chemeleon / app.py
hspark1212's picture
initial commit
40fc2b7
import time
import json
import random
import base64
from io import BytesIO
from fire import Fire
import streamlit as st
from ase.atoms import Atoms
from ase.build import bulk
from ase.io import write
from chemeleon import Chemeleon
from chemeleon.visualize import Visualizer
from utils import dict_to_atoms
# Constants
TIMESTEPS = 1000
TRAJECTORY_STEPS = 100
DEFAULT_NUM_SAMPLES = 3
DEMO = False
# Set page configuration
st.set_page_config(page_title="Chemeleon", layout="wide")
# Hide Streamlit's default menu and footer for a cleaner look
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
def demo_generator_structures(num_atoms, text_input, num_samples):
"""
Generate crystal structures for demonstration purposes.
"""
elements = random.choices(["Si", "Ge", "C", "Na", "Cl"], k=num_samples)
random_elements = random.choices(elements, k=num_atoms)
for step in range(TIMESTEPS):
time.sleep(0.001)
random_atoms = Atoms(
"Li",
positions=[[random.random() * 5 for _ in range(3)]],
)
atoms_list = [bulk(element, "fcc", a=5.43) for element in random_elements]
new_atoms_list = []
for atoms in atoms_list:
# Adding random atoms to each bulk structure
combined_atoms = atoms + random_atoms
new_atoms_list.append(combined_atoms)
yield new_atoms_list
def generator_structures_chemeleon(
num_atoms, test_input, num_samples, use_client=False
):
"""
Generate crystal structures based on the given number of atoms and input text.
"""
if use_client:
response = client(
url="https://8000-01j80snre5xdhq828s1q5brs0m.cloudspaces.litng.ai/predict",
n_samples=num_samples,
n_atoms=num_atoms,
text_input=test_input,
)
for line in response.iter_lines():
output = json.loads(line)["output"]
atom_dict = json.loads(output)
atoms_list = [dict_to_atoms(atoms_dict) for atoms_dict in atom_dict]
yield atoms_list
else:
chemeleon = Chemeleon.load_general_text_model()
for atoms_list in chemeleon.sample(
text_input=test_input,
n_atoms=num_atoms,
n_samples=num_samples,
stream=True,
):
yield atoms_list
def visualize_structure(atoms):
"""
Visualize the given atomic structure using Plotly.
"""
visualizer = Visualizer([atoms], atomic_size=0.6, resolution=20)
fig = visualizer.view()
return fig
def visualize_trajectory(atoms_list):
"""
Visualize the given atomic structure trajectory using Plotly.
"""
visualizer = Visualizer(atoms_list, atomic_size=0.6, resolution=20)
fig = visualizer.view_trajectory(duration=1000)
return fig
# Main application function
def main(use_client=False):
# Initialize session state
if "structures" not in st.session_state:
st.session_state.structures = []
if "trajectory" not in st.session_state:
st.session_state.trajectory = []
if "progress_in_generating" not in st.session_state:
st.session_state["progress_in_generating"] = False
# Sidebar for user inputs
with st.sidebar:
st.image("assets/logo_static.jpg", width=200)
st.markdown(
"""
<h1 style='text-align: center; color: #4CAF50;'>Chemeleon</h1>
<h3 style='text-align: center;'>A text-guided diffusion model for crystal structure generation</h3>
""",
unsafe_allow_html=True,
)
st.markdown("---")
description = st.text_input(
"Input your text prompt to generate crystal structures",
"A Crystal Structure of LiMnO4 with orthorhombic symmetry",
help="Examples: 'LiMnO4' or 'A Crystal Structure of BaTiO3 with cubic symmetry'",
)
num_atoms = st.slider(
"πŸ”’ Number of Atoms:",
min_value=1,
max_value=20,
value=6,
help="Select the number of atoms in the unit cell.",
)
num_samples = st.number_input(
"πŸ§ͺ Number of Samples:",
min_value=1,
max_value=5,
value=DEFAULT_NUM_SAMPLES,
step=1,
help="Determine how many structure samples to generate.",
)
# Generate Structures when button is clicked
if st.session_state["progress_in_generating"]:
# Clear previous structures
st.session_state.structures = []
