data(url)
18
-
19
- # Predict the labels and their probabilities
20
- final_scores = model_predict.predict_text(processed_text, model_name)
21
-
22
- # Find the label with the highest probability
23
  highest_prob_label = max(final_scores, key=final_scores.get)
24
  highest_prob = final_scores[highest_prob_label]
25
-
26
- # Create progress bar style output for all labels
27
  progress_bars = {label: score for label, score in final_scores.items()}
28
 
29
- return highest_prob_label, highest_prob, progress_bars
 
30
 
31
- # Define the interface for the Gradio app
32
  url_input = gr.Textbox(label="URL")
33
  model_name_input = gr.Dropdown(label="Model Name", choices=list(model_dict.keys()), value=list(model_dict.keys())[0])
34
  outputs = [
 
35
  gr.Textbox(label="Label with Highest Probability"),
36
  gr.Textbox(label="Probability"),
37
- gr.JSON(label="All Labels and Probabilities")
 
38
  ]
39
 
40
  demo = gr.Interface(fn=process_url, inputs=[url_input, model_name_input], outputs=outputs)
41
- demo.launch()
 
2
  import model_predict
3
  import gradio as gr
4
 
 
5
  model_dict = {
6
+ "BERT-Base": "research-dump/bert-base-uncased_deletion_multiclass_complete_Final",
7
+ "BERT-Large": "research-dump/bert-large-uncased_deletion_multiclass_complete_final",
8
+ "RoBERTa-Base": "research-dump/roberta-base_deletion_multiclass_complete_final",
9
+ "RoBERTa-Large": "research-dump/roberta-large_deletion_multiclass_complete_final"
10
  }
11
 
12
  def process_url(url, model_key):
 
13
  model_name = model_dict[model_key]
 
 
14
  processed_text = data_prep.process_data(url)
15
+ final_scores,highlighted_text = model_predict.predict_text(processed_text, model_name)
 
 
 
 
16
  highest_prob_label = max(final_scores, key=final_scores.get)
17
  highest_prob = final_scores[highest_prob_label]
 
 
18
  progress_bars = {label: score for label, score in final_scores.items()}
19
 
20
+ return processed_text, highest_prob_label, highest_prob, progress_bars #,highlighted_text
21
+
22
 
 
23
  url_input = gr.Textbox(label="URL")
24
  model_name_input = gr.Dropdown(label="Model Name", choices=list(model_dict.keys()), value=list(model_dict.keys())[0])
25
  outputs = [
26
+ gr.Textbox(label="Processed Text"),
27
  gr.Textbox(label="Label with Highest Probability"),
28
  gr.Textbox(label="Probability"),
29
+ gr.JSON(label="All Labels and Probabilities"),
30
+ #gr.HTML(label="Processed Text")
31
  ]
32
 
33
  demo = gr.Interface(fn=process_url, inputs=[url_input, model_name_input], outputs=outputs)
34
+ demo.launch() #share=True)
data_prep.py CHANGED
@@ -1,19 +1,18 @@
1
  import requests
2
  import pandas as pd
3
  from bs4 import BeautifulSoup
4
- import pandas as pd
5
- from datetime import datetime
6
-
7
 
8
  def extract_div_contents_from_url(url):
9
  response = requests.get(url)
10
  if response.status_code != 200:
 
11
  return pd.DataFrame(columns=['title', 'text_url', 'deletion_discussion', 'label', 'confirmation', 'discussion', 'verdict'])
12
 
13
  soup = BeautifulSoup(response.content, 'html.parser')
14
- divs = soup.find_all('div', class_='boilerplate afd vfd xfd-closed archived mw-archivedtalk')
15
-
16
- # Extract the title fragment from the URL
 
17
  url_fragment = url.split('#')[-1].replace('_', ' ')
18
 
19
  data = []
@@ -43,9 +42,10 @@ def extract_div_contents_from_url(url):
43
  title = title_tag.text
44
  text_url = 'https://en.wikipedia.org' + title_tag['href']
45
 
46
- if title != url_fragment:
47
- continue # Skip if the title does not match the URL fragment
48
-
 
49
  deletion_discussion = div.prettify()
50
 
51
  # Extract label
@@ -58,11 +58,13 @@ def extract_div_contents_from_url(url):
58
 
59
  # Extract confirmation
60
  confirmation = ''
61
- discussion_tag = div.find('dd').find('i')
62
  if discussion_tag:
63
- confirmation_b_tag = discussion_tag.find('b')
64
- if confirmation_b_tag:
65
- confirmation = confirmation_b_tag.text.strip()
 
 
66
 
67
  # Split deletion_discussion into discussion and verdict
68
  parts = deletion_discussion.split('<div class="mw-heading mw-heading3">')
@@ -75,7 +77,8 @@ def extract_div_contents_from_url(url):
75
  continue
76
 
77
  df = pd.DataFrame(data, columns=['title', 'text_url', 'deletion_discussion', 'label', 'confirmation', 'verdict', 'discussion'])
78
- df = df[['title','discussion','verdict','label']]
 
79
  return df
80
 
81
 
@@ -108,6 +111,7 @@ def process_html_to_plaintext(df):
108
  df = df[['title', 'discussion_cleaned', 'label']]
109
  return df
110
 
 
111
  import pysbd
112
  def split_text_into_sentences(text):
113
  seg = pysbd.Segmenter(language="en", clean=False)
@@ -117,8 +121,6 @@ def process_split_text_into_sentences(df):
117
  df['discussion_cleaned'] = df['discussion_cleaned'].apply(split_text_into_sentences)
118
  return df
119
 
120
-
121
-
122
  def process_data(url):
123
  df = extract_div_contents_from_url(url)
124
  df = process_discussion(df)
@@ -128,4 +130,5 @@ def process_data(url):
128
  if not df.empty:
129
  return df.at[0,'title']+ ' : '+df.at[0, 'discussion_cleaned']
130
  else:
131
- return 'Empty DataFrame'
 
 
1
  import requests
2
  import pandas as pd
3
  from bs4 import BeautifulSoup
 
 
 
4
 
5
  def extract_div_contents_from_url(url):
6
  response = requests.get(url)
7
  if response.status_code != 200:
8
+ print(f"Error: Received status code {response.status_code} for URL: {url}")
9
  return pd.DataFrame(columns=['title', 'text_url', 'deletion_discussion', 'label', 'confirmation', 'discussion', 'verdict'])
10
 
11
  soup = BeautifulSoup(response.content, 'html.parser')
12
+ div_classes = ['boilerplate afd vfd xfd-closed', 'boilerplate afd vfd xfd-closed archived mw-archivedtalk']
13
+ divs = []
14
+ for div_class in div_classes:
15
+ divs.extend(soup.find_all('div', class_=div_class))
16
  url_fragment = url.split('#')[-1].replace('_', ' ')
17
 
18
  data = []
 
42
  title = title_tag.text
43
  text_url = 'https://en.wikipedia.org' + title_tag['href']
44
 
45
+ if not title:
46
+ continue
47
+ if title.lower() != url_fragment.lower():
48
+ continue
49
  deletion_discussion = div.prettify()
50
 
51
  # Extract label
 
58
 
59
  # Extract confirmation
60
  confirmation = ''
61
+ discussion_tag = div.find('dd')
62
  if discussion_tag:
63
+ discussion_tag_i = discussion_tag.find('i')
64
+ if discussion_tag_i:
65
+ confirmation_b_tag = discussion_tag_i.find('b')
66
+ if confirmation_b_tag:
67
+ confirmation = confirmation_b_tag.text.strip()
68
 
69
  # Split deletion_discussion into discussion and verdict
70
  parts = deletion_discussion.split('<div class="mw-heading mw-heading3">')
 
77
  continue
78
 
79
  df = pd.DataFrame(data, columns=['title', 'text_url', 'deletion_discussion', 'label', 'confirmation', 'verdict', 'discussion'])
80
+ df = df[['title', 'discussion', 'verdict', 'label']]
81
+ print(f"DataFrame created with {len(df)} rows")
82
  return df
83
 
84
 
 
111
  df = df[['title', 'discussion_cleaned', 'label']]
112
  return df
113
 
114
+
115
  import pysbd
116
  def split_text_into_sentences(text):
117
  seg = pysbd.Segmenter(language="en", clean=False)
 