st.session_state.trajectory = []
# Initialize progress bar in the sidebar
progress_placeholder = st.empty()
progress_bar = progress_placeholder.progress(0)
# Initialize loading animation
image_placeholder = st.empty()
with st.spinner("Generating structures..."):
with image_placeholder:
data_url = base64.b64encode(
open("assets/logo.gif", "rb").read()
).decode()
image_placeholder.markdown(
f'<img src="data:image/gif;base64,{data_url}" width=100>',
unsafe_allow_html=True,
)
# Generate structures
trajectory = []
if DEMO:
generator = demo_generator_structures(num_atoms, description, num_samples)
else:
generator = generator_structures_chemeleon(
num_atoms, description, num_samples, use_client
)
for step, atoms_list in enumerate(generator):
progress_bar.progress((step + 1) / TIMESTEPS)
if step % TRAJECTORY_STEPS == 0 or step == TIMESTEPS - 1:
st.session_state.structures = atoms_list
trajectory.append(atoms_list)
st.session_state.trajectory = trajectory
# Remove the progress bar
progress_placeholder.empty()
# Remove the loading animation
image_placeholder.empty()
# Reset the progress state
st.session_state["progress_in_generating"] = False
# Display success message
st.sidebar.success("✨ Structures generated successfully!")
with st.sidebar:
if st.button(
"Generate Structures πŸš€",
disabled=st.session_state["progress_in_generating"],
):
st.session_state["progress_in_generating"] = True
st.rerun()
# Check if structures are generated
if st.session_state.structures:
# Tabs for visualization
tabs = st.tabs(["Structure Visualization", "Trajectory Analysis"])
# Structure Visualization Tab
with tabs[0]:
col1, col2 = st.columns([1, 3])
with col1:
st.session_state.selected_sample_index = (
st.radio(
"Select Sample",
options=list(range(1, num_samples + 1)),
index=0,
help="Choose which sample to visualize.",
)
- 1
) # Adjust for zero-based indexing
# Download file
atoms = st.session_state.structures[
st.session_state.selected_sample_index
]
buffer = BytesIO()
write(buffer, atoms, format="cif")
buffer.seek(0)
st.download_button(
label="Download CIF File",
data=buffer,
file_name=f"{str(atoms.symbols)}.cif",
mime="chemical/cif",
)
with col2:
atoms = st.session_state.structures[
st.session_state.selected_sample_index
]
fig = visualize_structure(atoms)
st.plotly_chart(fig, use_container_width=True)
# Trajectory Analysis Tab
with tabs[1]:
if st.session_state.trajectory:
trajectory = [
traj[st.session_state.selected_sample_index]
for traj in st.session_state.trajectory
]
tabs_2 = st.tabs(["Animation", "Step View"])
# Animation
with tabs_2[0]:
fig = visualize_trajectory(trajectory)
st.plotly_chart(fig, use_container_width=True)
# Slider
with tabs_2[1]:
trajectory_index = st.slider(
"Select Trajectory Step",
min_value=0,
max_value=len(trajectory) - 1,
value=0,
step=1,
help="Navigate through different steps of the structure generation.",
)
selected_atoms = trajectory[trajectory_index]
trajectory_fig = visualize_structure(selected_atoms)
st.plotly_chart(trajectory_fig, use_container_width=True)
else:
st.info("No trajectory data available.")
# Footer
st.markdown(
"""
<div style="text-align: center; color: grey; margin-top: 50px;">
<p style="font-size: 14px; margin: 0;">
Developed by
<a href="https://hspark1212.github.io" target="_blank">Hyunsoo Park</a>,
as a part of <a href="https://github.com/wmd-group" target="_blank">Materials Design Group</a>
at Imperial College London
</p>
<p>
<a href="https://chemrxiv.org/engage/chemrxiv/article-details/6728e27cf9980725cf118177" target="_blank">Research Paper</a> |
<a href="https://github.com/hspark1212/chemeleon" target="_blank">Repository</a>
</p>
</div>
""",
unsafe_allow_html=True,
)
if __name__ == "__main__":
Fire(main) # Usage example: streamlit run app/streamlit_app.py -- --use_client=True