121
  df['discussion_cleaned'] = df['discussion_cleaned'].apply(split_text_into_sentences)
122
  return df
123
 
 
 
124
  def process_data(url):
125
  df = extract_div_contents_from_url(url)
126
  df = process_discussion(df)
 
130
  if not df.empty:
131
  return df.at[0,'title']+ ' : '+df.at[0, 'discussion_cleaned']
132
  else:
133
+ return 'Empty DataFrame'
134
+
model_predict.py CHANGED
@@ -1,5 +1,39 @@
1
  #using pipeline to predict the input text
2
- from transformers import pipeline
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  import torch
4
 
5
  label_mapping = {
@@ -14,15 +48,36 @@ label_mapping = {
14
  }
15
 
16
  def predict_text(text, model_name):
17
- model = pipeline("text-classification", model=model_name, return_all_scores=True)
18
- results = model(text)
19
- final_scores = {key: 0.0 for key in label_mapping}
 
 
 
20
 
21
- for result in results[0]:
 
22
  for key, value in label_mapping.items():
23
- if result['label'] == value[1]:
24
- final_scores[key] = result['score']
25
  break
26
 
27
- return final_scores
28
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  #using pipeline to predict the input text
2
+ # from transformers import pipeline, AutoTokenizer
3
+ # import torch
4
+
5
+ # label_mapping = {
6
+ # 'delete': [0, 'LABEL_0'],
7
+ # 'keep': [1, 'LABEL_1'],
8
+ # 'merge': [2, 'LABEL_2'],
9
+ # 'no consensus': [3, 'LABEL_3'],
10
+ # 'speedy keep': [4, 'LABEL_4'],
11
+ # 'speedy delete': [5, 'LABEL_5'],
12
+ # 'redirect': [6, 'LABEL_6'],
13
+ # 'withdrawn': [7, 'LABEL_7']
14
+ # }
15
+
16
+ # def predict_text(text, model_name):
17
+ # tokenizer = AutoTokenizer.from_pretrained(model_name)
18
+ # model = pipeline("text-classification", model=model_name, return_all_scores=True)
19
+
20
+ # # Tokenize and truncate the text
21
+ # tokens = tokenizer(text, truncation=True, max_length=512)
22
+ # truncated_text = tokenizer.decode(tokens['input_ids'], skip_special_tokens=True)
23
+
24
+ # results = model(truncated_text)
25
+ # final_scores = {key: 0.0 for key in label_mapping}
26
+
27
+ # for result in results[0]:
28
+ # for key, value in label_mapping.items():
29
+ # if result['label'] == value[1]:
30
+ # final_scores[key] = result['score']
31
+ # break
32
+
33
+ # return final_scores
34
+
35
+
36
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
37
  import torch
38
 
39
  label_mapping = {
 
48
  }
49
 
50
  def predict_text(text, model_name):
51
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
52
+ model = AutoModelForSequenceClassification.from_pretrained(model_name, output_attentions=True)
53
+
54
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
55
+ outputs = model(**inputs)
56
+ predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
57
 
58
+ final_scores = {key: 0.0 for key in label_mapping}
59
+ for i, score in enumerate(predictions[0]):
60
  for key, value in label_mapping.items():
61
+ if i == value[0]:
62
+ final_scores[key] = score.item()
63
  break
64
 
65
+ # Calculate average attention
66
+ attentions = outputs.attentions
67
+ avg_attentions = torch.mean(torch.stack(attentions), dim=1) # Average over all layers
68
+ avg_attentions = avg_attentions.mean(dim=1)[0] # Average over heads
69
+ token_importance = avg_attentions.mean(dim=0)
70
+
71
+ # Decode tokens and highlight important ones
72
+ tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0])
73
+ highlighted_text = []
74
+ for token, importance in zip(tokens, token_importance):
75
+ if importance > token_importance.mean():
76
+ highlighted_text.append(f"<b>{token}</b>") #
77
+ else:
78
+ highlighted_text.append(token)
79
+
80
+ highlighted_text = " ".join(highlighted_text)
81
+ highlighted_text = highlighted_text.replace("##", "")
82
+
83
+ return final_scores, highlighted_text